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Semiclassical theory for transmission through open billiards: Convergence towards
quantum transport
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We present a semiclassical theory for transmission through open quantum billiards which converges towards
guantum transport. The transmission amplitude can be expressed as a sum over all classiaatljpstnsdo-
paths which consist of classical path segments joined by “kinks,” i.e., diffractive scattering at lead mouths. For
a rectangular billiard we show numerically that the sum over all such paths with a given number oKkinks
converges to the quantum transmission amplitud€-ase. Unitarity of the semiclassical theory is restored as
K approaches infinity. Moreover, we find excellent agreement with the quantum path-length power spectrum up
to very long path length.
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[. INTRODUCTION guantum wire and the billiard effects of diffraction at sharp
edges within the framework of the Kirchhoff diffractid6]

The aim of semiclassical theory is to bridge the gap beor Fraunhofer diffractior7]. However, despite considerable
tween quantum mechanics and its classical limit. Generiimprovement achieved, the fundamental shortcomings are
cally, probability amplitudes are calculated by summing ovemot accounted for. Remarkably, the discrepancies between
classical paths, each of which carries an amplitude and the semiclassical path-length power spect®@pfj  (¢) and
phasg[1,2]. Such an approach facilitates an intuitive under-the corresponding quantum path-length spectrum,
standing of basic features of quantum mechanics such as
“guantum interference” and allows quantitative calculations pam (e)zf dkek‘T,, m(k)‘, (1.2)
in the regime of high energies, i.e., short wavelength0, mem '

i impractical. . -
where full quar_1tum _calculat|ons may becpme P _‘are more pronounced for classically regular billiards such as
Moreover, semiclassical theory plays an important role i

S . . ! "the rectangulaf7] or the circular[5,6,2§ billiard than for
elucidating the signatures of classical chaos in quantum sy$q,aotic structures such as the Bunimovich stadilirf—
tems whose classical counterpart is chadi¢. Ballistic 15 5g |n other words, the path-length spectrum of a regular

transport through billiards has become a popular prototypgystem where the number of paths grows linearly as a func-
example[3—-13]: All paths that connect the entrance l€ad  jon of length, No¢(€)c€, is much more sensitive to the
injeCtion quantum WIr)?Wlth the exit Iea({or emission quan- approximation of the Feynman path integra| by the sum over
tum wire) contribute to the transmission amplitud&, »  classical paths than the exponentially proliferating path-
from them'™ mode in the entrance lead to th@’)"" mode in  |ength spectrumN.,(¢)<exp{), of a chaotic cavity. This
the exit lead. Inside the billiard, i.e., a two-dimensional cav-observation strongly hints at the lack of missitigon)
ity at constant potential, the trajectories are straight lineglassical paths as the culprit for the failure. Another hint is
which are specularly reflected at hard walls. Despite the conprovided by the breakdown of the one-to-one correlation be-
ceptual simplicity of the semiclassical description of ballistictween transmission and reflection fluctuations. As classical
transport, recent applications have revealed fundamental difrajectories that are either ejected through the exit lead con-
ficulties of the semiclassical theop,7—9,14,15,2B among  tributing to T or return back to the entrance lead contributing
many others, unitarity is badly violated with discrepancies into R are disjunct subsets, the inequalityd|T|?)sc#
some cases as large as the conductance fluctuations the§|R|?),. is anything but surprising and indicates that ad-
theory attempts to descril§8,9]. Consequently the correla- ditional paths, pseudopaths referred to in the following, are
tion 8|T|?= — 5|R|? between transmissiofor conductande  required to couple these disjunct subsets and thereby restore
fluctuations,8| T|2, and the corresponding fluctuations in the the correlation between transmission and reflection.
reflection (or resistance 8|R|?, as a function of the wave The starting point of our formulation of the semiclassical
numberk is broken. Also, the “weak localization” effect is theory is the close analogy to another class of scattering
considerably underestimatéii4,15. problems where standard semiclassical theory fails: elastic
At first glance, the shortcomings of the semiclassical apdifferential scattering at central potentials displaying pro-
proximation are not surprising. Hard-walled billiards possessiounced generalized Ramsauer-Townsend interference
“sharp edges” at the entrance and exit leads. At such pointgninima [19]. Following the seminal work of Berry and
the length scal@p of spatial variations of the potential ap- Mount[20] it could be showri21] that by including into the
proaches zero. Consequently the semiclassical Ih#p semiclassical scattering amplitude, in addition to the classi-
<1 cannot be reached no matter how smalbr largek) is. cal paths, a small set of pseudopaths an almost perfect agree-
An obvious improvement of the semiclassical descriptionment with the quantum differential cross section could be
can be achieved by including into the coupling between thechieved. The task is therefore to identify the set of pseudo-
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2 (2) The Fourier-Laplace transform ofV(r’,r,t) to the
semiclassical Green’s propagat@®(r’,r,E), which de-
Y scribes the probability amplitude for propagation fronto

d D r’ at a fixed energ¥, is performed by SPA leading to a sum
7, over all classical paths of enerdy connecting these two

points:
GSC(yZ!ylrk) E |Dp(y2’yl!k)|l/2

FIG. 1. Rectangular billiard with length, width D, and with a 272 yi=y,
opposite centered leads of width

a
paths for scattering at open billiards. To this end the quantum X exp{i(lp(yz,yl) - E#p}- (2.2
transmission amplitude is expanded as a multiple scattering
series. In its semiclassical limit, propagation between subseHere, 1,(y,,y;) denotes the length ang, denotes the
quent scattering events can be identified as proceeding alongaslov index of the patip. We denote the transverse coor-
classical paths while each scattering corresponds to a noginates in the entrance/exit lead lyy, and suppress the
classical diffractive deflectiotfkink” ) at the sharp edges of correspondingx coordinates in Eq(2.2). D, denotes the
the lead walls. We perform our analysis for a rectangulaieighting factor(deflection factoy of the path.
billiard with exit and entrance leads at opposite sides of the (3) The transmission amplituddand, equally, reflection
structure(Fig. 1) for which all paths and pseudopaths can beamplitudes from the modem to the modem’ are customar-
easily enumeratefB4] and the path sum can be performedily expressed as the projection of the Green's function
until convergence is approximately reached. We find excelfevaluated at the enerdy=72k?/(2m)] onto the transverse

lent agreement with the full quantum calculation for thewave functionse.,(y;) and ¢, (y,) of the incoming and
I:_Jat.h—length spectrum and convergence towards the unitarityutgoing mode$4],
imit.

The plan of the paper is as follows: In Sec. Il we briefly %
review the standard semiclassical approximation to this prob- ~ 1m.m(K) =~ \/”Xz’m’vxlymf dy{[ dy1¢m (¥2)
lem. In Sec. Ill we motivate the present multiple scattering sc
approach employed in the enumeration of pseudopaths by XGZHY2,Y1,K) dm(Y1)- 23
revisiting the.one—dlmensmnal square weII_ problem. Tran'This double integral is frequently calculated in the SPA as
scription of this problem to the rectangular billiard allows the ell. This selects those classical trajectorethat enter the
enumeration of pseudopaths as discussed in Sec. IV. EXp”C\t{){Iillia.rd with the quantized angle
expressions for the diffractive amplitudes entering the
present semiclassical theory at the level of Fraunhofer dif-
fraction approximatioffFDA) are given in Sec. V. Numerical On=sin"
results and comparison with the full quantum results are dis-
cussed in Sec. VI followed by a short summary and an out
look to future applications of this approach.

1@ (2.43
dk '

and exit the billiard at the quantized angle

lm’ﬂ'
dk -’

II. STANDARD SEMICLASSICAL APPROXIMATION Oy =siN” (2.4b

The conductancg for ballistic transport as a function of
the wave numbek through an open billiard is given by the
Landauer formuld22],

In an earlier papel7] we have demonstrated that the SPA in
the third step can be avoided by linear expansion of the ex-
ponent in Eq.(2.3 allowing for an analytical evaluation of
2e2( N N the double integral. Using lead wave functions with longitu-
g(k)= s 21 > T m(KI?], (2.1)  dinal momentum
m=4m'=1

. . K= Vk®— |mar/d|? (2.5
whereN is the number of open modes in the ledgsantum
wires) of width d. Generically, semiclassical approximations and transverse wave functions
to the transmission amplitudds, ,, employ three steps each

of which is connected with a stationary phase approximation m
(SP@ [23] > co Ty , m odd

(1) The quantum mechanical Feynman propagator D (y)= d T (2.6)
KF(F’,F,t) [24] leads, after application of the SPA, to the sin(T ) m even,

semiclassical Van Vleck propagatk(r’,r,t), which con-

tains the sum over all classical paths connectirandr’ in each integral corresponds to a Fraunhofer diffraction inte-
timet [2,25]. gral. This automatically includes diffractive effects on the
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level of the Fraunhofer approximation and yields results

comparable to the explicit inclusion of diffractive effects us- (a) f = + + ”
ing Kirchhoff theory[6]. The physical picture that emerges is 7 % T ]
that classical trajectories representing incomiogtgoing ®) =N

flux no longer entefexit) the billiard at quantized angléeg, T—.

[see Eq(2.4)] but with a continuous distribution of angl@s

given by the corresponding diffraction integral. The imple- FIG. 2. One-dimensional potential square well and its decom-

mentation of this class of diffractive effects for the trajecto-position into two potential step&dge$ and a region of constant

ries leads to a considerable improvement in the transmissiopptential.

and reflection coefficients for low modes and in the path-

length spectrum where the position and height of many peakall classical and nonclassical paths included in the scattering

could be identified with classical paths. Nevertheless the funwave function, we revisit the well-known one-dimensional

damental difficulties of the semiclassical approximation persquare well problem. Scattering at the square W&W) is a

sist. In particular: standard problem treated in most quantum mechanics text
(a) The unitarity condition books[27] and easily solved by matching the wave function

and its derivative at the two edges of a square well potential

of width L and depth—V, shown in Fig. 2. The transmission

Z | T m(K) 2+ Z R m(KP=1 (27 amplitudeTS™ is proportional to the amplitude of the wave

m=1 m=1 function on the right hand side of a square well. In a standard

| semiclassical approach which is based exclusively on classi-

is violated [7,8,26. The fluctuations of the semiclassica ) X ;
conductance around the exact value remains approximatelyca"y allowed paths, there is only one classical path transmit-

constant and does not decrease with increagingr A  ted through the well, and consequently

—0). (sw

(b) The path-length power spectrum displays a dramatic [ Tsc’|=1 (3.9
overestimate of contributions for long pathd-9,2q (see

Fig. 8 below. The position of the peaks is reproduced re-at variance with quantum results. This discrepancy is not
markably well by the semiclassical approximation. Howeversurprising as at the edges of a well, the semiclassical crite-
the approximately exponential decay of the quantum sped’.iOI"l )\/ap—>0 is violated. We reformulate now the quantum
trum contrasts with the inverse lineat ¢) decay of the scattering problem in terms of multiple scattering at the two
semiclassical spectrum. edges. To this end, we consider the square well as a structure

It is instructive to classify the standard semiclassicalcomposed of three separate substructures, the left edge, the
theory in terms of the number of the SPA's employed. De-interior of the well, and the right edgé&ig. 2), for each of
pending on the starting point of the description in either timewhich we determine separate amplitudes. The transmission
or energy domain one or two SPAs are involviske Eq. amplitude for an incoming wave from the external region
(2.2)] in the propagation. If one neglects diffraction during from the left with k!®=2E into the interior of the well
the injection and emission, two more SPA's are needed. Stawith k)= \2(E+V,), i.e., forward scattering amplitude at
dard semiclassical approximatioS8CA) are therefore char- the left edge is given by
acterized by dixednumber of SPA's with the minimum of at
least one, that is, when one starts from a time-independent JkOk©
constant energy description and employs a diffraction ap- t(")=2ﬁ-
proximation for the coupling in and out of the billiard struc- K4k
ture.

Going beyond the standard approximation requires takingorrespondingly, the backscatteritay reflection amplitude
into account nonclassical paths during the propagation insid@t the left edge from the exterior region back into the exterior
the billiards in line with the original Feynman propagator. '€gion is given by
Identifying and enumerating the relevant nonclassical paths
to be included can be performed by casting the quantum L k®—kO
problem in a multiple scattering problem. The result will be re ):m- 3.3
characterized by aimcreasingnumber of SPA's with an in-
creasing humber of nonclassical paths.

N N

(3.2

The propagation through the interior of the well from the left

to the right LR) [or from the right to the leftRL)] is given
Ill. MULTIPLE SCATTERING THEORY: by the Green’s function

THE ONE-DIMENSIONAL SQUARE WELL

POTENTIAL REVISITED G (g x,) = 4010 = kL R ( xe).

Our point of departure for the development of the present (3.9
semiclassical description of quantum transport is the time-
independent quantum scattering wave function for multipleThe corresponding transmission amplitude for the right edge
scattering. In order to motivate our strategy for enumeratinds
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IMOME) 7z Z Lz %
t<R>=2k—k., (3.5 /% é /% é
k(® + k() y g
= + 4
i.e., tR=tl=t, The backscattering amplitude for a wave % E” % Z”
approaching either edge from the interior is given by Y T %
=== fo

7.
t @ W ®)
r @ G

(3.6 G

k) —k(®

r

EEDGICE
FIG. 3. Decomposition of a rectangular billiard into three sepa-
i.e.,r=—r). The transmission amplitude through the com-rate substructures: a junction from a narrow to a wide constriction,
posite structure], can now be written as a multiple scatter- a wide constriction of lengti., and a junction from a wide to a
ing series of repeated traversals through the strudtsee  narrow constriction. Transmission through the junctieh, reflec-
Fig. 2(b)] each calculated with the help of the elementarytion at the junction=r, and propagation in between for left to right
amplitudes for transmission, reflection, and propagatiorF G"-P (or right to left =G®Y).
[Egs.(3.2—-(3.4)],
Obviously, these series of multiple scattering at the discon-
T=t®[GR(L,00+GR(L,0rcRI0L)re*HR tinuous edges converges towards the exact quantum result.
X (L,O)+- -]tV Unitarity is trivially satisfied (R|?+|T|2=1). Remarkably,
' we are not aware of a discussion of this intuitive derivation
» of the square well transmission problem in any standard
=tRGLR(L,0( X, [rcRYOL)rGER(L,07 M. quantum mechanics textbook. The key point in the present
=0 context is now that the formulation of the exact quantum
(3.7 scattering in terms of multiple traversals can be rephrased in
terms of a sum over paths, in the following referred to as
Inserting explicit expressionfEgs. (3.2—(3.6)] gives the pseudopaths, which consist of segments of classical paths
geometric series connected by amplitudes for nonclassical scattering at edges.
In one dimension, the semiclassical propagator coincides
I i with the quantum propagatdEq. (3.4)]. Accordingly, the
T=t2e )LZO (rzeZ'k( )L)J (3.8 geometric seriefEgs. (3.9 and(3.12] can be interpreted as
I a sum over pseudopaths characterized by an increasing num-
with the result ber of traversals through the structure before exiting on ei-
ther side. Each traversal corresponds to a classical path seg-
1 ment described by a semiclassical propagator. Edge
T= : , (3.9 scattering must be described by a quantum scattering ampli-
cog kML) — I—Esin(k(i)L) tude which is an obvious consequence of the fact that at the
2 edgen/a,— no matter how largé is and, therefore, the
semiclassical limit is never reached. In one dimension, the

where semiclassical description in terms of a complete set of
pseudopaths is naturally equivalent to the full quantum scat-

k® kO tering amplitude. The nontrivial generalization of this ap-

€= WJ’ @ (3.10 proach to two(or highe) dimensions is at the core of the

present semiclassical approach. In such a case, the sum over
the reflection amplitude for the COmpositepsgudopaths is no Ionger equivalent to 'the full quantum scat-

tering process but provides a systematic approximation tech-
nique to include nonclassical effedts equivalently, contri-

Analogously,
structure is given by

% butions in increasing orders df) into the semiclassical
R=rO+tOcLR L 0)> [rcRYOL)IIGER(L,0)] description.
i=0
xrGRYoL)tH). (3.11) IV. TRANSMISSION THROUGH A RECTANGULAR
BILLIARD: FROM QUANTUM
Inserting explicit expressions for the substructures yields TO SEMICLASSICAL DESCRIPTION
oz o The quantum transport problem through a rectangular bil-
R= —r( 1-12e2kY (rzez'k(')'-)l> liard with opposite leadéFig. 1) with width D and lengthL
=0 can be formulated in terms of a multiple scattering series in
12e2ikL direct analr(])gy to the 1D squat\)rle well. Aﬁcordingéy, v\g de-
=—rl1=- : ' (3.12  compose the transmission problem into three pi¢Ees 3):
1—r2e2kL the injection (or transmission from the entrance leador
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quantum wirg to the left into the billiard") the propagation 1. Single and double traversals

f“(){;[)the left to the rightG(-™ or from the right to the left, In this subsection we begin to develop an improved semi-
G, of the cavity, and the emissidor tra)nsrr_ussm_)hfrom classical approximation to the quantum mechanical expres-
the interior into the exit lead to the right™. Likewise, the  sjons Eqs(4.1) and (4.2) for certain classes of short paths,
electron approaching the b'”L')""rd can be reflected at the enfeatyring few traversals through the structure. The key fea-
trance lead with amplitudes’™) or can be reflected at each yre of this derivation is the transition from discrete mode
junction from the wide to the narrow constriction if the wave nymbers to continuous angles of incident trajectories.
approaches the lead mouth from the interior with amplitude e amplitude for transmission from modg in the left

r. The scqttgring amplitudes gt each lead mouth re.preser?tir]gad tomg in the right lead Eq. (4.1)] reads explicitly for up
a discontinuity in the potential become now matrices withiy three successive traversals

indices referring to the transverse mode number, e,&tin

wherem refers to the mode number in the lead antb the ; R ik

mode number in the rectangular billiard. These scattering TmR'mL~; tim n€ Tt + 2 . t‘m;,nne'k" :

amplitudes at the lead mouthr junctions between constric- mn

tions of different widthy cannot be satisfactorily described X refnrtr, elkalg() 4 (4.5

by a true semiclassical description Xta,—o for any en- :

ergy of the scattered particle. One can, instead, employ eith&vith

a full numerical solution of the quantum problem for each

junction or, alternatively, an approximate analytic approxi- kn=Vk?— (nm/D)?.

mation in terms of “diffraction integrals” which are a large ) ] ) o

approximation and hence close in spirit to a semiclassical "€ crucial step towards a semiclassical approximation to

approximation. An explicit evaluation dfandr in terms of ~ Eds.(4.1) and (4.5 is now to associate the traversals with

Fraunhofer diffraction integrals will be given below. classical paths. For clarity we present first the derivation for
The multiple scattering expansion of the transmission ama path that traverses the cavity just once corresponding to the

plitude T and the reflection amplitud® are given in analogy first term in Eq.(4.5. We then extend our derivation to mul-
to Egs.(3.7) and(3.11) by matrix equations, tiple traversals through the cavity and show that the sum

over multiple traversals can be performed by mapping the

_ problem on combinatorics of lattice vectors in an extended

T(E)=t(R)G(LR)( 2 (rG(RL)rG(LR))’)t(L), (4.1))  zone scheme of a rectangular lattice. The method of the ex-
I=0 tended zone scheme has also been used to determine a semi-

classical expansion of the transmission amplitudes in terms

oo

and of a finite number of continued fractiohg8].
o In order to associate the first term in E¢.5) with clas-
R(E)zr(L)th(L)G(LR)( > (rG(RL)rg(LR))J)rg(RL)t(L)_ sical paths we have to map the transverse quantum number
j=0 onto an injection angl®. For this task we employ the Pois-

(4.2 son sum formulg29]. Without loss of generality we take
here and in the followingn, and my to be odd integers.
Because of inversion symmetry, the subspaces of even and
dd mode number completely decouple. Analogous expres-
ions can be derived for even_r. The single traversdtl)
contribution becomes

Here and in the following we suppress the enefggr wave

number k dependence for notational simplicity. For the
propagator we choose a mixed representation which is Ioceﬂ
in x, and employs a spectral sum over transverse modes,

GER(xg x ) =GRY(x ,xg) =2, |nyelknCw=x(n|.
n

1 & (=
ws Thom (=7 2 | tm(M)tm (¥)
The transverse modes in the billiard are described by the XeiLsz‘(VD—w)ZHaW(v—l)dV‘ (4.6)
wave functions
The sum over integens can be replaced by an integral over

2 nw the continuous variable. Since the(discret¢ mode num-
5(;0 yl, n odd

D bersn are associated with quantized angleséim/(kD),
dn(y)= (4.4  the integration over the variablecan be associated with an
\E sin(n—wy ) n even angle integration via the substitution
D D” ’
kD _ kD
andxg | are thex coordinates of the rightieft) lead with v=—sin( 0)—dv= ——cog 6)dé. 4.7

Xg—X_ =L. Equations(4.1) and (4.2) represent a full quan-

tum description of the transport amplitudegndR in terms  If we restrict 6 to real angles, the variable is restricted to

of a multiple scattering series. In the following we will in- the interval[ —kD/,kD/#]. Since values outside this in-
vestigate its semiclassical limit. terval correspond to evanescent rather than propagating
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waves, we neglect the latter which would make only an ex- (a) (b)
ponentially small contribution to the transport for large o= o=
With the substitutiof Eq. (4.7)] we arrive at

[

kD 2
1 - d d
T m, > f Lng(0) (6)

4 a=—ow — T

X eik[L cos(@) +aD sin(d)] —ima COX 6)d6, (48)

wheretf, (6),t;, (6) are the injectior{ejection amplitudes
and the transverse mode indeis converted to a continuous
angle variabled. For these amplitudes we will later employ
the FDA in line with previous semiclassical treatmefité
The action in the exponent of E(.8)

S(0)=k[L cog )+ aD sin(0)], (4.9

has a simple geometric interpretation in the extended zone
scheme of the rectangular latti€Eig. 4(a@)]. The action is
that of a path connecting the center of the left side of the unit ® /. 2

cell, the position of the entrance lead, with the center of the
right side of thea!" replica of the unit cell in the transverse
direction. The path possesses at most one discontinuity, i.e., a

discontinuous displacement of the traject(ArE/ perpendicu- 1
lar to the direction of propagation such thatr =0 and no /
contribution to the classical action is accumulated along the ()

displacemenﬁF. Note that Eq(4.8) is, apart from neglect- ® ¢ 0

ing evanescent modes, equivalent to the original quantum
expression for single traversals. This set of straight-line paths
connecting the entrance lead with any one of the replicas of
the exit lead featuring no more than one lateral displacement ® -1
amounts to the representation of a full path sum of the Feyn-
man propagator for this process.

We derive now the semiclassical limit of E.8) by B=1 B=2

applying the SPA. The SPA is valid if the actid(6) is FIG. 4. Examples of classical and nonclassical paths for single
rapidly varying on a scale of2, i.e., if KL>m or kD> . and double traversals depicted in the extended zone scli@me
Since for a given mode, k=nw/d, these conditions are nonclassical path for single traversal with one lateral displacement
only fulfilled for all n provided thatD/d>1 orL/d>1, i.e.,  representing the full Feynman path suth) Classical paths for

if at least one of the linear dimensions of the rectangulasingle traversal after stationary phase approximatitashed line:
billiard is large compared to the lead width. With this restric- classical paths in the fundamental unit &elt) Classical paths for
tion in mind, we obtain from the stationary phase conditiondouble traversal contributing to reflection.

0=S'(6)=k[ —L sin(#) + aD cog )] (4.10 S’(0)=—Kk[L cog )+ aD sin(6)]
watat: " k
the “stationary” angles = E(|_2+ a’D?)cog 0,)=—kl,. (4.12
aD . . . . . . .
eazarctanr, (4.17 We thus obtain the semiclassical transmission coefficient for
single traversals

which coincide with the angles of the classical straight-line KD - 1

paths of length , connecting the lattice point of the entrance Ty [ T > —gi(klg=ma)td (g )

lead with the lattice point of the!" replica of the exit lead MRM 2 V2, VK, MRY

[Fig. 4(b)]. The stationarity condition eliminates the discon- d

tinuous displacement and renders the paths fully classical. XcosﬂatmL(ea). (4.13
The numberr corresponds to the number of horizontal zone

boundaries the trajectory has crossed. The second derivatiiéhe phasera in Eq. (4.13 is associated with the Maslov
yields the deflection factor for each path index for a crossings of the “hard-wall” boundarie6.e.,
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horizontal zone boundarigthe trajectory has crossed on its o=
way to thea'" exit lattice poinfsee Fig. 4b)]. The classical O
path sum in Eq(4.13 corresponds to a sum over all lattice /.\

vectors connecting the lattice point of the entrance lead with

exit points in thea'™ unit cell. \'
The next term in the multiple scattering expansj&uys. ] 1

(4.1), (4.2)] corresponds to the double traversal. A t2

contribution does not appear in the expansion of the trans-

mission amplituddEq. (4.5]. Note that oddevern number

of traversal correspond to transmissi@aflectior). Accord-

ingly, the lowest-order reflection amplitude is

(t2) ———@ -/

— (L) ik L iknLs(L)
RmL',mL_EI tm,_’,n’el " rn’,neI n tn,m,_- (4.14

B=1 B=2
Before again applying the Poisson formula, we decompose
the internal reflection amplitude at the vertical wall into the
geometric hard-wall reflection amplitude of the closed bil-
liard and the diffractive amplitude for the lead opening

FIG. 5. Two examples for pseudopaths consisting of classical
path segments and “kinks,” i.e., diffractive scatterings at lattice
coordinates representing the lead mouth.

r, o=—g8., +rd (4.19 points (@, 8=2). More generallyB=even correspond to re-
n’,n n’,n rn: ’ ; i

mn flected paths, whilgg=o0dd correspond to transmitted paths.
The term— &,/ ,, corresponds to geometric scattering at the The one-diffraction contribution in E¢4.16 can now be
hard vertical wall of the closed billiard including its phase Converted into contributions from pseudopaths, more pre-
jump (Maslov indey while the amplitude® corresponds to  CiSely, of two segments of classical paths by applying the
the diffractive scattering at the mouth of the lead. Accord-Poisson formula twice to eliminate the summation avand
ingly, Eq. (4.14 can be decomposed into terms involving " - Each Poisson sum, in the semiclassical limit, requires an
different numbers ofliffractive scatterings inside the cavity, additional SPA. A straightforward evaluation leads to

(t2) i i
Rin, 7.m (ON€ diffraction

kD\23[ [1\* & - [1 [1
7) ( Z_m) az:zx al;m kl, Vki,
2 1

¢ @ilK(l g +1g )~ m(ag+ az)]tfnL,( 0,K)

(t2)  _ (L) Li(2k,L—m)4(L)
RmL,,mL—; t s o€ Pt

L ik,L,.d i
+ 2 tfnL),yn,e'kn tri (ke
n,n

(4.19

d
The first term with zero internal diffractive scattering is for- X cost,, rd(eaz,aal,k)cosaaltmL(aal,k),
mally completely equivalent to the first term for the trans- (4.18
mission amplitude in Eq4.5), while the second term with
one internal diffractive scattering contains one additionalynere
sum over transverse mode numbers. The semiclassical ap-
proximation for the zero-diffraction term proceeds as above

and yields in analogy to Eq4.13 eai=arctan‘1$ (4.19
R (zero diffraction . . .
MMy are the continuous angle variables replacing the mode num-
KD 1 = 1 bersn; in r¥. The path described by E¢4.18 corresponds
=\ > \/— to two classical path segmen(Sig. 5, one connecting the
2 V27, VKlgg origin (0,0) with the lattice point ¢,,3=1) followed by

(Kl g ma— (B—1)m]d d one that cqn-nectSa(l,,B=1) With (a_z,B=2). The two seg-

xelas tmL’(aa ’k)cosaatmL(ea K, ments are joined through a diffractive scattering amplitutie
4.17 which changes directions of the path, thereby introducing

' nonclassical “kinks” into an otherwise classical path. For
; _ _ : ; i bsorb prefactors in Egs13 and (4.18
with |, ;= (BL)?+(aD)? and 8=2. The indexs in Eq. convenience we alk P , ,
a,p
(4.17 corresponds in the extended zone scheme to the Iattié_%y re;‘cahng the_dlf_fractlve scatteérlng amplitucfe and the
coordinate in the horizontal directidiig. 4(c)]. The zero- Iniection and emission amplitudés as

diffraction paths correspond to straight-line rays emanating
from the entrance pointa(=0,8=0) reaching the lattice tm( ) = VKD cos/2ty(6), (4.20a
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kD condition that was already encountered in the derivation of
r(6’,6)=/cosé’ cose Trd(a',a). (4200 Eq. (4.10.

After rescaling, the zero-order diffractidor zero-kink

Explicit expressions will be given in the following section contribution, Eq.(4.17)] transforms to
mation (FDA). It will be shown thatt$(6) contains an in- R®Y (zero diffraction
verse factor ofyD andrd(¢’,6) contains an inverse factor
1\ 2 1
leads to an independence of the scattering amplitudes on the = 2—) > 7 gllklapmm(ar1)]
cavity dimensiorD. This important feature is, however, not M) a=e af=2
fraction amplitudes in the far-field region. Of course, the
far-field approximation is only valid if the two leads are suf-

within the framework of the Fraunhofer diffraction approxi-

of D. After rescaling through Eqg4.209 and (4.200 this

restricted to the FDA, but can be proven generally for dif- Xt (Ga)tmL( W) (4.21)
ficiently far apart. This requires th&D>a or kL>m, a  The one-kink contribution becomes

Rﬁfi),mL(one diffraction

1 1/2 1 1/2 1
N . / [ = Ailk(C, +,)—m(ag+aj)]
(2’7T| (27”) ay=—=» az—foo kga 0 k€a2 oe ' : B tmL,(0a2)r(0a2'0al)tmL(0a1)' (422

With Egs.(4.18, (4.21), and(4.22 we have all ingredients even if it represents a reflection amplitude. Equati25) is
at our disposal to write down the complete multiple scatterequivalent to the standard semiclassical approximation, i.e.,
ing series.

2. Generalization to arbitrary paths SET?,) m= Si,cﬁ (4.26

Complete multiple scattering serifiggs.(4.1) and(4.2)]
can be formulated in the semiclassical limit as a sum ove
lattice vectors connected by an increasing numiserof
kinks. We first note that all amplitudes with a different num-
ber of traversal$Egs.(4.13), (4.21)] and different numbers
of kinks [Eg. (4.22] contain as an ingredient the 2D semi-
classical Green’s functiofEg. (2.1)] for propagation along a

vhen diffractive injection and emissiofi7] is included.
However, one important difference is worth noting: The
splitting of the reflection amplitude for vertical walls into a
geometric and a diffractive terfiEq. (4.15] corresponds to
the treatment of the lead opening as a pointlike scatterer.

lattice vector e, AB) of the rectangular lattice, Therefore, S( ) m does not include the effect of geometric
- path shadowmg, i.e., the elimination of longer paths due to
GSYAa,AB) :( : ) oilklaq ap—m(Aa+AB-1)] their premature exit through the openlng of finite width. This
' 27k aa,ap leads to contributions of paths 8&1 which are not present

(423 iy Soem- However, the amplitudes of these paths are re-

For an arbitraryS matrix elementwhich stands for either a duced by interference with higher-order diffractive paths of
reflection amplitudeRy, /O @ transmission amplitude the same or very similar length.
T, ) we have Geometric reflections at the open lead are closely related
RL to the so-called “ghost paths” which were introduced by
* Schwieterset al.[6], in order to treat diffractive backscatter-
Sm,,mzsﬁr?,)mﬂL E anK,)m (4.24 ing at the open lead mouths using Kirchhoff diffraction
CoKk=0 theory. However, irf6] only specularly reflected ghost-paths
corresponding to straight lines in the extended zone scheme
were used. They comprise only a small subset of the com-
(0) c plet_e set of kink pathénonspecularly reflected pseuqlopaths
S Z Z tn[0(a,B)G>(a, )t (e, B)], It will become evident below that the whole set of kink-paths
e is needed in order to describe properly the path-length power
(4.295 Lo
spectrum and to restore unitarity.
wheref(«,B) is given by Eq(4.28d. The sum extends over With an increasing number of kinks, E@.24) represents
all lattice points @,8) of the right half plane with the re- corrections to the standard semiclassical approximation of
striction thatg is odd if the matrix elemers,, ., stands for  increasing orderKD) "/ or equivalentlys/2. For a given
a transmission amplitude arglis K, the K-kink scattering amplitude is given by

with a zero-kink K=0) S matrix element
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proximation by including higher-order contributions#n It
is important to point out some of the limitations of validity of
the present formulation:
/ / 3 (a) While the present approach allows the systematic in-
clusion of certain classes of corrections of increasing order in
(k€) X2 and thus of increasing order in the effectik&’?,
this expansion does not assure the inclusion of all corrections
\\\ 1 to a given order. This is due to the fact that an independent
\\ approximation of the diffractive amplitudesandt is re-

0 quired which is not yet specified. The latter may allow for
another expansion ink@d) ~" which would, in turn, provide
additional contribution to a given order . Moreover, in
general, cross terms of the forrkd) ~"(k€) ~™ may appear.

(b) The present analysis assumes that the leads are the
only interior points where diffractive scattering occurs. This
is correct not only for the rectangular billiard explicitly
FIG. 6. Proliferation of pseudopaths. The semicircle with radiustreate.d here but also a Iarge CIaSS.Of other structures such as
€., denotes the maximum path length included. the circle or the_ Bummowch stadlum. H.owever, for other
structures containing diffractive edgésterior angles= )
or concave curvatures additional classes of pseudopathes
must be included.

(c) On a more technical level, the present definition as-
sumes that the SPA evaluatiofeg., Eq.(4.8)] can be per-
formed under the assumption that the diffractive amplitudes
andr are slowly varying functions. Depending on the chosen
approximation for the latter and on the size kflf, this may

S J
N

B=! 2 3 4 5 6 7

o oo oo [

(K) _
Sm’,m_

tys

Aay=—» Ap;=1 Aag === AB1>1

K
X[0(Aay,AB)] IT {G5%Aak: ,ABK)

K'=1

Xr[0(Aagr1,ABk 1), 0(Aag: ,ABk:)]}
XG5 Aaks1,ABrs D)t O(Aays1,ABk+1)].

lead to additional corrections in the SPA integrals and in Egs.
(4.24—(4.27. Clearly, the latter restriction can be removed
once the analytic approximation toandt is specified.

(4.2 In the path sum Eq4.27) organized in terms of the num-
ber of kinks the total path length
We have introduced the following abbreviations
=2, ¢ 4.2
Aai=ai—aj_; (4.283 P Z Aai A6 4.29
with a@p=0 andZAq;=«, and hence, the classical acti@=k¢{, is not fixed. In a
numerical implementation of the semiclassical theory, it is
ABi=Bi—Bi_1=0 (4.28y  advantageous to include only terms up to a given maximum
actionS,=S;'**, or equivalently
with B9 and2;AB;= 8,
Bo and=AB =P Co=Cmax. (4.30
€aanp=V(ABL)?+(AaD)?, (4280  The pseudo-path sum E@4.24 can be reformulated in
terms of the fixed maximum total length and variakle
o(aa,AB) =tan Y| 222 4.28
( o, B)— an A,BL . ( . d max

K
S m(€p=Cmad= KE SE) (Co=Cmad. (4.3

=0
The geometric picture underlying EL.27) is the sum over
all pseudopaths consisting of all classical paths of arbitraryVith the restriction(4.30 also the number of included kinks
length joined byK kinks. In other words: Each lattice point is restricted tocK <K ,,4. Furthermore, the sum over all lat-
reached by the ray of classical trajectories emanating frorntice vectorsA «; ,A B; appearing in Eqsi4.25 and(4.27) is
the entrance lead into the positive half plane spawns a newestricted as well. Geometrically, E¢4.31) can be easily
bundle of classical trajectories into the positive half planevisualized(Fig. 6). The length of all rays of classical paths
with positive A 8. This process is repeatédtimes(Fig. 6).  emanating from the entrance lead into the positive half plane
Apart from the diffractive amplitudes andt, Eq. (4.27) is limited to € ;<€ .. At all lattice points inside the semi-
contains only quantities calculated from classical dynamicscircle of radiust ., €ach classical trajectory spawns a new
We refer to this semiclassical approximations in the follow-generation of rays of trajectories into a new semicircle of
ing as pseudopath semiclassical approximatP8CA. The  radius{,,x centered about a respective lattice point. How-
present formulation therefore, extends the semiclassical agver, only the subset of those is included in the diq.
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(4.31)] for which the target lattice point lies again in the = The amplitude for injectiofemission can be expressed
original semicircle[i.e., which is subject to the constraint for quantized angles in terms of E¢.3) as
(4.29]. This process can be repeated up to a maximum num-

ber given by the maximum number of lateral displacements FDA 2] Fpa| e[ TN
thm=\/=111 |Sin xp/'m
¢
Bmax= Tax, (4.32

F1EPA

sin~t Gl -m
kD)’

]. (5.4
where the bracket stands for the largest integer less than the
argument with the additional constraint thaf,. is odd For continuous angles the amplitude for injection or emis-
(even for transmissior(reflection. Equation(4.32 follows  sion appearing in E(4.8) is accordingly given by
from the fact that for each daughter generation of spawned
trajectoriesA f=1. Consequentlyk < —1. 2

J'I'he impoﬁant point toqbe nﬁggxis/iﬁ;'z the number of tm(&)=th>"(8)= \[ﬁ[lfDA(g'm)JrIEDA(G'_m)]'
pseudopaths included in E@t.31) proliferates exponentially (5.5
with €, While the number of classical paths, i.e., the num-
ber of paths included i) grows only linearly. The loss After rescaling according to E§4.20 the injection or emis-
of information on an exponentially growing number of dif- Sion amplitude appearing in the PSGq. (4.27)] becomes

fractive pseudopaths is at the core of the failure of the stan- e

dard semiclassical approximation, in particular for the path- tm( 6) = VKD c0S6/2t( 6)

length power spectrum and the unitarity. \/m sir[(k%)Jrksin 0)d/2]
V. FRAUNHOFER DIFFRACTION APPROXIMATION kd sin 6+ k{/k

The expression for the scattering matrix in terms of the sin (k sin e—k%))d/Z]
semiclassical sum of pseudopaths contains amplitugedr + . KDk
for injection, emission, and diffractive scattering at the lead siné—kn

mouth. Because of the sharp edges witla,—c for all k, The diffractive part of the reflection amplitud&q. (4.15]

calcu_lanon ofr andt is n_ot feasible W|_th|n_standard S€M hack into the billiard is given in Fraunhofer approximation
classical theory. An applicable approximation close in splrltb

to a semiclassical approximation is a diffraction approxima-

tion valid for short wavelength, i.ekd>1 [30]. We use in \F{
=i
D

(5.6

FDA

the following the Fraunhofer diffraction approximation rd, —rFPA 5

=r
which we have previously used within the framework of the
standard semiclassical approximation. Accordingly, bidth
andr can be expressed in terms of the fundamental diffrac- + IEDA(G’,n)}- (5.7
tion integral(for odd n),

n’,n n,n—

/:'—171-_n,
6’ =sin (kD N

a2 In the semiclassical limit discussed in the previous section,
1 . , Eq. (5.7) simplifies further. When the transformation from
'iFDA(G-n):\/:J ellkntksnfygy (5.D)  the discrete quantum numbera’(n) to continuous angle
2Wi 2 variables ¢', 6) via the Poisson formula is employeki, is
, mapped onto the continuous functi@rsiné'. If we extend
with the range of angles to(#/2<6'</2), the two terms in
w,=d, Eq. (5.7 become equivalent and reduce to
W,=D, o )2 \/ZEDA(Q',Q):i sn’{kd/?(sm& frsm 0)] |
D D Kk(sin#’' +sin6)
kp=nw/d, (5.2 (5.9
kﬁ= nw/D. After _rescaling[Eq. (4.20], the .diffr.action or kink amplitude
entering the PSCAEQ. (4.27)] is given by
The indexi =1 refers to the wave incident from the quantum KD
wire while the index =2 refers to the wave approaching the Py — 7 d/ g
mouth of the lead from the inside. Evaluation of the integral r(".6) 2 cosg’cosdri(d",6)

for odd integer yields ) ) .
sifkd/2(sin6’ +sing)]

. i . =2+/cosf’ cosh
IFDA(g.n) = \/z( sin(ky,+ksing)d/2] sing’ +siné
I 1 .

(5.3

Wi ki +ksing (5.9
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The amplitudes for injection or emissidp,(6) [Eq. (5.6)] 2.00°
and for internal diffractive reflection(6’,0) [Eq. (5.9] en- L scA Pmax=11
tering our semiclassical theory possess the remarkable fec I T
ture that they are independent of the geometric parameter o T
the cavity(i.e., D). This observation indicates that the semi- ¥ [ ¢ 1
classical multiple scattering expansidigs. (4.24 and =~ "% %0 T P N N— (]
(4.27)] should be applicable irrespective of the geometry of [ & L [ T T T =
the cavity. i T g =
050- K=10 2 4 6 8 10 : =
[ \/ /3
VI. NUMERICAL RESULTS L PSCA =
0.00 . .

We present in the following numerical results within the o . . ]
framework of the present semiclassical theory. We focus on FIG. 7. Test of unitarity on different levels of semiclassical ap-
two properties for which previous semiclassical descriptioné)rox'mat'on to the rectangular billiard. Comparison between: quan-
faced major problems: unitarity and the path-length pOWe}um mechanical calculation with truncated multiple scattering ex-
spectrum. We compare our results with the previously proP2"S1on Bma=11), TQM; quantum multiple scattering with FDA

posed semiclassical description in which both injection andOlr diffractive amplitudes, TQM-FDA; pseudopath semiclassical

. . . approximation(PSCA with K=0, ...,10. K=0: standard SCA
emission was treated in FDA, but only classical paths Were t out path shadowind®, with path shadowing>. The billiard

included for propagation |n.S|de- the recta(g)gular billiard. Th'Sdimensions(see Fig. 1areD =L =4+ 7 andd=0.25. The aver-
corresponds to the approximati®y m~S;, ., [Ed. (4.24]  age is performed over lawindow of [ /d,6x/d].
with t,(6) given by Eq.(5.6). We also perform detailed

comparison with quantum calculations. For the latter we ex; litude without restoring the unitarity. The present results

ploit the corre.spondence' betwegn thg semchaSS|ch and'ti strate that the semiclassical diffractidor kink) expan-
quantum multiple scattering series. Since any sem_lclassu_:% on[Eq. (4.24)] converges towards the quantum calculation
calculation can only be performed for up to a certain MaXI"5t the same level of input and truncation. It furthermore in-

mum path lengti ma, corresponding to a maximum lateral dicates that the largest residual error is caused by the FDA

. *X3s the geometric theory of diffractid81,32 or the uniform
pansion[Egs. (4.1) and (4.2)] can be truncated at the same theory of diffraction[33] would most likely result in further

Bmax SO that semiclassical and quantum calculations can b

. ; provements.
directly compared_at the same level _of truncation. Moreover, Turning now to the path-length power spectrum for the
the quantum multiple scattering series depends also on ﬂ}?ansmission amplitudes, =T
same substructure amplitudeandr for injection, emission, e
and internal reflections. Calculating the latter quantum me-
chanically and truncating the multiple scattering series at e
Bmax= 11 yields the result for the unitaritfig. 7) labeled as P()=| | dke* Ty (k)
TQM. This truncated quantum result is only approximately
unitary (=0.95) with ak dependent fluctuation af~0.05.
If we replace in the quantum multiple scattering series théhe standard approximatiofiy;(k)~S{9(k), [Eq. (4.24]
amplitudest andr by its FDA approximatiodEgs.(5.4) and  fails badly at large path lengtlrig. 8). More precisely, while
(5.7)], the resulting unitarity limit at the same level of trun- the peak positions which can be associated with classical
cation, labeled as TQM-FDA, reaches value of 0.85 with paths and labeled by lattice vectarsB agree well with the
~(0.05. Turning now to the semiclassical theory based upofull qguantum spectrum, the peak heights are overestimated
the FDA approximation including both classical and pseudoup to one order of magnitud€ig. 8a]. The quantum peak
paths, we observe convergence as a function of a number bights decrease exponentially while the standard semiclas-
kinks K included K=10) towards the corresponding quan- sical approximation exhibits only an inverse linear decay
tum unitarity limit. The only difference to the quantum result proportional to€;’}3. The present semiclassical theory that
is the larger fluctuationd~0.15). This is in stark contrastto includes pseudopaths with a finite number of kinks, by con-
standard semiclassical approximations. The standard sentrast, reproduces the quantum path-length spectrum very well
classical resulf{without geometric path shadowing=0) [Fig. 8b)], even fine details at largé are remarkably well
exceeding the unitarity limit can be corrected for path shadreproduced. The decay at lar§édbecomes exponential rather
owing denoted bys>“A[7,28]. Longer paths ¢,8) are shad- than linear(Fig. 89. This observation is the key to the un-
owed by shorter pathsa{n,B/n) when a/n, B/n are inte- derstanding of the role pseudopaths play in quantum and
gers for an integen. Shadowing also removes geometric semiclassical transport. The exponential suppression of the
reflection at the open lead moutthe “ghosts”. This cor-  path-length spectrum at largeis a consequence of the de-
rection, also shown in Fig. 7, reduces the transmission amstructive interference of an exponentially proliferating set of

2
: (6.9

016206-11



WIRTZ et al.

(8= ]
300}
200} s

3 ] 125
100r g © l , B9

&

SCA

1] [111]

(a) |

[1,13)

Al

I (DF

-100}
-200¢
-300f

)
S T T RN 9%
Bl k h
A s " As
AJ

TQM - FDA

300t
200

100¢ A

L)’

PSCA

(b) |

-100f
=200
-300¢

oo e
::tr,ww
oM LI

103§

(L)
Lo
i

® PSCA
oSCA

) L L L
10 5 10 15

20 25 30

Length L

35

40

PHYSICAL REVIEW E 67, 016206 (2003

and whose Maslov indices differ from the zero-kink path.
The exponential growth of pseudopaths with pseudoran-
domly varying phases assures the approximately exponential
suppression of the contributions of long paths.

This observation also clears up another puzzle found in
previous semiclassical calculations. The agreement between
the semiclassical and the quantum path-length spectrum is
much better for chaotic rather than for regular systems
[4,7,5,12,28 contrary to many other observables for which
standard semiclassical approximation performs much better
for regular rather than for chaotic systems. In chaotic sys-
tems, already classical paths exponentially proliferate as a
function of the path length and can account for exponential
suppression of large path lengths. Therefore, the lack of
pseudopaths which also proliferate exponentially is less dra-
matically felt than in regular systems where the exponential
proliferation of pseudo paths competes with only linear pro-
liferation of classical paths.

VII. CONCLUSIONS

We have presented a semiclassical theory for ballistic
transport that goes beyond the standard semiclassical ap-
proximation by including an ascending order of diffractive
scatterings in the interior of the ballistic cavity correspond-
ing to certain classes of contributions in increasing order of
f. As the present formulation requires an additional and in-

FIG. 8. (8) Comparison between standard SCA including FDA dependent approximation for the elementary diffractive am-

for emission and injectiofRef.[5]) and quantum spectrufTQM- plitudes for injection, emission, and internal reflection, inclu-
FDA). (b) Comparison between pseudopath semiclassical approxision of all contribution to a given order ih" cannot be
mation (PSCA and quantum spectrunc) Exponential versus lin- expected. Using the example of a rectangular billiard, we
ear decay of path length spectrum in PSCA and standard SCAjyave shown numerically that an exponentially proliferating
respectively. Note that only the dominant peaks are plotted. Billiarchumber of pseudopaths with diffractive kinks converges to
dimensions andk window as in Fig. 7. the quantum multiple scattering series. In the rectangular bil-
liard, the leads are the only sources of diffraction. For other
pseudopaths. For each long classical zero-kink path with latgeometries with concave walls or diffractive edges additional
tice vectora, B we find a large number of few-kink pathsy  sources of diffraction are present. While the numerical result
with nearly the same length presented pertain to the rectangular billiard, we find numeri-
cal evidence that convergence towards quantum transport

K
2 e can be found for other geometries, specifically for the circle
AayrAByr?

() ~ =1...
top Koy y=1---n 6.2 and the Bunimovich stadiufi85]. We expect that our PSCA
will also resolve other unresolved issues of semiclassical bal-
with listic transport such as the problem of weak localization
K [14,15 and the breakdown of symmetry of the autocorrela-
_ ) tion function in reflection and transmission.
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