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Semiclassical theory for transmission through open billiards: Convergence towards
quantum transport

Ludger Wirtz, Christoph Stampfer, Stefan Rotter, and Joachim Burgdo¨rfer
Institute for Theoretical Physics, Vienna University of Technology, A-1040 Vienna, Austria

~Received 6 June 2002; published 13 January 2003!

We present a semiclassical theory for transmission through open quantum billiards which converges towards
quantum transport. The transmission amplitude can be expressed as a sum over all classical pathsandpseudo-
paths which consist of classical path segments joined by ‘‘kinks,’’ i.e., diffractive scattering at lead mouths. For
a rectangular billiard we show numerically that the sum over all such paths with a given number of kinksK
converges to the quantum transmission amplitude asK→`. Unitarity of the semiclassical theory is restored as
K approaches infinity. Moreover, we find excellent agreement with the quantum path-length power spectrum up
to very long path length.
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I. INTRODUCTION

The aim of semiclassical theory is to bridge the gap
tween quantum mechanics and its classical limit. Gen
cally, probability amplitudes are calculated by summing o
classical paths, each of which carries an amplitude an
phase@1,2#. Such an approach facilitates an intuitive und
standing of basic features of quantum mechanics such
‘‘quantum interference’’ and allows quantitative calculatio
in the regime of high energies, i.e., short wavelengthl→0,
where full quantum calculations may become impractic
Moreover, semiclassical theory plays an important role
elucidating the signatures of classical chaos in quantum
tems whose classical counterpart is chaotic@1#. Ballistic
transport through billiards has become a popular protot
example@3–13#: All paths that connect the entrance lead~or
injection quantum wire! with the exit lead~or emission quan-
tum wire! contribute to the transmission amplitudeTm8,m

from themth mode in the entrance lead to the (m8) th mode in
the exit lead. Inside the billiard, i.e., a two-dimensional ca
ity at constant potential, the trajectories are straight lin
which are specularly reflected at hard walls. Despite the c
ceptual simplicity of the semiclassical description of ballis
transport, recent applications have revealed fundamental
ficulties of the semiclassical theory@4,7–9,14,15,26#: among
many others, unitarity is badly violated with discrepancies
some cases as large as the conductance fluctuations
theory attempts to describe@8,9#. Consequently the correla
tion duTu252duRu2 between transmission~or conductance!
fluctuations,duTu2, and the corresponding fluctuations in th
reflection ~or resistance!, duRu2, as a function of the wave
numberk is broken. Also, the ‘‘weak localization’’ effect is
considerably underestimated@14,15#.

At first glance, the shortcomings of the semiclassical
proximation are not surprising. Hard-walled billiards poss
‘‘sharp edges’’ at the entrance and exit leads. At such poi
the length scaleaP of spatial variations of the potential ap
proaches zero. Consequently the semiclassical limitl/aP
!1 cannot be reached no matter how smalll ~or largek) is.
An obvious improvement of the semiclassical descript
can be achieved by including into the coupling between
1063-651X/2003/67~1!/016206~13!/$20.00 67 0162
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quantum wire and the billiard effects of diffraction at sha
edges within the framework of the Kirchhoff diffraction@6#
or Fraunhofer diffraction@7#. However, despite considerab
improvement achieved, the fundamental shortcomings
not accounted for. Remarkably, the discrepancies betw
the semiclassical path-length power spectrumPm8,m

sc (,) and
the corresponding quantum path-length spectrum,

Pm8,m
qm

~, !5U E dkeik,Tm8,m~k!U, ~1.1!

are more pronounced for classically regular billiards such
the rectangular@7# or the circular@5,6,26# billiard than for
chaotic structures such as the Bunimovich stadium@16–
18,26#. In other words, the path-length spectrum of a regu
system where the number of paths grows linearly as a fu
tion of length, Nc,(,)},, is much more sensitive to th
approximation of the Feynman path integral by the sum o
classical paths than the exponentially proliferating pa
length spectrum,Nc,(,)}exp(,), of a chaotic cavity. This
observation strongly hints at the lack of missing~non!
classical paths as the culprit for the failure. Another hint
provided by the breakdown of the one-to-one correlation
tween transmission and reflection fluctuations. As class
trajectories that are either ejected through the exit lead c
tributing toT or return back to the entrance lead contributi
to R are disjunct subsets, the inequality (duTu2)scÞ
2(duRu2)sc is anything but surprising and indicates that a
ditional paths, pseudopaths referred to in the following,
required to couple these disjunct subsets and thereby re
the correlation between transmission and reflection.

The starting point of our formulation of the semiclassic
theory is the close analogy to another class of scatte
problems where standard semiclassical theory fails: ela
differential scattering at central potentials displaying p
nounced generalized Ramsauer-Townsend interfere
minima @19#. Following the seminal work of Berry and
Mount @20# it could be shown@21# that by including into the
semiclassical scattering amplitude, in addition to the cla
cal paths, a small set of pseudopaths an almost perfect ag
ment with the quantum differential cross section could
achieved. The task is therefore to identify the set of pseu
©2003 The American Physical Society06-1
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paths for scattering at open billiards. To this end the quan
transmission amplitude is expanded as a multiple scatte
series. In its semiclassical limit, propagation between sub
quent scattering events can be identified as proceeding a
classical paths while each scattering corresponds to a
classical diffractive deflection~‘‘kink’’ ! at the sharp edges o
the lead walls. We perform our analysis for a rectangu
billiard with exit and entrance leads at opposite sides of
structure~Fig. 1! for which all paths and pseudopaths can
easily enumerated@34# and the path sum can be perform
until convergence is approximately reached. We find exc
lent agreement with the full quantum calculation for t
path-length spectrum and convergence towards the unit
limit.

The plan of the paper is as follows: In Sec. II we brie
review the standard semiclassical approximation to this pr
lem. In Sec. III we motivate the present multiple scatter
approach employed in the enumeration of pseudopaths
revisiting the one-dimensional square well problem. Tra
scription of this problem to the rectangular billiard allows t
enumeration of pseudopaths as discussed in Sec. IV. Exp
expressions for the diffractive amplitudes entering
present semiclassical theory at the level of Fraunhofer
fraction approximation~FDA! are given in Sec. V. Numerica
results and comparison with the full quantum results are
cussed in Sec. VI followed by a short summary and an o
look to future applications of this approach.

II. STANDARD SEMICLASSICAL APPROXIMATION

The conductanceg for ballistic transport as a function o
the wave numberk through an open billiard is given by th
Landauer formula@22#,

g~k!5
2e2

h S (
m51

N

(
m851

N

uTm8,m~k!u2D , ~2.1!

whereN is the number of open modes in the leads~quantum
wires! of width d. Generically, semiclassical approximatio
to the transmission amplitudesTm8m employ three steps eac
of which is connected with a stationary phase approxima
~SPA! @23#:

~1! The quantum mechanical Feynman propaga
KF(rW8,rW,t) @24# leads, after application of the SPA, to th
semiclassical Van Vleck propagatorKV(rW8,rW,t), which con-
tains the sum over all classical paths connectingrW and rW8 in
time t @2,25#.

FIG. 1. Rectangular billiard with lengthL, width D, and with
opposite centered leads of widthd.
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~2! The Fourier-Laplace transform ofKV(rW8,rW,t) to the
semiclassical Green’s propagatorGsc(rW8,rW,E), which de-
scribes the probability amplitude for propagation fromrW to
rW8 at a fixed energyE, is performed by SPA leading to a sum
over all classical paths of energyE connecting these two
points:

Gsc~y2 ,y1 ,k!5
1

~2p i !1/2 (
y1→y2

uDp~y2 ,y1 ,k!u1/2

3expF i S l p~y2 ,y1!2
p

2
mpG . ~2.2!

Here, l p(y2 ,y1) denotes the length andmp denotes the
Maslov index of the pathp. We denote the transverse coo
dinates in the entrance/exit lead byy1,2 and suppress the
correspondingx coordinates in Eq.~2.2!. Dp denotes the
weighting factor~deflection factor! of the path.

~3! The transmission amplitudes~and, equally, reflection
amplitudes! from the modem to the modem8 are customar-
ily expressed as the projection of the Green’s funct
@evaluated at the energyE5\2k2/(2m)] onto the transverse
wave functionsfm(y1) and fm8(y2) of the incoming and
outgoing modes@4#,

Tm8,m~k!52Avx2 ,m8vx1 ,mE dy2E dy1fm8
* ~y2!

3GSC~y2 ,y1 ,k!fm~y1!. ~2.3!

This double integral is frequently calculated in the SPA
well. This selects those classical trajectoriesp that enter the
billiard with the quantized angle

um5sin21
mp

dk
~2.4a!

and exit the billiard at the quantized angle

um85sin21
m8p

dk
. ~2.4b!

In an earlier paper@7# we have demonstrated that the SPA
the third step can be avoided by linear expansion of the
ponent in Eq.~2.3! allowing for an analytical evaluation o
the double integral. Using lead wave functions with longit
dinal momentum

km5Ak22ump/du2 ~2.5!

and transverse wave functions

Fm~y!5A2

dH cosS mp

d
yD , m odd

sinS mp

d
yD m even,

~2.6!

each integral corresponds to a Fraunhofer diffraction in
gral. This automatically includes diffractive effects on th
6-2
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SEMICLASSICAL THEORY FOR TRANSMISSION . . . PHYSICAL REVIEW E67, 016206 ~2003!
level of the Fraunhofer approximation and yields resu
comparable to the explicit inclusion of diffractive effects u
ing Kirchhoff theory@6#. The physical picture that emerges
that classical trajectories representing incoming~outgoing!
flux no longer enter~exit! the billiard at quantized anglesum
@see Eq.~2.4!# but with a continuous distribution of anglesu
given by the corresponding diffraction integral. The imp
mentation of this class of diffractive effects for the trajec
ries leads to a considerable improvement in the transmis
and reflection coefficients for low modes and in the pa
length spectrum where the position and height of many pe
could be identified with classical paths. Nevertheless the f
damental difficulties of the semiclassical approximation p
sist. In particular:

~a! The unitarity condition

(
m851

N

uTm8,m~k!u21 (
m851

N

uRm8,m~k!u251 ~2.7!

is violated @7,8,26#. The fluctuations of the semiclassic
conductanceg around the exact value remains approximat
constant and does not decrease with increasingk ~or l
→0).

~b! The path-length power spectrum displays a dram
overestimate of contributions for long paths@7–9,26# ~see
Fig. 8 below!. The position of the peaks is reproduced r
markably well by the semiclassical approximation. Howev
the approximately exponential decay of the quantum sp
trum contrasts with the inverse linear (l 21) decay of the
semiclassical spectrum.

It is instructive to classify the standard semiclassi
theory in terms of the number of the SPA’s employed. D
pending on the starting point of the description in either ti
or energy domain one or two SPA’s are involved@see Eq.
~2.2!# in the propagation. If one neglects diffraction durin
the injection and emission, two more SPA’s are needed. S
dard semiclassical approximations~SCA! are therefore char
acterized by afixednumber of SPA’s with the minimum of a
least one, that is, when one starts from a time-indepen
constant energy description and employs a diffraction
proximation for the coupling in and out of the billiard stru
ture.

Going beyond the standard approximation requires tak
into account nonclassical paths during the propagation in
the billiards in line with the original Feynman propagato
Identifying and enumerating the relevant nonclassical pa
to be included can be performed by casting the quan
problem in a multiple scattering problem. The result will
characterized by anincreasingnumber of SPA’s with an in-
creasing number of nonclassical paths.

III. MULTIPLE SCATTERING THEORY:
THE ONE-DIMENSIONAL SQUARE WELL

POTENTIAL REVISITED

Our point of departure for the development of the pres
semiclassical description of quantum transport is the tim
independent quantum scattering wave function for multi
scattering. In order to motivate our strategy for enumerat
01620
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all classical and nonclassical paths included in the scatte
wave function, we revisit the well-known one-dimension
square well problem. Scattering at the square well~SW! is a
standard problem treated in most quantum mechanics
books@27# and easily solved by matching the wave functi
and its derivative at the two edges of a square well poten
of width L and depth2V0 shown in Fig. 2. The transmissio
amplitudeT(SW) is proportional to the amplitude of the wav
function on the right hand side of a square well. In a stand
semiclassical approach which is based exclusively on cla
cally allowed paths, there is only one classical path transm
ted through the well, and consequently

uTSC
(SW)u51 ~3.1!

at variance with quantum results. This discrepancy is
surprising as at the edges of a well, the semiclassical c
rion l/ap→0 is violated. We reformulate now the quantu
scattering problem in terms of multiple scattering at the t
edges. To this end, we consider the square well as a struc
composed of three separate substructures, the left edge
interior of the well, and the right edge~Fig. 2!, for each of
which we determine separate amplitudes. The transmis
amplitude for an incoming wave from the external regi
from the left with k(e)5A2E into the interior of the well
with k( i )5A2(E1V0), i.e., forward scattering amplitude a
the left edge is given by

t (L)52
Ak( i )k(e)

k( i )1k(e)
. ~3.2!

Correspondingly, the backscattering~or reflection amplitude!
at the left edge from the exterior region back into the exter
region is given by

r (L)5
k(e)2k( i )

k(e)1k( i )
. ~3.3!

The propagation through the interior of the well from the le
to the right (LR) @or from the right to the left (RL)] is given
by the Green’s function

G(LR)~xR ,xL!5eik( i )(xR2xL)5eik( i )L5G(RL)~xL ,xR!.
~3.4!

The corresponding transmission amplitude for the right e
is

FIG. 2. One-dimensional potential square well and its deco
position into two potential steps~edges! and a region of constan
potential.
6-3
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WIRTZ et al. PHYSICAL REVIEW E 67, 016206 ~2003!
t (R)52
Ak( i )k(e)

k(e)1k( i )
, ~3.5!

i.e., t (R)5t (L)5t. The backscattering amplitude for a wav
approaching either edge from the interior is given by

r 5
k( i )2k(e)

k( i )1k(e)
, ~3.6!

i.e., r 52r (L). The transmission amplitude through the co
posite structure,T, can now be written as a multiple scatte
ing series of repeated traversals through the structure@see
Fig. 2~b!# each calculated with the help of the elementa
amplitudes for transmission, reflection, and propagat
@Eqs.~3.2!–~3.4!#,

T5t (R)@G(LR)~L,0!1G(LR)~L,0!rG (RL)~0,L !rG (LR)

3~L,0!1•••#t (L)

5t (R)G(LR)~L,0!S (
j 50

`

@rG (RL)~0,L !rG (LR)~L,0!# j D t (L).

~3.7!

Inserting explicit expressions@Eqs. ~3.2!–~3.6!# gives the
geometric series

T5t2eik( i )L(
j 50

`

~r 2e2ik( i )L! j ~3.8!

with the result

T5
1

cos~k( i )L !2
i e

2
sin~k( i )L !

, ~3.9!

where

e5
k(e)

k( i )
1

k( i )

k(e)
. ~3.10!

Analogously, the reflection amplitude for the compos
structure is given by

R5r (L)1t (L)G(LR)~L,0!(
j 50

`

@rG (RL)~0,L !rG (LR)~L,0!# j

3rG (RL)~0,L !t (L). ~3.11!

Inserting explicit expressions for the substructures yields

R52r S 12t2e2iLk( i )

(
j 50

`

~r 2e2ik( i )L! j D
52r S 12

t2e2ik( i )L

12r 2e2ik( i )LD . ~3.12!
01620
-

n

Obviously, these series of multiple scattering at the disc
tinuous edges converges towards the exact quantum re
Unitarity is trivially satisfied (uRu21uTu251). Remarkably,
we are not aware of a discussion of this intuitive derivati
of the square well transmission problem in any stand
quantum mechanics textbook. The key point in the pres
context is now that the formulation of the exact quantu
scattering in terms of multiple traversals can be rephrase
terms of a sum over paths, in the following referred to
pseudopaths, which consist of segments of classical p
connected by amplitudes for nonclassical scattering at ed
In one dimension, the semiclassical propagator coinci
with the quantum propagator@Eq. ~3.4!#. Accordingly, the
geometric series@Eqs.~3.8! and~3.12!# can be interpreted a
a sum over pseudopaths characterized by an increasing n
ber of traversals through the structure before exiting on
ther side. Each traversal corresponds to a classical path
ment described by a semiclassical propagator. E
scattering must be described by a quantum scattering am
tude which is an obvious consequence of the fact that at
edgel/ap→` no matter how largek is and, therefore, the
semiclassical limit is never reached. In one dimension,
semiclassical description in terms of a complete set
pseudopaths is naturally equivalent to the full quantum s
tering amplitude. The nontrivial generalization of this a
proach to two~or higher! dimensions is at the core of th
present semiclassical approach. In such a case, the sum
pseudopaths is no longer equivalent to the full quantum s
tering process but provides a systematic approximation te
nique to include nonclassical effects~or equivalently, contri-
butions in increasing orders of\) into the semiclassica
description.

IV. TRANSMISSION THROUGH A RECTANGULAR
BILLIARD: FROM QUANTUM

TO SEMICLASSICAL DESCRIPTION

The quantum transport problem through a rectangular
liard with opposite leads~Fig. 1! with width D and lengthL
can be formulated in terms of a multiple scattering series
direct analogy to the 1D square well. Accordingly, we d
compose the transmission problem into three pieces~Fig. 3!:
the injection ~or transmission! from the entrance lead~or

FIG. 3. Decomposition of a rectangular billiard into three sep
rate substructures: a junction from a narrow to a wide constrict
a wide constriction of lengthL, and a junction from a wide to a
narrow constriction. Transmission through the junction5t, reflec-
tion at the junction5r , and propagation in between for left to righ
5G(LR) ~or right to left 5G(RL)).
6-4
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SEMICLASSICAL THEORY FOR TRANSMISSION . . . PHYSICAL REVIEW E67, 016206 ~2003!
quantum wire! to the left into the billiardt (L) the propagation
from the left to the rightG(LR) or from the right to the left,
G(RL), of the cavity, and the emission~or transmission! from
the interior into the exit lead to the rightt (R). Likewise, the
electron approaching the billiard can be reflected at the
trance lead with amplitudesr (L) or can be reflected at eac
junction from the wide to the narrow constriction if the wa
approaches the lead mouth from the interior with amplitu
r. The scattering amplitudes at each lead mouth represen
a discontinuity in the potential become now matrices w
indices referring to the transverse mode number, e.g.,tn,m

(L)

wherem refers to the mode number in the lead andn to the
mode number in the rectangular billiard. These scatter
amplitudes at the lead mouth~or junctions between constric
tions of different widths! cannot be satisfactorily describe
by a true semiclassical description atl/ap→` for any en-
ergy of the scattered particle. One can, instead, employ e
a full numerical solution of the quantum problem for ea
junction or, alternatively, an approximate analytic appro
mation in terms of ‘‘diffraction integrals’’ which are a largek
approximation and hence close in spirit to a semiclass
approximation. An explicit evaluation oft and r in terms of
Fraunhofer diffraction integrals will be given below.

The multiple scattering expansion of the transmission a
plitudeT and the reflection amplitudeR are given in analogy
to Eqs.~3.7! and ~3.11! by matrix equations,

T~E!5t (R)G(LR)S (
j 50

`

~rG (RL)rG (LR)! j D t (L), ~4.1!

and

R~E!5r (L)1t (L)G(LR)S (
j 50

`

~rG (RL)rG (LR)! j D rG (RL)t (L).

~4.2!

Here and in the following we suppress the energyE or wave
number k dependence for notational simplicity. For th
propagator we choose a mixed representation which is l
in x, and employs a spectral sum over transverse modes

G(LR)~xR ,xL!5G(RL)~xL ,xR!5(
n

un&eikn(xR2xL)^nu.

~4.3!

The transverse modes in the billiard are described by
wave functions

fn~y!55A
2

D
cosS np

D
yD , n odd

A2

D
sinS np

D
y,D n even,

~4.4!

and xR,L are thex coordinates of the right~left! lead with
xR2xL5L. Equations~4.1! and ~4.2! represent a full quan
tum description of the transport amplitudesT andR in terms
of a multiple scattering series. In the following we will in
vestigate its semiclassical limit.
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1. Single and double traversals

In this subsection we begin to develop an improved se
classical approximation to the quantum mechanical exp
sions Eqs.~4.1! and ~4.2! for certain classes of short path
featuring few traversals through the structure. The key f
ture of this derivation is the transition from discrete mo
numbers to continuous angles of incident trajectories.

The amplitude for transmission from modemL in the left
lead tomR in the right lead@Eq. ~4.1!# reads explicitly for up
to three successive traversals

TmR ,mL
'(

n
tmR ,n
(R) eiknLtn,mL

(L) 1 (
n,n8,n9

tmR ,n9
(R) eikn9L

3r n9,n8e
ikn8Lr n8,neiknLtn,mL

(L) 1••• ~4.5!

with

kn5Ak22~np/D !2.

The crucial step towards a semiclassical approximation
Eqs. ~4.1! and ~4.5! is now to associate the traversals wi
classical paths. For clarity we present first the derivation
a path that traverses the cavity just once corresponding to
first term in Eq.~4.5!. We then extend our derivation to mu
tiple traversals through the cavity and show that the s
over multiple traversals can be performed by mapping
problem on combinatorics of lattice vectors in an extend
zone scheme of a rectangular lattice. The method of the
tended zone scheme has also been used to determine a
classical expansion of the transmission amplitudes in te
of a finite number of continued fractions@28#.

In order to associate the first term in Eq.~4.5! with clas-
sical paths we have to map the transverse quantum numbn
onto an injection angleu. For this task we employ the Pois
son sum formula@29#. Without loss of generality we take
here and in the followingmL and mR to be odd integers.
Because of inversion symmetry, the subspaces of even
odd mode number completely decouple. Analogous exp
sions can be derived for evenmL,R . The single traversal~t1!
contribution becomes

TmR ,mL

(t1) ~k!5
1

4 (
a52`

` E
2`

`

tmR
~n!tmL

~n!

3eiLAk22 S np
D D2

1 iap(n21)dn. ~4.6!

The sum over integersn can be replaced by an integral ov
the continuous variablen. Since the~discrete! mode num-
bersn are associated with quantized angles sinu5np/(kD),
the integration over the variablen can be associated with a
angle integration via the substitution

n5
kD

p
sin~u!→dn5

kD

p
cos~u!du. ~4.7!

If we restrictu to real angles, the variablen is restricted to
the interval@2kD/p,kD/p#. Since values outside this in
terval correspond to evanescent rather than propaga
6-5
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WIRTZ et al. PHYSICAL REVIEW E 67, 016206 ~2003!
waves, we neglect the latter which would make only an
ponentially small contribution to the transport for largeL.
With the substitution@Eq. ~4.7!# we arrive at

TmR ,mL

(1) 5
kD

4p (
a52`

` E
2p/2

p/2

tmR

d ~u!tmL

d ~u!

3eik[L cos(u)1aD sin(u)] 2 ipa cos~u!du, ~4.8!

wheretmL

d (u),tmR

d (u) are the injection~ejection! amplitudes

and the transverse mode indexn is converted to a continuou
angle variableu. For these amplitudes we will later emplo
the FDA in line with previous semiclassical treatments@7#.
The action in the exponent of Eq.~4.8!

S~u!5k@L cos~u!1aD sin~u!#, ~4.9!

has a simple geometric interpretation in the extended z
scheme of the rectangular lattice@Fig. 4~a!#. The action is
that of a path connecting the center of the left side of the u
cell, the position of the entrance lead, with the center of
right side of thea th replica of the unit cell in the transvers
direction. The path possesses at most one discontinuity, i.
discontinuous displacement of the trajectoryDrW perpendicu-
lar to the direction of propagation such thatkWDrW50 and no
contribution to the classical action is accumulated along
displacementDrW. Note that Eq.~4.8! is, apart from neglect-
ing evanescent modes, equivalent to the original quan
expression for single traversals. This set of straight-line pa
connecting the entrance lead with any one of the replica
the exit lead featuring no more than one lateral displacem
amounts to the representation of a full path sum of the Fe
man propagator for this process.

We derive now the semiclassical limit of Eq.~4.8! by
applying the SPA. The SPA is valid if the actionS(u) is
rapidly varying on a scale of 2p, i.e., if kL@p or kD@p.
Since for a given moden, k.np/d, these conditions are
only fulfilled for all n provided thatD/d@1 or L/d@1, i.e.,
if at least one of the linear dimensions of the rectangu
billiard is large compared to the lead width. With this restr
tion in mind, we obtain from the stationary phase conditi

05S8~u!5k@2L sin~u!1aD cos~u!# ~4.10!

the ‘‘stationary’’ angles

ua5arctan
aD

L
, ~4.11!

which coincide with the angles of the classical straight-l
paths of lengthl a connecting the lattice point of the entran
lead with the lattice point of thea th replica of the exit lead
@Fig. 4~b!#. The stationarity condition eliminates the disco
tinuous displacement and renders the paths fully class
The numbera corresponds to the number of horizontal zo
boundaries the trajectory has crossed. The second deriv
yields the deflection factor for each path
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S9~u!52k@L cos~u!1aD sin~u!#

52
k

L
~L21a2D2!cos~ua!52kla . ~4.12!

We thus obtain the semiclassical transmission coefficient
single traversals

TmR ,mL

(t1) 5
kD

2
A 1

2p i (
a52`

` A 1

kla
ei (kla2pa)tmR

d ~ua!

3cosuatmL

d ~ua!. ~4.13!

The phasepa in Eq. ~4.13! is associated with the Maslo
index for a crossings of the ‘‘hard-wall’’ boundaries~i.e.,

FIG. 4. Examples of classical and nonclassical paths for sin
and double traversals depicted in the extended zone schem~a!
nonclassical path for single traversal with one lateral displacem
representing the full Feynman path sum.~b! Classical paths for
single traversal after stationary phase approximation~dashed line:
classical paths in the fundamental unit cell!. ~c! Classical paths for
double traversal contributing to reflection.
6-6
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SEMICLASSICAL THEORY FOR TRANSMISSION . . . PHYSICAL REVIEW E67, 016206 ~2003!
horizontal zone boundaries! the trajectory has crossed on i
way to thea th exit lattice point@see Fig. 4~b!#. The classical
path sum in Eq.~4.13! corresponds to a sum over all lattic
vectors connecting the lattice point of the entrance lead w
exit points in thea th unit cell.

The next term in the multiple scattering expansion@Eqs.
~4.1!, ~4.2!# corresponds to the double traversalt2. A t2
contribution does not appear in the expansion of the tra
mission amplitude@Eq. ~4.5!#. Note that odd~even! number
of traversal correspond to transmission~reflection!. Accord-
ingly, the lowest-order reflection amplitude is

RmL8,mL

(t2)
5 (

n,n8
tmL8,n8
(L) eikn8Lr n8,neiknLtn,mL

(L) . ~4.14!

Before again applying the Poisson formula, we decomp
the internal reflection amplitude at the vertical wall into t
geometric hard-wall reflection amplitude of the closed b
liard and the diffractive amplitude for the lead opening

r n8,n52dn8,n1r n8,n
d . ~4.15!

The term2dn8,n corresponds to geometric scattering at t
hard vertical wall of the closed billiard including its pha
jump ~Maslov index! while the amplituder d corresponds to
the diffractive scattering at the mouth of the lead. Acco
ingly, Eq. ~4.14! can be decomposed into terms involvin
different numbers ofdiffractive scatterings inside the cavity

RmL8,mL

(t2)
5(

n
tmL8,n
(L) ei (2knL2p)tn,mL

(L)

1 (
n,n8

tmL8,n8
(L) eikn8Lr n8,n

d
~k!eiknLtn,mL

(L) .

~4.16!

The first term with zero internal diffractive scattering is fo
mally completely equivalent to the first term for the tran
mission amplitude in Eq.~4.5!, while the second term with
one internal diffractive scattering contains one additio
sum over transverse mode numbers. The semiclassica
proximation for the zero-diffraction term proceeds as abo
and yields in analogy to Eq.~4.13!

RmL8,mL

(t2)
~zero diffraction!

5
kD

2
A 1

2p i (
a52`

` A 1

kla,b

3ei [kla,b2pa2(b21)p] tmL8
d

~ua ,k!cosuatmL

d ~ua ,k!,

~4.17!

with l a,b5A(bL)21(aD)2 and b52. The indexb in Eq.
~4.17! corresponds in the extended zone scheme to the la
coordinate in the horizontal direction@Fig. 4~c!#. The zero-
diffraction paths correspond to straight-line rays emana
from the entrance point (a50,b50) reaching the lattice
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points (a,b52). More generally,b5even correspond to re
flected paths, whileb5odd correspond to transmitted path

The one-diffraction contribution in Eq.~4.16! can now be
converted into contributions from pseudopaths, more p
cisely, of two segments of classical paths by applying
Poisson formula twice to eliminate the summation overn and
n8. Each Poisson sum, in the semiclassical limit, requires
additional SPA. A straightforward evaluation leads to

RmL8,mL

(t2)
~one diffraction!

5S kD

2 D 2SA 1

2p i D
2

(
a252`

`

(
a152`

` A 1

kla2

A 1

kla1

3ei [k( l a1
1 l a2

)2p(a11a2)] tmL8
d

~ua2
,k!

3cosua2
r d~ua2

,ua1
,k!cosua1

tmL

d ~ua1
,k!,

~4.18!

where

ua i
5arctan21

a iD

L
~4.19!

are the continuous angle variables replacing the mode n
bersni in r d. The path described by Eq.~4.18! corresponds
to two classical path segments~Fig. 5!, one connecting the
origin (0,0) with the lattice point (a1 ,b51) followed by
one that connects (a1 ,b51) with (a2 ,b52). The two seg-
ments are joined through a diffractive scattering amplituder d

which changes directions of the path, thereby introduc
nonclassical ‘‘kinks’’ into an otherwise classical path. F
convenience we absorb prefactors in Eqs.~4.13! and ~4.18!
by rescaling the diffractive scattering amplituder d and the
injection and emission amplitudestd as

tm~u!5AkD cosu/2tm
d ~u!, ~4.20a!

FIG. 5. Two examples for pseudopaths consisting of class
path segments and ‘‘kinks,’’ i.e., diffractive scatterings at latti
coordinates representing the lead mouth.
6-7
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r ~u8,u!5Acosu8cosu
kD

2
r d~u8,u!. ~4.20b!

Explicit expressions will be given in the following sectio
within the framework of the Fraunhofer diffraction approx
mation ~FDA!. It will be shown thattm

d (u) contains an in-
verse factor ofAD and r d(u8,u) contains an inverse facto
of D. After rescaling through Eqs.~4.20a! and ~4.20b! this
leads to an independence of the scattering amplitudes on
cavity dimensionD. This important feature is, however, no
restricted to the FDA, but can be proven generally for d
fraction amplitudes in the far-field region. Of course, t
far-field approximation is only valid if the two leads are su
ficiently far apart. This requires thatkD@p or kL@p, a
e

ve

-

i-

e

r
-

01620
he

-

condition that was already encountered in the derivation
Eq. ~4.10!.

After rescaling, the zero-order diffraction@or zero-kink
contribution, Eq.~4.17!# transforms to

RmL8,mL

(2t)
~zero diffraction!

5S 1

2p i D
1/2

(
a52`

` A 1

k,a,b52
ei [k,a,22p(a11)]

3tmL8~ua!tmL
~ua!. ~4.21!

The one-kink contribution becomes
RmL8mL

(2t)
~one diffraction!

5S 1

2p i D
1/2S 1

2p i D
1/2

(
a152`

`

(
a252`

` A 1

k,a1,0
A 1

k,a2,0
ei [k(,a1

1,a2
)2p(a11a2)] tmL8~ua2

!r ~ua2
,ua1

!tmL
~ua1

!. ~4.22!
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With Eqs. ~4.18!, ~4.21!, and ~4.22! we have all ingredients
at our disposal to write down the complete multiple scatt
ing series.

2. Generalization to arbitrary paths

Complete multiple scattering series@Eqs.~4.1! and ~4.2!#
can be formulated in the semiclassical limit as a sum o
lattice vectors connected by an increasing number,K, of
kinks. We first note that all amplitudes with a different num
ber of traversals@Eqs. ~4.13!, ~4.21!# and different numbers
of kinks @Eq. ~4.22!# contain as an ingredient the 2D sem
classical Green’s function@Eq. ~2.1!# for propagation along a
lattice vector (Da,Db) of the rectangular lattice,

GSC~Da,Db!5S 1

2p ik,Da,Db
D 1/2

ei [k,Da,Db2p(Da1Db21)].

~4.23!

For an arbitraryS matrix element~which stands for either a
reflection amplitudeRmL8,mL

or a transmission amplitud

TmR ,mL
) we have

Sm8,m5Sm8,m
(0)

1 (
K.0

`

Sm8,m
(K) ~4.24!

with a zero-kink (K50) S matrix element

Sm8,m
(0)

5 (
a52`

`

(
b>1

tm8@u~a,b!GSC~a,b!tm@u~a,b!#,

~4.25!

whereu(a,b) is given by Eq.~4.28d!. The sum extends ove
all lattice points (a,b) of the right half plane with the re
striction thatb is odd if the matrix elementSm8,m stands for
a transmission amplitude andb is
r-

r

even if it represents a reflection amplitude. Equation~4.25! is
equivalent to the standard semiclassical approximation, i

Sm8,m
(0) .Sm8,m

SCA ~4.26!

when diffractive injection and emission@7# is included.
However, one important difference is worth noting: Th
splitting of the reflection amplitude for vertical walls into
geometric and a diffractive term@Eq. ~4.15!# corresponds to
the treatment of the lead opening as a pointlike scatte
Therefore,Sm8,m

(0) does not include the effect of geometr
path shadowing, i.e., the elimination of longer paths due
their premature exit through the opening of finite width. Th
leads to contributions of paths toSm8,m

(0) which are not presen
in Sm8,m

SCA . However, the amplitudes of these paths are
duced by interference with higher-order diffractive paths
the same or very similar length.

Geometric reflections at the open lead are closely rela
to the so-called ‘‘ghost paths’’ which were introduced b
Schwieterset al. @6#, in order to treat diffractive backscatte
ing at the open lead mouths using Kirchhoff diffractio
theory. However, in@6# only specularly reflected ghost-path
corresponding to straight lines in the extended zone sch
were used. They comprise only a small subset of the co
plete set of kink paths~nonspecularly reflected pseudopath!.
It will become evident below that the whole set of kink-pat
is needed in order to describe properly the path-length po
spectrum and to restore unitarity.

With an increasing number of kinks, Eq.~4.24! represents
corrections to the standard semiclassical approximation
increasing order (kD)2K/2, or equivalently\K/2. For a given
K, theK-kink scattering amplitude is given by
6-8
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Sm8,m
(K)

5 (
Da152`

`

(
Db1>1

`

••• (
DaK1152`

`

(
DbK11>1

`

tm8

3@u~Da1 ,Db1!# )
K851

K

$GSC~DaK8 ,DbK8!

3r @u~DaK811 ,DbK811!,u~DaK8 ,DbK8!#%

3GSC~DaK11 ,DbK11!tm@u~DaK11 ,DbK11!#.

~4.27!

We have introduced the following abbreviations

Da i5a i2a i 21 ~4.28a!

with a050 and(Da i5a,

Db i5b i2b i 21>0 ~4.28b!

with b0 and( iDb i5b,

,Da,Db5A~DbL !21~DaD !2, ~4.28c!

u~Da,Db!5tan21S DaD

DbL D . ~4.28d!

The geometric picture underlying Eq.~4.27! is the sum over
all pseudopaths consisting of all classical paths of arbitr
length joined byK kinks. In other words: Each lattice poin
reached by the ray of classical trajectories emanating f
the entrance lead into the positive half plane spawns a
bundle of classical trajectories into the positive half pla
with positiveDb. This process is repeatedK times ~Fig. 6!.
Apart from the diffractive amplitudesr and t, Eq. ~4.27!
contains only quantities calculated from classical dynam
We refer to this semiclassical approximations in the follo
ing as pseudopath semiclassical approximation~PSCA!. The
present formulation therefore, extends the semiclassical

FIG. 6. Proliferation of pseudopaths. The semicircle with rad
,max denotes the maximum path length included.
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proximation by including higher-order contributions in\. It
is important to point out some of the limitations of validity o
the present formulation:

~a! While the present approach allows the systematic
clusion of certain classes of corrections of increasing orde
(k,)2K/2 and thus of increasing order in the effective\K/2,
this expansion does not assure the inclusion of all correct
to a given order. This is due to the fact that an independ
approximation of the diffractive amplitudesr and t is re-
quired which is not yet specified. The latter may allow f
another expansion in (kd)2n which would, in turn, provide
additional contribution to a given order in\. Moreover, in
general, cross terms of the form (kd)2n(k,)2m may appear.

~b! The present analysis assumes that the leads are
only interior points where diffractive scattering occurs. Th
is correct not only for the rectangular billiard explicitl
treated here but also a large class of other structures suc
the circle or the Bunimovich stadium. However, for oth
structures containing diffractive edges~interior angles>p)
or concave curvatures additional classes of pseudopa
must be included.

~c! On a more technical level, the present definition a
sumes that the SPA evaluations@e.g., Eq.~4.8!# can be per-
formed under the assumption that the diffractive amplitudet
andr are slowly varying functions. Depending on the chos
approximation for the latter and on the size of (kd), this may
lead to additional corrections in the SPA integrals and in E
~4.24!–~4.27!. Clearly, the latter restriction can be remove
once the analytic approximation tor and t is specified.

In the path sum Eq.~4.27! organized in terms of the num
ber of kinks the total path length

,p5(
i

,Da i ,Db i
~4.29!

and hence, the classical actionSp5k,p is not fixed. In a
numerical implementation of the semiclassical theory, it
advantageous to include only terms up to a given maxim
actionSp<Sp

max, or equivalently

,p<,max. ~4.30!

The pseudo-path sum Eq.~4.24! can be reformulated in
terms of the fixed maximum total length and variableK,

Sm8,m~,p<,max!5 (
K50

Kmax

Sm8,m
(K)

~,p<,max!. ~4.31!

With the restriction~4.30! also the number of included kink
is restricted toK<Kmax. Furthermore, the sum over all la
tice vectorsDa i ,Db i appearing in Eqs.~4.25! and ~4.27! is
restricted as well. Geometrically, Eq.~4.31! can be easily
visualized~Fig. 6!. The length of all rays of classical path
emanating from the entrance lead into the positive half pl
is limited to ,p<,max. At all lattice points inside the semi
circle of radius,max each classical trajectory spawns a ne
generation of rays of trajectories into a new semicircle
radius,max centered about a respective lattice point. Ho
ever, only the subset of those is included in the sum@Eq.

s

6-9
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WIRTZ et al. PHYSICAL REVIEW E 67, 016206 ~2003!
~4.31!# for which the target lattice point lies again in th
original semicircle@i.e., which is subject to the constrain
~4.29!#. This process can be repeated up to a maximum n
ber given by the maximum number of lateral displaceme

bmax5F,max

L G , ~4.32!

where the bracket stands for the largest integer less than
argument with the additional constraint thatbmax is odd
~even! for transmission~reflection!. Equation~4.32! follows
from the fact that for each daughter generation of spaw
trajectoriesDb>1. Consequently,Kmax<bmax21.

The important point to be noted is that the number
pseudopaths included in Eq.~4.31! proliferates exponentially
with ,max while the number of classical paths, i.e., the nu
ber of paths included inSm8,m

(0) grows only linearly. The loss
of information on an exponentially growing number of d
fractive pseudopaths is at the core of the failure of the s
dard semiclassical approximation, in particular for the pa
length power spectrum and the unitarity.

V. FRAUNHOFER DIFFRACTION APPROXIMATION

The expression for the scattering matrix in terms of
semiclassical sum of pseudopaths contains amplitudest andr
for injection, emission, and diffractive scattering at the le
mouth. Because of the sharp edges withl/ap→` for all k,
calculation ofr and t is not feasible within standard sem
classical theory. An applicable approximation close in sp
to a semiclassical approximation is a diffraction approxim
tion valid for short wavelength, i.e.,kd@1 @30#. We use in
the following the Fraunhofer diffraction approximatio
which we have previously used within the framework of t
standard semiclassical approximation. Accordingly, bothtd

andr d can be expressed in terms of the fundamental diffr
tion integral~for odd n),

I i
FDA~u,n!5

1

A2wi
E

2d/2

d/2

ei (kn
i
1k sin u)ydy ~5.1!

with

w15d,

w25D,

kn
15np/d, ~5.2!

kn
25np/D.

The indexi 51 refers to the wave incident from the quantu
wire while the indexi 52 refers to the wave approaching th
mouth of the lead from the inside. Evaluation of the integ
for odd integer yields

I i
FDA~u,n!5A 2

wi
S sin@~kn

i 1k sinu!d/2#

kn
i 1k sinu

D . ~5.3!
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The amplitude for injection~emission! can be expressed
for quantized angles in terms of Eq.~5.3! as

tn,m
FDA5A2

DH I 1
FDAFsin21S pn

kDD ,mG
1I 1

FDAFsin21S pn

kDD ,2mG J . ~5.4!

For continuous angles the amplitude for injection or em
sion appearing in Eq.~4.8! is accordingly given by

tm
d ~u!5tm

FDA~u!5A2

D
@ I 1

FDA~u,m!1I 1
FDA~u,2m!#.

~5.5!

After rescaling according to Eq.~4.20! the injection or emis-
sion amplitude appearing in the PSCA@Eq. ~4.27!# becomes

tm~u!5AkD cosu/2tm
d ~u!

5A2 cosu

kd F sin@~km
(1)1k sinu!d/2#

sinu1km
(1)/k

1
sin@~k sinu2km

(1)!d/2#

sinu2km
(1)/k

G . ~5.6!

The diffractive part of the reflection amplitude@Eq. ~4.15!#
back into the billiard is given in Fraunhofer approximatio
by

r n8,n
d

5r n8,n
FDA

5A2

DH I 2
FDAFu85sin21S pn8

kD D ,nG
1I 2

FDA~u8,n!J . ~5.7!

In the semiclassical limit discussed in the previous secti
Eq. ~5.7! simplifies further. When the transformation from
the discrete quantum numbers (n8,n) to continuous angle
variables (u8,u) via the Poisson formula is employed,kn8 is
mapped onto the continuous functionk sinu8. If we extend
the range of angles to (2p/2<u8<p/2), the two terms in
Eq. ~5.7! become equivalent and reduce to

r d~u8,u!52A2

D
I 2

FDA~u8,u!5
4

D

sin@kd/2~sinu81sinu!#

k~sinu81sinu!
.

~5.8!

After rescaling@Eq. ~4.20!#, the diffraction or kink amplitude
entering the PSCA@Eq. ~4.27!# is given by

r ~u8,u!5
kD

2
Acosu8cosu r d~u8,u!

52Acosu8cosu
sin@kd/2~sinu81sinu!#

sinu81sinu
.

~5.9!
6-10
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SEMICLASSICAL THEORY FOR TRANSMISSION . . . PHYSICAL REVIEW E67, 016206 ~2003!
The amplitudes for injection or emissiontm(u) @Eq. ~5.6!#
and for internal diffractive reflectionr (u8,u) @Eq. ~5.9!# en-
tering our semiclassical theory possess the remarkable
ture that they are independent of the geometric paramete
the cavity~i.e., D). This observation indicates that the sem
classical multiple scattering expansion@Eqs. ~4.24! and
~4.27!# should be applicable irrespective of the geometry
the cavity.

VI. NUMERICAL RESULTS

We present in the following numerical results within th
framework of the present semiclassical theory. We focus
two properties for which previous semiclassical descriptio
faced major problems: unitarity and the path-length pow
spectrum. We compare our results with the previously p
posed semiclassical description in which both injection a
emission was treated in FDA, but only classical paths w
included for propagation inside the rectangular billiard. T
corresponds to the approximationSm8,m'Sm8,m

(0) @Eq. ~4.24!#
with tm(u) given by Eq. ~5.6!. We also perform detailed
comparison with quantum calculations. For the latter we
ploit the correspondence between the semiclassical and
quantum multiple scattering series. Since any semiclass
calculation can only be performed for up to a certain ma
mum path length,max corresponding to a maximum later
lattice displacementbmax @Eq. ~4.32!#, errors due to the trun
cation of the contributing paths should be disentangled fr
the errors due to the semiclassical approximation itself. T
is easily accomplished within the present multiple scatter
theory as the corresponding quantum multiple scattering
pansion@Eqs. ~4.1! and ~4.2!# can be truncated at the sam
bmax so that semiclassical and quantum calculations can
directly compared at the same level of truncation. Moreov
the quantum multiple scattering series depends also on
same substructure amplitudest andr for injection, emission,
and internal reflections. Calculating the latter quantum m
chanically and truncating the multiple scattering series
bmax511 yields the result for the unitarity~Fig. 7! labeled as
TQM. This truncated quantum result is only approximate
unitary ('0.95) with ak dependent fluctuation ofs'0.05.
If we replace in the quantum multiple scattering series
amplitudest andr by its FDA approximation@Eqs.~5.4! and
~5.7!#, the resulting unitarity limit at the same level of trun
cation, labeled as TQM-FDA, reaches value of 0.85 withs
'0.05. Turning now to the semiclassical theory based u
the FDA approximation including both classical and pseu
paths, we observe convergence as a function of a numb
kinks K included (K<10) towards the corresponding qua
tum unitarity limit. The only difference to the quantum resu
is the larger fluctuation (s'0.15). This is in stark contrast t
standard semiclassical approximations. The standard s
classical result~without geometric path shadowing,K50)
exceeding the unitarity limit can be corrected for path sh
owing denoted bySSCA @7,28#. Longer paths (a,b) are shad-
owed by shorter paths (a/n,b/n) when a/n, b/n are inte-
gers for an integern. Shadowing also removes geometr
reflection at the open lead mouth~the ‘‘ghosts’’!. This cor-
rection, also shown in Fig. 7, reduces the transmission
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plitude without restoring the unitarity. The present resu
illustrate that the semiclassical diffraction~or kink! expan-
sion @Eq. ~4.24!# converges towards the quantum calculati
at the same level of input and truncation. It furthermore
dicates that the largest residual error is caused by the F
for t and r rather than from the semiclassical approximati
to the paths sum itself, as indicated by the deterioration
the quantum multiple scattering series with FDA amplitud
Employing diffraction approximations beyond the FDA su
as the geometric theory of diffraction@31,32# or the uniform
theory of diffraction@33# would most likely result in further
improvements.

Turning now to the path-length power spectrum for t
transmission amplitude,S115T11,

P~, !5U E dkeik,T11~k!U2

, ~6.1!

the standard approximationT11(k)'S11
(0)(k), @Eq. ~4.24!#

fails badly at large path length~Fig. 8!. More precisely, while
the peak positions which can be associated with class
paths and labeled by lattice vectorsa,b agree well with the
full quantum spectrum, the peak heights are overestima
up to one order of magnitude@Fig. 8~a!#. The quantum peak
heights decrease exponentially while the standard semic
sical approximation exhibits only an inverse linear dec
proportional to,a,b

21 . The present semiclassical theory th
includes pseudopaths with a finite number of kinks, by co
trast, reproduces the quantum path-length spectrum very
@Fig. 8~b!#, even fine details at large, are remarkably well
reproduced. The decay at large, becomes exponential rathe
than linear~Fig. 8c!. This observation is the key to the un
derstanding of the role pseudopaths play in quantum
semiclassical transport. The exponential suppression of
path-length spectrum at large, is a consequence of the de
structive interference of an exponentially proliferating set

FIG. 7. Test of unitarity on different levels of semiclassical a
proximation to the rectangular billiard. Comparison between: qu
tum mechanical calculation with truncated multiple scattering
pansion (bmax511), TQM; quantum multiple scattering with FDA
for diffractive amplitudes, TQM-FDA; pseudopath semiclassic
approximation~PSCA! with K50, . . .,10. K50: standard SCA
without path shadowingd, with path shadowings. The billiard
dimensions~see Fig. 1! areD5L5A41p andd50.25. The aver-
age is performed over ak window of @p/d,6p/d#.
6-11
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pseudopaths. For each long classical zero-kink path with
tice vectora,b we find a large numbern of few-kink pathsg
with nearly the same length

,a,b
(g) ' (

K851

K

,DaK8DbK8

(g) , g51,•••,n ~6.2!

with

b (g)5 (
K851

K

DbK8
(g) ,

a (g)5 (
K851

K

DaK8
(g) , ~6.3!

FIG. 8. ~a! Comparison between standard SCA including FD
for emission and injection~Ref. @5#! and quantum spectrum~TQM-
FDA!. ~b! Comparison between pseudopath semiclassical appr
mation ~PSCA! and quantum spectrum.~c! Exponential versus lin-
ear decay of path length spectrum in PSCA and standard S
respectively. Note that only the dominant peaks are plotted. Billi
dimensions andk window as in Fig. 7.
cs

et

01620
t-

and whose Maslov indices differ from the zero-kink pa
The exponential growth of pseudopaths with pseudor
domly varying phases assures the approximately expone
suppression of the contributions of long paths.

This observation also clears up another puzzle found
previous semiclassical calculations. The agreement betw
the semiclassical and the quantum path-length spectrum
much better for chaotic rather than for regular syste
@4,7,5,12,26# contrary to many other observables for whic
standard semiclassical approximation performs much be
for regular rather than for chaotic systems. In chaotic s
tems, already classical paths exponentially proliferate a
function of the path length and can account for exponen
suppression of large path lengths. Therefore, the lack
pseudopaths which also proliferate exponentially is less d
matically felt than in regular systems where the exponen
proliferation of pseudo paths competes with only linear p
liferation of classical paths.

VII. CONCLUSIONS

We have presented a semiclassical theory for balli
transport that goes beyond the standard semiclassical
proximation by including an ascending order of diffractiv
scatterings in the interior of the ballistic cavity correspon
ing to certain classes of contributions in increasing order
\. As the present formulation requires an additional and
dependent approximation for the elementary diffractive a
plitudes for injection, emission, and internal reflection, inc
sion of all contribution to a given order in\n cannot be
expected. Using the example of a rectangular billiard,
have shown numerically that an exponentially proliferati
number of pseudopaths with diffractive kinks converges
the quantum multiple scattering series. In the rectangular
liard, the leads are the only sources of diffraction. For ot
geometries with concave walls or diffractive edges additio
sources of diffraction are present. While the numerical res
presented pertain to the rectangular billiard, we find num
cal evidence that convergence towards quantum trans
can be found for other geometries, specifically for the cir
and the Bunimovich stadium@35#. We expect that our PSCA
will also resolve other unresolved issues of semiclassical
listic transport such as the problem of weak localizati
@14,15# and the breakdown of symmetry of the autocorre
tion function in reflection and transmission.
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