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Ballistic quantum transport at high energies and high magnetic fields
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We present an extension of the modular recursive Green'’s function method for ballistic quantum transport to
include magnetic fields. Dividing the nonseparable two-dimensional scattering problem into separable sub-
structures allows us to calculate transport coefficients and scattering wave functions very efficiently. Previously
unattainable energy and magnetic-field regions can thereby be covered with high accuracy. The method is
applied to magnetotransport through a circle and a stadium shaped quantum dot at strong magnetic fields and
high energies. In the few edge state regime we observe strong multifrequency Aharonov-Bohm oscillations. By
analyzing them in terms of a multichannel interference model, we classify these fluctuations within the frame-
work of Fano resonances and discuss their geometry independence. For high emeogiesnumbenswe
observe localization of the scattering wave function near classical trajectories.
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[. INTRODUCTION taking the symmetries of a scattering problem into account
from the outset. Specifically, when the two-dimensional non-
Accurate simulations of ballistic transport through quan-separable open quantum dot can be built up out of simpler
tum dots have remained a computational challenge, despitseparable substructuré®ferred to in the following as mod-
the conceptional simplicity of the problem. This is in part uleg, the Green’s function for each of these modules can be
due to the fact that many of the most interesting phenomenaalculated efficiently and virtually exactly. Calculation of the
occur in a parameter regime of either high magnetic figld S matrix and of the scattering wave function is thus reduced
or high Fermi energyEg. The regime of strong magnetic to “welding” together the modules by a very small number
field B, where the magnetic lengttin a.u) Iz=\/c/B is  of recursions. Key to this approach are tight-binding grids
small compared to the linear dimensi@h of the dot, Iz which are symmetry adapted for each module. This leads to
<D, gives rise to the quantum Hall effettthe Hofstadter the separability of the eigenfunctions in the modules and
butterfly> and Aharonov-Bohm oscillations of transport allows an efficient incorporation of boundary conditions. As
coefficients’ The high-energy domain, where the de Brogliea result, a much higher grid density can be easily handled,
wavelength\ = \2E¢ satisfies\p<D, is of particular rel-  which, in turn, is a prerequisite for treating short magnetic
evance for approaching the semiclassical limit of quantuniengthslg and short wave lengthsy . Matrix Dyson equa-
transport and for investigations of quantum signatures ofions have to be solved only for each junction between the
classical chaos:’ Both these regimes pose considerable dif-modules. The total number of necessary recursitres,
ficulties for a numerical treatment. Methods based on thdiigh-dimensional matrix inversiohss thereby reduced to
expansion of the scattering wave function in plane or spherithe number of modules needed to reconstruct the quantum
cal waves become invalid at high fields since diamagneticlot.
contributions are generally neglectéethods employing a The efficiency of the MRGM will be demonstrated by
discretization on a grid are limited by the constraint that theapplying it to transport through a circular and a stadium
magnetic flux per unit cell must be small, which, in turn, shaped quantum dot. These systems are known as prototype
requires high grid densities for largg® The same require- structures for regular and chaotic dynamics, and have been
ment has to be met for highs, where many grid points are studied thoroughly in the literatufe’**Concerning the the-
needed to accurately describe the continuum limit. This im-oretical approaches for the investigation of electron dynam-
plies, however, a large number of inversions of high-ics in quantum dots, considerable attention has been dedi-
dimensional matrices, and therefore limits the applicabilitycated to reach higher energiés'® and higher magnetic
of these approaches for lar@eand (or) large Eg . fields1”1°-2 Especially for the study of transport through
In the present paper we propose an approach that allowgpen stadium billiards, several different methods have been
accurate treatment of these regimes. We present an extensiemployed®!®24=27In the following we will present numeri-
of the previously’ introduced modular recursive Green’s cal results obtained by the MRGM, which attain a parameter
function methodMRGM) to include an additional magnetic range, which, to our knowledge, is not yet explored by other
field perpendicular to the two-dimensional scattering surfaceapproaches. For small, we investigate the localization of
The underlying idea for our approach goes back to the worlkhe scattering wave function near classical scattering trajec-
of Solset al*and to the widely usetbcursive Green's func- tories. Characteristic differences in the dynamics of generi-
tion method(RGM).>*? In the standard RGM the Green's cally regular and chaotic systems will be highlighted. In the
function is propagated through the scattering region fromhigh-magnetic-field regime, which is governed by edge
one transverse strip to the next by repeated solutions of states, differences between the dynamics in different geom-
matrix Dyson equation. We show that the efficiency of thisetries disappear and are replaced by universal quasiperiodic
conventional discretization can be increased considerably byonductance oscillations. At a critical magnetic field, these
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oscillations break off and transport terminates entirely. In theenergiess; . Both quantities are chosen such that the Schro
regime where more than one edge state is excited in the dajinger equationﬂ‘b| Ym)=Eml¥m) converges towards the
we find interference fluctuations, which we analyze in termscontinuum Schidinger equation in the limit of high grid

of a multichannel Fano interference mod&The key to the  point density. The most straightforward application of this
understanding of the observed fluctuations is that intercharepproach refers to modules for which the boundaries are
nel scattering between different edge states takes place onhodal lines of Cartesianx(y) or polar coordinatesd, ¢).

by diffractive scattering at the lead junctions. For these coordinate systems, we Has B=0

This paper is organized as follows. In Sec. Il the method
for inclusion of a magnetic field in the MRGM is presented. ~ \x _ =1 ., _ ~1 11
Section Il is dedicated to a discussion of numerical results, WL 5 A y2! bt 28y2" gi A2 Ay?'
illustrating the high-magnetic-field and high-energy behavior (2.2a
in quantum dots. The paper concludes with a short summary
in Sec. IV. Ve —Qi+12 o -1

[ 2 x5 2, 20
Il. METHOD 2eihe 20ide

We consider ballistic nanostructures with a constant elec- e :i+ 1 (2.2b)

trostatic potential inside the two-dimensional cavity, impose : Ap? QizA‘PZ, '

hard-wall boundary conditions, and assume a constant mag-, . . .
netic field B to be oriented perpendicular to the scatteringith €i=li—1/2A¢. For separable energy eigenfunctions
plane. The shape of the quantum dot will be chosen to b8f the_general formE) =|Ex) ®|Ey ), the spectral rep,re-
either a circle or a stadiurtsee Figs. 5 and 6 belgywvhich sentation Qf th? retarded+() and advanced{) Green's
represent prototype systems for regular and chaotic cIassicE;HnCt'on G™(r.r",B,E¢) of the module is simply given by
dynamics, respectively. Two semi-infinite waveguides of E.Y(E !

width d at different electrochemical potentialg andu, are G~ (r.1",B.Ep)=2> (alE(Eila’) > w
attached. The aperture of the leads is chosen to be very X A k- kEZ 3
small, d/D=d/A%=0.0935, whereA®'=4+7 is the _ _ '
scaled area of all the cavities studied anis a characteristic Where (. 8) stand for thegeneralizegicoordinatesX,y) or
linear dimension of the cavity. At asymptotic distances, i.e.,(p"P)' The |nd|qes K.n) represent the quantum ”“”?bers of
far away from the quantum dot, scattering boundary condit® separable eigenfunctiof,),|E, ) associated with the

tions are imposed. The asymptotic scattering state can Hgrees of freedom and g, respectively. .
factorized into a longitudinai flux-carrying plane wave and a_ 1 1€ Green's functions of the separate modules are joined
transverse standing wave. The latter is a simple sine wave {fy SOlving a matrix Dyson equation,
the field-free case and a combination of Kummer functions 0, ~O\7r

e . =G"'+G"V 2.4
when the magnetic field is turned 61 In our local coor- G=G+GVG, _ ( . )
dinate system the longitudindtransversg direction in the ~where G® and G denote Green’s functions of the discon-
ith lead is always denoted by (y;). The wave functions in nected and the connected modules, respectively. The matrix
the waveguides thus vanish gt= +d/2. Atomic units ¢ V denotes the hopping potentidimultiplied by the size of

=|e[=mes=1) will be used from now on, unless explicitly the ynit cell,V=VAg, which in a Cartesiaripolan grid is

stated otherwise. Ar=AXxAy(=p0;A0A¢). The complete scattering structure
can thus be assembled from the individual modylasich
A. Brief review of the MRGM like a jigsaw puzzle The number of necessary recursions

In order to highlight the technical difficulties in incorpo- Li-€., solutions of Eq(2.4)] is (approximately equal to the
rating a magnetic field we start by briefly reviewing the Number of modules. The exact number depends on the num-
MRGM for the field-free case. Our starting point is the ob- ber of link modules required for different grid structures. For
servation that a large class of dot geometries with nonsep&X@Mmple, in order to connect a half circle with a rectangle,
rable boundaries can be decomposed into separable tw/€ need one additional link module which is plugged in
dimensional substructures, referred to in the following ast?enNeer{see Ref. 10 for detaﬂsThe key property of these
modules. For each of these modules the discretization of thék modules is their adaption to two different grid symme-
corresponding tight-bindingtb) Hamiltonian can be per- Lri€s [see Fig. 8)]. Mathematically speaking, the transition

formed on a symmetry-adapted grid. The grid for each mod{rom a polar to a Cartesian grid requires a link module in
ule is chosen such that the eigenfunctions of the tb Hamilorder to preserve the Hermiticity of the tb Hamiltonian at the
tonian, junction. In the recursion, the link module is connected to the

Cartesian(polan grid by means of the hopping potential
V*(V¥). In addition we avoid spurious reflections that would

H —Ei 8'|'><'|+i21 Vilidil, 2.1 arise at the junction between modules of a different grid
. structure.
separate into two generalized coordinaté®. contains hop- Once the Green’s functio®™ for the combination of all

ping potentialsV; ; for nearest-neighbor coupling and site modules is assembled, the transmission amplitaglg$rom
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entrance lead moda into exit lead mode can be calculated PQ P Q
by projectingG™* onto the transverse wave functions in the 10080 )EBd 11110 H1778
leads x,(y;). With the corresponding longitudinal wave - o o
numbersk, ,,, we have(at B=0) oo
i -— ©
42 o ooJooooo O 00 00 Q0000
tom(Ep) =~ v kxz'”kxl'mf,d,zdyz FIG. 1. Joining and disconnecting of modules by application of
a Dyson equation: two semi-infinite leads. The hard-wall boundary
% diz2 dviy* G+ E conditions at the sites on the border of the modules are represented
—dp Yixn (Y2) G7(Y2.Y1,Ep) Xm(Y1)- by empty circlegaccessible space by full circleShe gray shaded

areasP andQ are those grid slices at which the Green’s functions
(2.5 are evaluatedsee text

Together with the reflection amplitudes,, (for which an

analogous relation holdisthe S matrix is completely deter- A=BI2(—y,x,00=pXB/2. (2.10b
mined anc_i satisfies the unitarity condition implied by currentrhe scalar gauge potential generating the gauge transforma-
conservation, tion from Eq.(2.103 to Eq.(2.108 is A (x,y) = Bxy/2.
M A major complication results from the fact that in the
E (tanl2+ el =1. (2.6) presence of the magnetic field the separability on an unre-
n=1 stricted grid of a given symmetry does not imply the separa-

bility in the presence of boundary conditions of tekame

The integerM denotes the number of open channels in thegyymetry. We illustrate this problem with the help of one
leads. According to the Landauer formula, the total Conductypical example, thesemi-infinitequantum wire with lead

tanceg through the quantum dot is given by width d (Fig. 1). We impose hard-wall boundary conditions

M Y(x,y==d/2)=0 and consider first thénfinite quantum
g= i E It |2:£Tt0t with T©4 R©=M. wire along thex direction. Because of the Cartesian bound-
Tmner 0w ary conditions, the symmetry adapted gauge is the Landau

(2.7 gauge A=—Byx. Consider, for notational simplicity, the
Schralinger equation in the continuum limit,
B. Inclusion of the magnetic field

1 2
Incorporation of the magnetic field into the MRGM poses Hg(y,x)= d(X,y)

a number of complications. The solutions of these difficulties 2

+1A
PTe

will be presented in this section. At the core of the problem is 1 2 R 2B 9 BY?

the preservation of separability of the Satirmyer equation. = _( ______ _ d(X,y)

The usage of gauge transformations as well as of Dyson 2\ gx2 gy? € "X 2

equations for decomposing nonseparable structures into

separable substructures plays a key role in accomplishing =Erd(x,y). (2.11
this goal. The fieldB=(0,0B) enters the tb Hamiltonian Since the longitudinal momentum,= —id/dx commutes
(2.1) by means of a Peierls phase factor; with H, the separability of the wave function persists in the

presence of the magnetic fields(x,y)=f.(x)x(y), with
2.9 f(x)=e* If, however, one introduces an additional Carte-
sian boundary condition along the axis [i.e., #(x=0yy)
=0 for a semi-infinite leal] the situation changes. In the
absence of the magnetic fielB=0, the linear term inp,

Vryr,—>Vryr,~ex;{(i/c)fr A(x)dx
r

with which the field-free hopping potentiad, ;. is multi-
plied. The vector potentiah(r) satisfiesVxXA(r)=B. The vanishes, and thus the choidéx)=sin() [i.e., a linear

Peierls phase will, of course, |nAmost cases destroy the SePR5mbination off . (x)] satisfies the boundary condition and
I’ablllty of the eigenfunctions Oth. These difficulties can reserves the separab”ity, even thoug(}*’“s no |0nger con-
be, in part, circumvented by exploiting the gauge freedom 0Eerved in the semi-infinite lead. However, B0 and the
the vector potential, i.e., same boundary conditiop(x=0,y) =0, the term linear irB

, and destroys the separability. The wave function now

A—A'=ATVA, (2.9 takes)fche geanaI form P g

where\(r) is a scalar function. By an appropriate choice of
N\, the wave functi_on remg_ins separable on a gi\_/_en dx,y)=> ekmS o v (). (2.12
symmetry-adapted grid. Specifically, to preserve separability, m n

we employ the Landau gauge for a Cartesian grid, The breakdown of separability by the introduction of an ad-

A=(—By,0,0, (2.10a d_itional bour_1dary condition indicates that the Green’s func-
tion of confined modules will be more complex than for
and the “symmetric” or circular gauge for a polar grid, extended systems of the same symmetry-adapted grid and
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the same gauge. Therefore, the program of the modular i a2

method of building up extended complex structures by weld- t,(Er,B)=— dy,

ing together smaller modules of higher symmetry will be 4\ 0O —ar2

executed in reverse: nonseparable confined modules will be a2

generated by “cutting in pieces” larger separable modules. xf d%){ﬁ()’z)e*ik”"?(ﬁiz)*
Confining boundary conditions will be introduced rather than —di2

removed by the matrix Dyson equation. In the example N , o, A, b ik
above, the semi-infinite quantum wire is generated by cutting XG™(X2,X1,EF,B) (D" X1) xm(yq) € 1.

the infinite wire at the linex=0, thereby imposing the addi- (2.17
tional boundary condition. Just as connecting modules, so is

di_sconnecting quules equivalent to the application of a mane ynit vectorsx,, are assumed to be pointing in outward
trix Dyson equation, direction of thenth lead and¥,, denotes the outgoing particle

— flux carried byy (y’)e‘kmxi through the lead cross section.
E_~C C E miy1
Gr=GT+GVG~ (213 Determination of transverse statgg(y;) and of the corre-

In this context,GF(G®) is the Green’s function of the ex- Sponding longitudinal momentuky, as well as the normal-

tended(confined module and/ is the hopping potential that ization factorsé,, will be discussed below. For reflection

connects the modules. Solving E@.13 in reversed mode amplitudesry, a relation similar to Eq(2.17 holds:?
(i.e., for G rather than forGF) amounts to dissecting the From t,, andryy, the conductance can be calculated by

larger module means of the Landauer formul&q. (2.7)].

Provided that the Green’s functions of all the necessary
modules are available, we have to link them with each other C. Calculation of modules

to assemble the entire scattering geometry. However, in the s section is dedicated to the evaluation of the Green's

presence of a magnetic field, we have to take into accoung,ions for those modules, which we need to assemble a
that the different modules will be calculated in different q e and a stadium billiard: the half-infinite lead, the rect-
symmetry-adapted gauges. Joining different modules re;nqe “the circle, the half circle, and the link module. With
quires, therefpre, In gener'al a gauge t.ransformauon'. Fgr thfﬁe exception of the circle and the link module, for all these
Green'’s function on the griG(r; ,rj’), this transformationis  ,oqules Eq(2.3) is not applicable. This is due to the non-
simplified by the fact that the matrix of gauge transforma-geparapility for confined geometries as discussed above.
tions, Moreover, the spectrum in open structures like the semi-
, infinite lead is continuous rather than discrete. Unlike in the
[ACr) Jje=exd —in(ry)/c] b, (214 field-free casé* the resulting integrals cannot be calculated
th@nalytically. However, both problems can be overcome by

is diagonal in the grid representation. Corres_pondingly, Applying a matrix Dyson equation

transformation of both the hopping potenti&l and the

Green'’s function is local, i.e., 1. Rectangular module

v(r, ,r]-’)—>V’(ri ,rj’)=A(ri)V(ri FDA*(r]) (2.1 _As lllustrated above for the semi-infinite waveguide, the
Dirichlet boundary condition for the confined structure of a

, , N , , rectangle with magnetic field is not separable, no matter
G(ri,rj) =G (ri,rj)=A(r) G(ri, rj) A*(rj). which gauge is chosen. The separability can, however, be

It is, thus, not necessary to transform gauges of differenEEStor?d by_ imposing periodic boundary c_ondltlons_, on two
fopposing sides of the rectangle. Topologically, this corre-

modules to one global gauge. Instead, it is sufficient to pe ) )
form a local gauge transformation at the points of the junC_sponds to folding the rectangle to the surface of a cylinder

tions {r;}, such that the gauges of the two modules to be[Figi 23)]. In this_(cjasl_e wefconne;:t thel fir(sR)_gnbd thehlast_
joined agree at these points. (Q) transverse grid slice of a rectangular grid by a hopping

- X _ X _ 2 , :
Finally, in order to extract thé matrix, i.e., the ampli- PotentiallVpo|=[Vgp|=—1/2Ax*. The Green's function of
tudest,,, andr,,, matrix elements of the current operator thiS “cylinder surface” (cs) will be denoted byG™ in the
must be of gauge-invariant form. This requirement can pdollowing. The calculation of the rectangle Green’s function

fulfilled by employing a double-sided gradient operator, G Will be obtained out of3*by a Dyson equation used here
which is defined a2 in “reversed” mode, i.e., fordisconnectingtb grids. This

method for calculating the rectangular module may seem like
a detour, but it is numerically more efficient than a strip-by-
strip recursion. For completeness we mention that an alter-
i native way to calculat&" was proposed in Ref. 35.
with D=V ——A(X). (2.19 The Green’s function for the cylinder surfac®Ss, can be
constructed from separable eigenfunctiong,,)=|Eg)

With its help the transmission amplitudes can be evaluate®|E},), according to Eq.(2.3). Solving the tight-binding
as 3233 Schralinger equation for the cylinder surface, we obtain for

f5g=f(x)Dg(x)—g(x)D*f(x)= —ng
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Q0900000000
0000000000

FIG. 2. Applying a Dyson equation in “reversed mode” to con-

struct Green's functions fa@) a rectangle out of a cylinder surface
and (b) a semicircle out of a full circle, respectively. i@ the

periodic boundary conditions are transformed into hard-wall bound-

ary conditions. The gray shaded ardgsQ, and X are those grid
slices at which the Green'’s functions are evalugtest text

the longitudinal eigenstates (x| ER)
= (N,Ax) ~Y2exp(27kj/N,), which results in a tridiagonal,
symmetric matrix eigenproblem of si2g X N, for the trans-
verse mode&®

v -1 27k B y
Ekn<Y||Ekn>—E co N_x+ EyIAX —1[(yi|Efw
- 2Ay2(<Y|—1|EKn>_2<YI|EKn>
(Y11l Ef)- (2.18

By “cutting the cylinder surface open” along a line of con-
stantx, we obtain fromG® the desired Green's functio®'
for the rectanglgFig. 2(@]. We demonstrate this for the
rectangle Green'’s functioBp from the first transverse slice
P to any other sliceX. To determineGpy, we solve the
following system of Dyson equations:

Gpx=Gpx— GrPQVQPGCPSx_ G{DPVPQGCQSX (219
Fo=Ghot ChoVarGhot GheVroGlo  (2.20

pp=Gppt GrPQVQPGErSFnL GrPPVPQG?gSP , (221
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FIG. 3. Applying a Dyson equation to construct Green’s func-
tions for (@) a semi-infinite lead andb) a stadium billiard out of
“modules.” In (a), joining a transverse slice with a semi-infinite
lead schematically leaves the Green'’s function of the lead invariant.
In (b), an additional link module is added to join the half circle and
the rectangle modul€or details, see Ref. 20Notation as in Figs.

1 and 2.

2. Circle and half circle

In symmetric gauge,A=B/2(—Yy,x,0), the Dirichlet
boundary value problem for the circle with magnetic field is
separable|E )= |Ef)®|EZ,). On a discrete th lattice, this
statement remains true provided that a circular grid is em-
ployed. With the eigenstates for the azimuthal degree of free-
dom, (¢;|Ef)=(N,A¢)  Y%exp(2mkj/N,) and radial eigen-
states gyn(0i)= Vo X(ei|EZ), the finite difference
equation for thegy,(o;) results in a tridiagonal symmetric
eigenproblem

2k QizBAgo
Ekngkn(Qi):_QizA(Pz co N, 2c —1|gkn(0i)
1 Oi-12
- 9kn(Qi-1) —29kn( €i)
2Ap? \/Qi—l\/Q_i mE !
Qi+12
+ ——="——=0kn(Qi+1) |- (2.22
\/Q—i\/Qi+1 mE

The Green’s function for the circular module is then calcu-
lated by a straightforward application of E@.3).

For the Green'’s function of the half circle, we employ an
analogous procedure as in the preceding section: we dissect
the circle Green’s function into half circles by means of a
reversed Dyson equation. We demonstrate this by way of the
example depicted in Fig.(B), where the “full circle” (fc) is
split up into two “half circles” (hc). The resulting two halves
are almost identical, with the exception of the two additional
radial grid slices, by which the right half circle is larger. For
assembling the stadium billiard we have to make sure that
the tb grid of the half-circle module can be linked directly to

where the first line is the reversed Dyson equation. The threa vertical grid[see Fig. &)]. For this reason, only the left
unknowns in the above equations are the Green’s functionsne of the two half circles in Fig.(B) can be used for this

connecting the slices R,X), (P,Q), and (P,P), i.e.,

r

knowns can be uniquely determined.

px» Gpg, Gpp. By solving these three equations, the un-

purpose. Consider as example the Green’s fundﬂé%g de-
scribing the propagation from the grid sliBeat the junction
of the two half-circles to any radial grid slice situated on
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the “left half circle” [see Fig. 2b)]. GL‘,CX is determined by
the following system of Dyson equations:

GR%=GEx— GPpVraGox, (2.23

GRp=Gpo+ GE’CPVPQGSP! (2.29
which yields a unique solution faB!, .

3. Link module

For the field-free case details of the construction of the

link module[see Fig. &)] have been discussed in Ref. 10.
Due to the “one-dimensional nature” of this module, the

additional magnetic-field dependence can simply be incorpo-

PHYSICAL REVIEW B68, 165302 (2003
Z=MBM™! with M=[x;,....xn], B=diag ;).

(2.28
The quadratic eigenvalue equation is equivalent to a gener-
alized eigenvalue problemAy=BCYy of twice the original

dimensiort® Its 2N-dimensional eigenvectorg=(x.,Bx)
are solutions of the symmetric eigenproblem

( )_ —(G3p) ™t Vv (
_B 0
(2.29

v
where G2p) " *=Er—H®¥, and AY, is the Hamiltonian of
the one-dimensional transverse tb stripxat0. The Fermi
energyEr and the magnetic field enter Eq.(2.29 as inde-

0

V

—V*
0

b%
Bx

X
Bx

rated in its Green’s function by a multiplication with a gauge P€ndent parameters at which the eigenstaigsand eigen-

phase factofsee Eq(2.14)].

4. Semi-infinite lead

Because of its continuous spectrum, the Green’s functio
for the semi-infinite lead poses an additional challenge beXm
yond that of the nonseparability of the wave function dis-

cussed above. We therefore apply one further “trick” to by-

pass this problem. Our approach is based on the observation
that adding a slice to a semi-infinite quantum wire leaves this

wire (up to irrelevant phasgsnvariant[see Fig. 8a)]. We
assume a semi-infinite lead withe [ Ax,%) and hard-wall
boundary conditions at=0 andy= *+d/2. To this object,

values 3,, are evaluated. The longitudinal momenta of the
lead statest(X,Y) = xm(Y)€*™//6,, are related to the ei-
genvalues by the relatigf=exp(kAx). The orthonormaliza-
tion and the completeness relations of thé 8igenvectors
can be formulated in terms of matrix relations for the
generalized eigenproblem,

R

Ke}Y =2iﬁ5
N |
2N P
and E nem

m  Om

Km

c L
Kl

=2i

we add a slice consisting of just one transverse chain of tb

grid points which we place at=0. The system of Green'’s
functions for the propagation from the transverse chair at
=0 (P) back to itself(P) or to the first transverse slice of
the semi-infinite leadQ) at Ax reads

GPP:G(F)’P+ G(F)’PVPQGQP! (225)

Gop=GQoVorGpp- (2.26)

Each multiplication involves a matrix product with a dimen-

sion equal to the number of transverse grid points. The key

point now is that the system of Eq2.25,2.26 can be closed

through the invariance condition for the semi-infinite lead,

ie., GPPZGOQQ [see Fig. 8)]. In Landau gaugeA

=(—BY,0,0), the latter relation does not involve additional Si X ) ; i S
%Cp[eens function throughout the entire scattering region is

gauge phases since these are already contained in the h
ping matrix element. We additionally note that an equivalen
point of departure for the derivation @pp is the Bloch
condition for states in the ledd:>

_ SettingZ=GppVqp and using the Hermiticity condition
VQP=V’F‘,QEV*, Egs.(2.25,2.26 can be converted to a qua-
dratic matrix equation

ZZ-VYGE,) " 1z+V v =0. (2.27)
SolventsZ of a quadratic matrix equatio®(Z)=0 can be
constructed from the eigenpairg;(, x;) of the corresponding

guadratic eigenvalue equatidp(B;)x;=0,ie[1,... ,N],
in the diagonal forni’

(2.30

With this specific choice of normalization the norm factors
0., are determined such that every propagating state carries
unit flux. We note parenthetically that the quadratic eigen-
value equation could also be applied to the semi-infinite lead
at zeroB field. However, in that case the Green’s function for
quantum wires can be calculated analytici by complex
contour integration.

5. Scattering wave functions and efficiency of the MRGM

The MRGM is particularly well suited to determine trans-

port coefficients as the Green’s function is then required only
at the junctions between the modules and does not have to be
evaluated throughout the interior of the entire quantum dot.
nce for the calculation of the scattering wave function the

eeded, this particular advantage is lost. However, also in
this case, the MRGM is still more efficient than the standard
RGM, as will be explained below.
The wave function/(x) can be obtained at any poixty
projecting the retarded Green'’s functidhy means of the

operatorD) on the incoming wavéin modem),*’:32
1 [d2 )
X)=— dy;G"(x,x',E¢,B
Pm( ) 2\/0—m —d2 Y1 ( F )

X (B X)) xm(yy) e*mea.

(2.3)

G* contains the solution of the Dyson equations for all
linked modules. That the evaluation of E(.31) can be
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done very efficiently results from two properties. First, the (a) Circle-90
number of recursiongi.e., of matrix inversionsneeded to 1.0 o
obtainG™ is given by the fixed number of modules required }/
to build up the scattering structure. This number is indepen- = '
dent of the de Broglie wavelength. The latter enters only in ?U_ 0.5

terms of the size of the matrices involved in the recursion, 4 1oy

since with increasinder (decreasing\p) more grid points = 0.0 :

are required to represent the continuum limit. Compared to = ) (b) ~ Stadium-90
the standard RGM the numerical effort is reduced since in LO e e
that approach the number of recursions scales with the grid

density, i.e.ckg. A second advantage of the MRGM con- 05

cerns the incorporation of the boundary conditions. In the

modular method the boundaries coincide with the nodal lines g\

of the symmetry-adapted coordinate system for the module. 0-01 0 105 11 115 13
For this reason the convergence towards the continuum limit ' ' de/W ' '

is enhanced as compared to the slice-by-slice recursion. The

calculation of the transport coefficients as a function of the g5 4. Comparison between the present MRGadlid line)
Fermi wave numbek (or Fermi energyE) is simplified by and the wave-function matching technigiiRef. 8 (dotted lin for

the fact that the solution of the eigenvalue problemine first-mode transmission probability;,(ke)|? at B/c=1 in a
(|IEm),Em) entering the Green’s function for each module small window ofke: (a) circle with perpendicular leads ar®)

[Eq. (2.3)] is independent oEr. For the evaluation of the stadium with perpendicular leadsi€0.35, A%=4+ 7). In both
Green’s function at different values &, the eigenproblem cases|t;;(kg)|?+|r11(ke)|? is also shown. Contrary to the MRGM
|2|tb| Enn)=Eml|Em) therefore has to be solved only once. Un- (s_olid line), the waye-func_tio_n_matching techniq(dotted ling de-
fortunately, this feature does not extend to the variation ofiates from the unitarity limit in(b).

the magnetic field since botk,,) andE,, are dependent on

B. Because of this property, a new solution of the tb eigenfunction expansion in spherical waves. The agreement for
problem is required for each value of the field. The mosthe circle is very good, although diamagnetic terms are ne-
severe restriction of the MRGM is, however, that its app”'glected in the approach of Ref. 8. For the stadium, the dif-
cability is limited to those scattering structures which can bggrences between the two methods are somewhat larger. This
assembled from or cut out of separable modules. Also, rany in part due to the fact that the expansion of the stadium
dom potentials and soft We_‘l,ls can only be included as Iong 8%ave functions in spherical waves leads to a unitarity defi-
they preserve the separability of each module. We mention ‘%tiency [see Fig. 4b)]. We can also reproduce previous re-

this point that a hyb”d RGM" for de_almg V.V'th arbitrary sults of Ref. 8 concerning weak-localization line shapes and
boundary geometries was presented in the literdture. - o .
statistical magnetoconductance properties in chaotic and
regular cavities. These will not be treated again. Our focus
Ill. NUMERICAL RESULTS FOR HIGH B FIELDS AND will be on the high magnetic field and high-energy regime
LARGE ke where other methods failed.

In this section we present first magnetoconductance re-
sults which were calculated with the MRGM at high mag-
netic fieldsB and large Fermi wave numbeks . As proto-
type Shapes of the Ca\/ity we use the circle and the The starting point for the anaIySiS of the Scattering states

Bunimovich stadium and consider different geometries fory(x) for ballistic transport through quantum dots is Eq.
the attached quantum wires. (2.31). Figures 5 and 6 display the resulting electron density

«|4(r)|? in the scattering region. In Fig. 5 we consider the
wave functions at very higlkg for both the circle and the
stadium billiard, which are prototypical structures for regular
Several checks for the accuracy of the numerical resultand chaotic dynamics, respectively. Laigecorresponds to
have been performed. Exact relationships for transport coethe regime where the convergence towards classical scatter-
ficients such as conservation of unitarity and the Onsageing trajectories is expected to emerge. Figurés &nd 5b)
relations are fulfilled with an accuracy greater than 0 illustrate the different dynamics for an injection at hig (
The grid density is chosen such that the magnetic flux pee20) and at low mode numbersi& 1), respectively. Since
unit cell isBA,/c<0.01(as in Ref. 38 The typical number high mode numbers correspond classically to a large injec-
of grid points per Fermi half wavelength is greater than 30.tion angle, the wave function condenses around a pentagon-
Only for very high energy calculation&ig. 5 the relative  shaped whispering gallery trajectory. For low-mode injec-
grid density is lower. For low magnetic fields, we can com-tion, a small circle representing the centrifugal bariier
pare our results fot,(kg)|? with previous methods. As an causti¢ is seen, as well as rays representing the asterisk
example we show in Figd a comparison fofty;(kg)|? with  orbits® Figures %c) and 5d) display scattering states for the
the calculation by Yangt al,® which is based on a wave- stadium. At low magnetic fields, the dynamics is chaotic and

B. Wave functions

A. Accuracy checks

165302-7



ROTTER, WEINGARTNER, ROHRINGER, AND BURGDRFER PHYSICAL REVIEW B68, 165302 (2003

2
B, () B,

? 6 _i oo
Lo Lo 10 11 1%/131415 71 Circle-180
. N

FMH

14 1516171819]2123 25 | Circle-90

X

0.5 E

115 120 125

0.0
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FIG. 5. (Color onling Absolute square of the scattering wave or 1 1L
functions| ¢(x,y)|? at highkg [(@) ke=257/d, (b) ke=12.57/d, ————
(c,d kg=6.017/d] for the four quantum dots considered: circle ‘
and stadium with relative lead orientation of 90° and 180°, area 0.5
A%=4+ 7 and lead widthd=0.25. The localization around clas- (©) 0995 < 7 s
sical trajectorieqsee insets for comparispis clearly visible. In 0.0 T ‘ — '
(a—0 the magnetic fieldB=0. In (d), the magnetic fieldB/c 1.0 f 18192*‘0212223 25... 30 Stad‘,‘i‘ﬂﬁo//«(d)
=30.5 allows for a whole bundle of equivalent trajectories with K i :
cyclotron radiug ;=kgc/B~2.48 to contribute to transport. ;4 \ 1
0.5 24
a typical wave function features a quasirandom pattern with °~995115‘ e

a modest density enhancement near classically unstable pe-
riodic orbits (not shown. For special values okg and B,
“scars” emerge in the scattering wave functigi€g. 5(c)]. B/c

By contrast, for high magnetic fields, the.classical motion FIG. 7. Transmission probabilitielt,,(B/c)|? in the high-
becomes regular. In the present examffieg. S(d)]. The magnetic-field limit for circle and stadium billiard with 180° or 90°
wave function condenses around a “bundle” of cyclotron .y grientation K-=1.57/d,d=0.25). B andB? are the thresh-
orbits executing three bounces at the cavity wall before exg 4 magnetic field8"/c=k2/(2n+1) (vertical dash-dotted lings

iting thrpugh the en_trance lead. There ha; been an eXtenSi,‘ﬁ&)ove B%, regular oscillations appedsee insets for magnifica-
discussion in the literature as to the existence of scars ifop) For B2<B<B!, irregular fluctuations set in. Their large-

scale structure can be explained by the number of interference
maxima the two edge states form along the boundary between en-
trance and exit leadsee indicated numbersPoints (a—d corre-
spond to the wave functions shown in Fig. 6.

O 1 I 1 1 L 1 1
70 80 90 100 110 120 130 140

openquantum billiards® Our present results clearly under-

score that scars, defined here as the condensation of the wave

function near classicdhot necessarily unstabléajectories,

clearly exist for largeke . Figure 6 illustrates the formation

of edge states at high fields. With increasiBgfewer edge

states can be excited in the cavity. In Figc)6(B=68.5),

three transverse edge states are present; while in Fiy. 6

(B=125), only a single edge state remains. For two edge

states carrying flux across the quantum dot, interferences

give rise to a stationary nodal pattern with a fixed number of
FIG. 6. (Color onling Absolute square of the scattering wave antinodes along the boundafyee Figs. @) and @b)]. We

functions|1//(x,y)|2 in the edge state regime. The area of all geom_note that we are not aware of any other method that has so

etries,A%'=4+ 7, lead widthd=0.25, ancke=1.57/d. The four ~ far been capable of investigating scattering states of open

plots correspond to the points in the transmission speEig 7), structures in this high-magnetic-field regime.

indicated by(a—d. The numbers along the longitudinal direction of

the edge states count the number of antinodes between entrance and

exit leads(see corresponding numbers in Fig. Rote that edge

C. Transport coefficients

states in the magnetic field regi@i " *<B<B{ have up to trans- The interference between different edge states gives rise
verse nodesta) circle, 180°,n=2, (b) circle, 90°,n=2, (c) sta- to characteristic fluctuations in the transport coefficients.
dium, 180°,n=3, and(d) stadium, 90°n=1. Figure 7 shows the high-magnetic-field regime of the trans-
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FIG. 8. Transmission probabilitigs;,(B/c)|? in the high-field
limit, near the point where transport terminates. The dotted line
stands for the circle billiards with both 90° and 180° lead orienta-
tion (their transmission probabilities are identjcahd the dashed
line for the stadium billiard with 90° lead geometry. The solid  FIG. 9. (Color onling Electron densityy(x,y)|* for the circle
curves represent the upper and lower bounds of the oscillationgilliard with diffractive scattering highlighted.A™=4+ =, lead
(offset for better visibility. The two dash-dotted vertical lines mark Width d=0.25, andkg=1.5m/d.) The magnetic field=118.7 is
the point where transport breaks off and the analytically determinedi'st above the threshold to the single-edge state regBpe
threshold valueB2~355.3 (see text for details The inset shows =118.44.
that the transmission probabilities for the circle reach the maximum
value 1, which is only approximately true for the stadium with 90° zBﬁ atke=1.57/d. The transmission spectrum becomes in-

lead geometry. creasingly complex a8 is reduced, or equivalentlkg is
increasednot shown).
mission probability in the first mode=n=1 for both circle To determine the positions of the valuB, we consider

and stadium. Different orientations of the exiting quantumthe energy shift of Landau levels near the boundary. Bulk
wire were chosefforiented 90° and 180° relative to the in- Landau levels are degenerate since their quantized energy
coming leadl. A few universal trends are easily discernible. En=(n+1/2)B/c is independent of their position in space.

Above a certain critical value of the magnetic figttenoted T'hi's.deg?nk(]aracy is Iifteﬁ' if gthndau state di_s placed inht.he
by BY), the strongly fluctuating transmission probability vicinity of the cavity wall: with decreasing distance to this

. o . boundary, the energy of the state increases. Therefore the
gives way to very regular oscillations in all four cagese

. . . 1 energies of edge states associated with the quantum number
insets of Fig. 7 for magnificatign The threshold valu®; n lie above the asymptotic bulk valu&,. When the incom-

and the magnetic field, at which transport is terminatedng electron is diffracted at the mouth of the entrance lead,
(separately displayed in Fig),8are identical for all systems only those edge states whose energy is below the Fermi en-
investigated. BelowBg, the transport signal displays ergy can carry the flux. Due to the sharp edges at the junction
“beats,” i.e., the Fourier transform of the signal is character-petween lead and quantum dot, all energetically accessible
ized by several frequencies. The “universalitfi’e., geom- edge channels are populated. The blow up of the scattering
etry independengef these features is related to the fact thatwave function near the lead moutkig. 9 highlights the

in the high-magnetic-field regime, transport is controlled bydiffractive edge scattering. This is in contrast to smooth
edge statesas depicted in Fig.)6 These states play a very edges where states in the lead could cross the lead junction
prominent role in the quantum Hall effect and have beerfdiabatically, i.e., without changing their state of
studied extensively2124%41at magnetic fields, where the quantizatior” With sharp lead junctions, however, all edge
magnetic length is smaller than the system dimensibgs, States with quantum number <n will participate in trans-
<D, they are the only states coupling to the quantum wirg?0rt up to a magnetic field wheig, touches the Fermi en-
since bulk Landau states cannot be accessed by the lead$0y. E,=Eg, i.e., at the critical magnetic field8¢/c

The edge states shown in Figsaéd correspond to the =Eg/(n+1/2). These threshold values are indicated by the
points (8—(d) in the transmission spectrum in Fig. 7. By dot-dashed vertical bars in Figs. 7 and 8 Bf~71.1, B
comparison with the scattering wave functigas in Fig. 6, ~118.4, anng~355.3 for a lead widthd=0.25 andkg

we observe that in the magnetic field regi@l<B<B™*  =1.5x/d. In our numerical data, both the position of these
edge states have up to- 1 transverse nodes in the direction threshold values as well as their independence of the geom-
perpendicular to the boundary. Furthermore, the number oftry are in excellent agreement with this prediction. The only
longitudinal antinodes from entrance to the exit I§agle the exception is the critical magnetic fieBﬂ. Its value (355.3)
corresponding numbers in Figs.(afy] can be directly lies slightly above the point where the transmission spectrum
mapped onto successive maxima in Fig.(See numbers ceasegat B~351.8)(see Fig. 8 The reason for this devia-
there. The range oB depicted in Fig. 7 corresponds B  tion is the fact that the termination point of the spectrum is
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not determined by the magnetic field of the lowest bulk Lan-Equation(3.3) serves as a convenient starting point for the
dau level in the cavityi.e., BY), but by the highest field at analysis of the transmission fluctuations. Consider first the
which the leads still carry flux. In the leads, however, theregimeB>B., where only the lowest transverse edge state
magnetic length does not satisfy the conditlgred (at kg is excited. In this case EQq(3.3 reduces to its scalar
=1.57/d: |g~d/4.7). Contrary to the cavity, the lead wave versiorf#344

functions still “feel” the constriction by the opposing wall.

For this reason the threshold magnetic-field values of the [T1412[T],2
transverse lead states lie slightly below those of the bulk Thol=t,,|2= == e 2 34
Landau levels, leading to a termination already beB{v 1-2Rdrr 1187+ [r1l*[ryyl

_ _ with y=ky(L,;+L;)—B(A;+Aj)/c. As expected, the fluc-
D. Multichannel interferences tuations of [t;;(B/c)|? are determined by an Aharonov-
The regular oscillations abov&! as well as the complex Bohm—type phase. At fixed kg, the oscillation period is
fluctuating pattern belovB. can be explained by a multi- AB=2mC/AT". By A'=A;+A;, we denote the area which
channel scattering description. This model can be viewed a§e edge state acquires in one revolution around the dot.
a generalizatiof¥"*> of a single-channel picture*>**For this Taking into account that the dynamically accessible area of
description to be applicable, the cavity of the dot has to havéhe edge state is somewhat smaller than the geometric area,
smooth boundaries and disorder must be absent. Under thel¢ <A%'=4+ 7 (see Fig. 6, the prediction for the oscilla-
circumstances the flux transported by edge states is coiion period is in excellent agreement with our numerical
served in the interior and changed only by diffractive scatfindings. Equation(3.4) also explains why the oscillation pe-
tering at lead junctions. At the junction, a fraction of the flux riod is increasing with increasing (see Fig. 8 This expla-
will exit through the lead while the remaining portion of the nation makes use of the somewhat counterintuitive fact that
flux will continue to propagate along the boundary. The stafor increasing magnetic field skipping orbits with fixed quan-
tionary scattering state can be viewed as the coherent supdem numbern have an increasing mean distance from the
position of repeated loops around the billiard. In order toboundary:* Consequently, a largeB field implies a smaller
translate this picture into an analytic expression, we definenclosed ared™ and therefore a higher oscillation period
amplitudes for transmission and reflection at the two lead\B. Furthermore, Eq(3.4) accounts for the fact that for
junctions. We denote the amplitudes for transmission fronmost structures the successive maxima 8f reach unity’*
transverse moden in the entrance lead to the edge state in(The small deviation from this rule of the stadium with 90°

the dot with quantum numberby t,,;. The amplitude&i’n lead orientation will be explained belowin addition to uni-
stand for transmission from edge statin the dot to the tarity, [[t];|+(r},/?=1], we have for identical lead junc-

transverse mode in the exit lead. The amplitudas;(r;;)  tionsT;;=7},. (We call two junctionsidentical if the local
describe edge state reflection at the entrgegé) lead from  environment of their lead mouths is the same and their re-
modei to modej. (The tilde signs serve to distinguish these spective distance is larger than a few wavelengthAbove
amplitudes from the transport coefficients for the whole ge-B., scattering of an edge state at a junction is essentially a
ometryt,, andr,,.) We further define the following matri- one-dimensional process, for which the probability for trans-
ces: mission from left to right has the same magnitude as vice
versa. Identical lead junctions therefore also implf;
[T];=te*bBAT [T'];=1], (3.)  =t,,, provided that the two corners of the lead junction
have the same shape. If, and only if, all of the three above
conditions are fulfilled, Eq(3.4) yields T®'=1 at the reso-
nance conditiony=2mn,ne 7. Since for the two circle ge-
ometries and for the 180° stadium the two lead junctions are
identical, we indeed find in these cases that(B)|? peri-
odically reaches unity. On the other hand, when the leads are
attached to the stadium at an angle of 90°, one lead is at-
tached to the straight section while the other is attached to
Yhe semicircle. The local environment of the two lead mouths
is in this case differenti.e., the lead junctions are not iden-
tical), for which reason our numerical results do not quite
reach|t,,|?=1, when the resonance condition is fulfilled for
5 o o 5 this geometnysee the insets of Fig. 7 and Fig). &nother
T=T{1+R'R[1+R'R(1+-- )]} T’ relation exists between the resonance condition and the be-
havior of edge states. In the closed cavity an edge channel

[~R,]ij:?irjeikij—iBAj/c, [ﬁ]ij:?ijeikij—iBAj/c,
(3.2

whereL;,Aj(L{ ,A{) denote the lengthk and areasA the
edge statg covers from entrance to ex{from exit to en-
trance of the dot. The area8 can be determined in gauge-
invariant form, although the corresponding classical orbit
are not necessarily periodi€ The transmission through the
whole cavityt;;=[T];; is then written as a geometric series
of matrices,

:.~|_< S (®RR)|T always encloseg an integer number of flux quanta
=) [BA/(¢poc)=me N]. Therefore, the resonance condition is

met whenever the energy of an edge state in the closed cavity
=T(1-R'R) 17", (3.3 crosses the Fermi ed§é.
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One interesting feature of the transmission fluctuations in
the single-channel regime of the circular dBt¥¢ Bé) is their
invariance with respect to the lead orientation. The numerical
results for the transmission probabilities of the circle with
180° and 90° lead orientation differ only at the tenth decimal
digit. This fact, as well as the observation that in the case of
the stadium billard the two lead orientations give different
results, can again be explained by E8§.4). The important
point to note is that the interference phase=(k,L: interference phase
- BA‘ft/c) does not change when changing the positions of

the leads around the circle. Due to the rotational symmetry, F'G- 10. One half period of the beatingn<B(A; ~Az)/(2¢)

R ~, < ar(n+1) in the transmission probabilit;,(B/c)|? (solid line),
a!so the coefficientsy;,ty;,r44, andry, are thg same for .5 calculated with our interference modsée Eq.3.7)]. The nu-
different angles between the leads. The same is thus true f@ferator (dashed line,N) and denominatordotted line, D) of

the total transrr_]issioﬁ'mt through the circular dot. The only |t, (B/c)|2 show very similar oscillationgwith a small offsex
exception to this rule occurs when the two leads are in closen/D) features sharp “dips,” at the points wheh and D have
proximity to within a few wavelengths. In this case the trans-their common minima. These dips avéndow resonancesalso
mission probability changes as compared to the results fatalled Breit-Wigner antiresonandemnd represent a symmetric limit

the 180° and 90° lead orientatignot shown. of the Fano resonance line shape. See the text for details.
The fluctuations in the regimB< Bi displayed in Fig. 7

can b_e _analyzed vyith the 2help Offl multichannel scattering To=15=V(1-r1?)(1—e)el(b2+ N2+

description. In the intervaB:<B=<B_, two channels corre-

sponding to two edge states are open in the cavity and one =T/ = —[(1—e)+erlel (@1t 36

channel in each of the leads. From the entrance to the exit n=ry=-l1-eter] ' 36

lead mouth, the two edge channels acquire the phases ~ ~, ~ ~, :

elkib1=iBAL/C gnd elkel2=1BA2/C  ragpectively. Their interfer- F12= o= T21=131= (1=1) Ve(1— g)elllfnt 022071

ence at the exit lead will therefore give an oscillatory contri- - oy

bution to the total transmission'®(B)=|t,,|?> of the form ro=—[e+(1—e)r]e?2?),

co[B(A;—A,)/(2c)]. For closer analysis we need to evaluateAmong those, the two parametessandr are of particular

51%' (C‘Q’a'é)é Vg?'Cgrg}gl\;g;(;h;igxg;é%n tﬁ]:azczorrpeasmgﬁzir:n eXi_mportance in this context. The varialdeepresents the cou-
b P 9 ling of the incoming lead state to the edge statel in the

pressions are simplified due to the fact that the phases ab

quired from entrance to exit lead and vice versa are the san{Bterior, andr € R is related to the reflection coefficiert; of

(A=A} andL,=L}), an incident channel at the lead moutt,=re!/*?. Both
quantitiese,|r| are restricted to the intervg0,1]. With these

ty=[€' 1t 11+ €' 2t ot 5y + €1t @D (T 1T 1,—T 5119 terms the absolute square tgf [Eq. (3.5] can be consider-
ably simplified,

X(F gt sy =T 14t 5y) + €' (1t 2e2 (v, =T oot 1)
(1-r?)? Sir?( 2+ o)
||| B|2 sirP(pl2+ 9o+ A)+T2

with ({75: ()902‘:'¢</7522) - (;@/12‘" ?1), 7]? ()‘Pzg ¢2)1;' (9051"' ¢1)i
~ ==y r'=(1-ee '?+ee'? d=arg(r’), 9=+ 6, a=

XNz~ 2], 3.9 +rel7t29  pg=1+re 2% and A=arg(8/a). The line-

with the abbreviated notatiop,=k,L,—BA,/c. In Fig. 10  width 'y is given by

we show one half period of the beats THf{(B) =|t;,(B)|?

for [Tn<B(A;—Ay)/(2c)<w(n+1)], as calculated with 1—|r'Blal?

Eq. (3.5. The absolute square of the numerdttashed line, 0= m :

N) and denominatofdotted lineD) of Eq. (3.5) display very

similar oscillations, both in frequency and amplitude. How-|n the generic case of#0, resonances occurring in Eq.

ever, sinceT'=N/D, a series of dips are superimposed 0N(3.7) show a typical Fano profile of the fofth
the term co§B(A;—A,)/(2c)] at the points wherd and D

have their common minima. To classify these dips., an- tot_ | ¢bg|2 (B/lc—B,/c)?
tiresonanceswe make use of the faétthat the unitarity of Tt (Blc—B /c+A)2+I‘2'
Eq. (3.5 can be satisfied by mapping the transport coeffi- n 0

cients at the lead junctiorfsvhich are assumed to be identi- with tY9 peing the coefficient for background scatterffig.

X (Tpt 1= T 1otp0) V[ 1— 2917 T 1 — 12927 51 1, To=|tyy)2=

(3.7)

— e/ (et D (¥ r 4T o0 5) — €21 (T 1 =T 11 o)

(3.9

(3.9

cal) onto six independent parameterse, ¢, 9, ¢1,¢»), The Fano resonances Btc=B,/c—A will have an asym-
~  ~, . metric line shape unless=0 (i.e.,r=0). This is, however,
ty=t1,= Je(1—r?)ell(Prr N2l the case for the billiard systems we consider, since almost no

165302-11



ROTTER, WEINGARTNER, ROHRINGER, AND BURGDRFER PHYSICAL REVIEW B68, 165302 (2003

reflection of incoming lead states takes place at the leadescriptior®* However, to our knowledge, no quantitative
mouths,r%,~0, and therefore~0. Under this assumption, description for magnetotransport through a quantum dot in

Eqg. (3.7 simplifies to the regime of only one or two participating edge states has
yet become available. We therefore discuss in the following

o sir?( 2+ 9,) the similarities and differences between the experimental

T~ (3.10 data and our calculations. One important observation is that

Si?(7/2+ 90) +Tg the magnetic fields where these quasiregular transmission
with linewidth To=(1—|r'[2)/(2|r’]). This equation de- fluctuations appear in the experiment are lower than in the

scribes symmetric resonance line shapes, which can be ideRresent calculation. For example, in the experiment for circle

tified aswindow resonance@lso called Breit-Wigner dips/ @nd  stadium  shaped —quantum dots in a
antiresonancésof the form GaAs/AlGaAs-heterostructuré the threshold magnetic-field

values would bdin Sl unitg
(Blc—B,/c)?

Ttot. ) (3.1) 2h 2
(Blc—B,/c)?+ T2 Bl=— " with A=\ —. (312
(2n+1)\Ze Ng

The physical picture resulting from this analysis is the fol-
lowing. In the magnetic-field regioB2<B<B!, where two  With a given sheet density af;=3.6x10" cm 2 in the
edge states are present in the interior of the dot and one imterior of the dot, the threshold magnetic fields are given by
each of the leads, the transmission probability shows IargeB§~3 T andBé~5 T. However, in the experiment, regular
scale oscillations intersected by sharp window resonancesscillations were already observed below 2 T. At those field
The large-scale envelope function is given by #(13). Its  values we find highly irregular transmission fluctuations cor-
maxima perfectly match with the roughly estimated termresponding to a threshold magnetic fi@d with n>1, in-
cos[B(A; —A,)/(2c)] from above and can therefore be iden- dicative of a high density of resonances and Ericson fluctua-
tified with the numbered points in Fig. 7, each of whichtions. We expect the origin of this discrepancy to lie in the
corresponds to an integer number of longitudinal antinodeabsence of sharp edges in the experiment and, hence, of dif-
in the wave function along the boundafyee Fig. 6. The fractive edge scattering. In the experimental quantum dot,
antiresonances superimposed on these oscillations occur thie edges should be fairly smooth, leading to near-adiabatic
magnetic fieldsB=B, (where n/2+do=nm,neZ) and transitions to edge states at the entrance to the quantum dot.
their linewidth is given byl"y. As a result, resonances which Therefore fewer edge channels are excited than by diffractive
are situated on maxima of the term 14T3) are sharper edge scattering, where all energetically accessible channels
than at its mimima[see the numerical data in Fig. 7 for up ton are populated. Our present results suggest that the
confirmatior]. For an increasing number of edge states popuebserved transmission fluctuations are a direct measure of
lated in the cavity B<BZ), our numerical results show that the sharpness of the edges at the lead mouth. Therefore, in-
the density of antiresonances is rapidly growing. This behavvestigations of quantum dots with varying sharpness of
ior finally leads to a resonance overlap for a large number oedges would be desirable. However, since these are difficult
edge states, which is prerequisite for the onset of Ericsotp fabricate, we point to a different experimental approach,
fluctuations(i.e., universal conductance fluctuatipns which is based on the analogy between transport in the edge
For completeness, we remark that the above analysis faitate regime and field-free transport through a rectangle
the B dependence oFt® can analogously be carried out with Where only few propagating modes particip&&uch struc-
ke instead ofB as the variable parameter. We can similarly tures are accessible for microwave experiméritsthe mea-
identify threshold valuek? for kg, below which a number Sured transmission through such a microwave device could
of n edge states survive. The numerical results for the trang2rovide a stringent test for the multichannel interference
mission probabilityT"®(kg) for the case of one or two par- Model presented above.
ticipating edge state@ot shown can again be described by
expressions analogous to E§.4) or Eq. (3.7). IV. SUMMARY AND OUTLOOK

We have presented a technique for calculating ballistic
magnetotransport through open quantum dots. Moeular

A series of experiment3*44°®°0have been performed recursive Green’s function methdIRGM) is an extension
where Aharonov-Bohm oscillation6ABOs) similar to the of the widely used standard recursive Green’s-function tech-
ones discussed here have been observed in ballistic transpaijue and is based on the decomposition of nonseparable
measurements. The origin of the ABOs in these experimentscattering geometries into separable substruciumesiules.
is, however, twofold. In Refs. 13 and 44, it is the presence ofAn unprecedented energy and magnetic-field range can
edge states in a quantum dot which gives rise to the observatlereby be explored with high accuracy. We applied the
oscillations. In Refs. 49 and 50 on the contrary, the investiMRGM to transport coefficients and scattering wave func-
gated scattering devices have the form of a ring, to which théions in the two extreme cases of high magnetic fields and
scattering wave function is confined. The latter setup thushort wavelengths. For very small cyclotron radii, we found
gives rise to ABOs already at low magnetic fields and hageriodic oscillations in the transmission spectrum and beat-
therefore been more readily accessible to a theoreticahg phenomena, which are restricted to well-defined intervals

E. Comparison with experiments
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(as a function oB andkg, likewise). These features could tance fluctuation3>® and shot nois&’*® Furthermore, the
be explained by interferences between edge states, travelildRGM also seems suitable to perfomb initio calculations
along the boundary of the cavity. For these states scatteringf the integer quantum Hall effecl.The challenge is in this
only takes place at the lead junctions, whose sharp edgesse the inclusion of a disorder potential, which is compat-
play a crucial role for the dynamics of the system. For aible with the separability conditions.

detailed analysis, a multichannel interference model was em-
ployed. This model allows us to classify the observed trans-
mission fluctuations in the framework of Fano resonances.
For only one edge state present in the circular dot transport is Helpful discussions with D.-H. Kim, H. Langer, C.
independent of the lead orientation, provided that the leadtampfer, and L. Wirtz, are gratefully acknowledged. Many
mouths are identical and separated from each other. Fututbanks are also due to W. Gansterer and X. Yang for their
envisioned applications include the investigation of Andreevcomputer codes. This work was supported by the Austrian
billiards>* quantum Hamiltonian ratchets fractal conduc- Science FoundatiofFWF).
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