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Ballistic quantum transport at high energies and high magnetic fields

S. Rotter, B. Weingartner, N. Rohringer, and J. Burgdo¨rfer
Institute for Theoretical Physics, Vienna University of Technology, Wiedner-Hauptstrasse 8-10, A-1040 Vienna, Austria

~Received 20 January 2003; published 3 October 2003!

We present an extension of the modular recursive Green’s function method for ballistic quantum transport to
include magnetic fields. Dividing the nonseparable two-dimensional scattering problem into separable sub-
structures allows us to calculate transport coefficients and scattering wave functions very efficiently. Previously
unattainable energy and magnetic-field regions can thereby be covered with high accuracy. The method is
applied to magnetotransport through a circle and a stadium shaped quantum dot at strong magnetic fields and
high energies. In the few edge state regime we observe strong multifrequency Aharonov-Bohm oscillations. By
analyzing them in terms of a multichannel interference model, we classify these fluctuations within the frame-
work of Fano resonances and discuss their geometry independence. For high energies~mode numbers! we
observe localization of the scattering wave function near classical trajectories.
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I. INTRODUCTION

Accurate simulations of ballistic transport through qua
tum dots have remained a computational challenge, des
the conceptional simplicity of the problem. This is in pa
due to the fact that many of the most interesting phenom
occur in a parameter regime of either high magnetic fieldB
or high Fermi energyEF . The regime of strong magneti
field B, where the magnetic length~in a.u.! l B5Ac/B is
small compared to the linear dimensionD of the dot, l B
!D, gives rise to the quantum Hall effect,1,2 the Hofstadter
butterfly,3 and Aharonov-Bohm oscillations of transpo
coefficients.4 The high-energy domain, where the de Brog
wavelengthlD5A2EF satisfieslD!D, is of particular rel-
evance for approaching the semiclassical limit of quant
transport and for investigations of quantum signatures
classical chaos.5–7 Both these regimes pose considerable d
ficulties for a numerical treatment. Methods based on
expansion of the scattering wave function in plane or sph
cal waves become invalid at high fields since diamagn
contributions are generally neglected.8 Methods employing a
discretization on a grid are limited by the constraint that
magnetic flux per unit cell must be small, which, in tur
requires high grid densities for largeB.9 The same require
ment has to be met for highEF , where many grid points are
needed to accurately describe the continuum limit. This
plies, however, a large number of inversions of hig
dimensional matrices, and therefore limits the applicabi
of these approaches for largeB and ~or! largeEF .

In the present paper we propose an approach that al
accurate treatment of these regimes. We present an exte
of the previously10 introduced modular recursive Green’s
function method~MRGM! to include an additional magneti
field perpendicular to the two-dimensional scattering surfa
The underlying idea for our approach goes back to the w
of Solset al.11 and to the widely usedrecursive Green’s func-
tion method~RGM!.9,12 In the standard RGM the Green
function is propagated through the scattering region fr
one transverse strip to the next by repeated solutions
matrix Dyson equation. We show that the efficiency of th
conventional discretization can be increased considerabl
0163-1829/2003/68~16!/165302~14!/$20.00 68 1653
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taking the symmetries of a scattering problem into acco
from the outset. Specifically, when the two-dimensional no
separable open quantum dot can be built up out of sim
separable substructures~referred to in the following as mod
ules!, the Green’s function for each of these modules can
calculated efficiently and virtually exactly. Calculation of th
S matrix and of the scattering wave function is thus reduc
to ‘‘welding’’ together the modules by a very small numb
of recursions. Key to this approach are tight-binding gr
which are symmetry adapted for each module. This lead
the separability of the eigenfunctions in the modules a
allows an efficient incorporation of boundary conditions. A
a result, a much higher grid density can be easily hand
which, in turn, is a prerequisite for treating short magne
lengthsl B and short wave lengthslD . Matrix Dyson equa-
tions have to be solved only for each junction between
modules. The total number of necessary recursions~i.e.,
high-dimensional matrix inversions! is thereby reduced to
the number of modules needed to reconstruct the quan
dot.

The efficiency of the MRGM will be demonstrated b
applying it to transport through a circular and a stadiu
shaped quantum dot. These systems are known as proto
structures for regular and chaotic dynamics, and have b
studied thoroughly in the literature.5–7,13Concerning the the-
oretical approaches for the investigation of electron dyna
ics in quantum dots, considerable attention has been d
cated to reach higher energies14–18 and higher magnetic
fields.17,19–23 Especially for the study of transport throug
open stadium billiards, several different methods have b
employed.8,16,24–27In the following we will present numeri-
cal results obtained by the MRGM, which attain a parame
range, which, to our knowledge, is not yet explored by oth
approaches. For smalllD we investigate the localization o
the scattering wave function near classical scattering tra
tories. Characteristic differences in the dynamics of gen
cally regular and chaotic systems will be highlighted. In t
high-magnetic-field regime, which is governed by ed
states, differences between the dynamics in different ge
etries disappear and are replaced by universal quasiper
conductance oscillations. At a critical magnetic field, the
©2003 The American Physical Society02-1
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oscillations break off and transport terminates entirely. In
regime where more than one edge state is excited in the
we find interference fluctuations, which we analyze in ter
of a multichannel Fano interference model.28 The key to the
understanding of the observed fluctuations is that interch
nel scattering between different edge states takes place
by diffractive scattering at the lead junctions.

This paper is organized as follows. In Sec. II the meth
for inclusion of a magnetic field in the MRGM is presente
Section III is dedicated to a discussion of numerical resu
illustrating the high-magnetic-field and high-energy behav
in quantum dots. The paper concludes with a short summ
in Sec. IV.

II. METHOD

We consider ballistic nanostructures with a constant e
trostatic potential inside the two-dimensional cavity, impo
hard-wall boundary conditions, and assume a constant m
netic field B to be oriented perpendicular to the scatter
plane. The shape of the quantum dot will be chosen to
either a circle or a stadium~see Figs. 5 and 6 below!, which
represent prototype systems for regular and chaotic clas
dynamics, respectively. Two semi-infinite waveguides
width d at different electrochemical potentialsm1 andm2 are
attached. The aperture of the leads is chosen to be
small, d/D5d/AAdot50.0935, whereAdot541p is the
scaled area of all the cavities studied andD is a characteristic
linear dimension of the cavity. At asymptotic distances, i
far away from the quantum dot, scattering boundary con
tions are imposed. The asymptotic scattering state can
factorized into a longitudinal flux-carrying plane wave and
transverse standing wave. The latter is a simple sine wav
the field-free case and a combination of Kummer functio
when the magnetic field is turned on.29,30 In our local coor-
dinate system the longitudinal~transverse! direction in the
i th lead is always denoted byxi (yi). The wave functions in
the waveguides thus vanish atyi56d/2. Atomic units (\
5ueu5meff51) will be used from now on, unless explicitl
stated otherwise.

A. Brief review of the MRGM

In order to highlight the technical difficulties in incorpo
rating a magnetic field we start by briefly reviewing th
MRGM for the field-free case. Our starting point is the o
servation that a large class of dot geometries with nonse
rable boundaries can be decomposed into separable
dimensional substructures, referred to in the following
modules. For each of these modules the discretization of
corresponding tight-binding~tb! Hamiltonian can be per
formed on a symmetry-adapted grid. The grid for each m
ule is chosen such that the eigenfunctions of the tb Ham
tonian,

Ĥ tb5(
i

« i u i &^ i u1(
i , j

Vi , j u i &^ j u, ~2.1!

separate into two generalized coordinates.Ĥ tb contains hop-
ping potentialsVi , j for nearest-neighbor coupling and si
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energies« i . Both quantities are chosen such that the Sch¨-
dinger equationĤ tbucm&5Emucm& converges towards the
continuum Schro¨dinger equation in the limit of high grid
point density. The most straightforward application of th
approach refers to modules for which the boundaries
nodal lines of Cartesian (x,y) or polar coordinates (%,w).
For these coordinate systems, we have10 at B50

Vi ,i 61
x 5

21

2Dx2
, Vj , j 61

y 5
21

2Dy2
, « i5

1

Dx2
1

1

Dy2
,

~2.2a!

Vi ,i 61
% 5

2% i 61/2

2% iD%2
, Vj , j 61

w 5
21

2% i
2Dw2

,

« i5
1

D%2
1

1

% i
2Dw2

, ~2.2b!

with % i5u i 21/2uD%. For separable energy eigenfunctio
of the general formuEm&5uEk& ^ uEk,n&, the spectral repre-
sentation of the retarded (1) and advanced (2) Green’s
function G6(r ,r 8,B,EF) of the module is simply given by

G6~r ,r 8,B,EF!5(
k

^auEk&^Ekua8&(
n

^buEkn&^Eknub8&
EF6 i«2Ekn

,

~2.3!

where (a,b) stand for the~generalized! coordinates (x,y) or
(r,w). The indices (k,n) represent the quantum numbers
the separable eigenfunctionsuEk&,uEk,m& associated with the
degrees of freedoma andb, respectively.

The Green’s functions of the separate modules are joi
by solving a matrix Dyson equation,

G5G01G0V̄G, ~2.4!

where G0 and G denote Green’s functions of the disco
nected and the connected modules, respectively. The m
V̄ denotes the hopping potentialV multiplied by the size of
the unit cell,V̄5VDR , which in a Cartesian~polar! grid is
DR5DxDy(5% iD%Dw). The complete scattering structur
can thus be assembled from the individual modules~much
like a jigsaw puzzle!. The number of necessary recursio
@i.e., solutions of Eq.~2.4!# is ~approximately! equal to the
number of modules. The exact number depends on the n
ber of link modules required for different grid structures. F
example, in order to connect a half circle with a rectang
we need one additional link module which is plugged
between@see Ref. 10 for details#. The key property of these
link modules is their adaption to two different grid symm
tries @see Fig. 3~b!#. Mathematically speaking, the transitio
from a polar to a Cartesian grid requires a link module
order to preserve the Hermiticity of the tb Hamiltonian at t
junction. In the recursion, the link module is connected to
Cartesian~polar! grid by means of the hopping potentia
V̄x(V̄w). In addition we avoid spurious reflections that wou
arise at the junction between modules of a different g
structure.

Once the Green’s functionG1 for the combination of all
modules is assembled, the transmission amplitudestnm from
2-2
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BALLISTIC QUANTUM TRANSPORT AT HIGH . . . PHYSICAL REVIEW B68, 165302 ~2003!
entrance lead modem into exit lead moden can be calculated
by projectingG1 onto the transverse wave functions in t
leads xn(yi). With the corresponding longitudinal wav
numberskxi ,n , we have~at B50!

tnm~EF!52 iAkx2 ,nkx1 ,mE
2d/2

d/2

dy2

3E
2d/2

d/2

dy1xn* ~y2! G1~y2 ,y1 ,EF!xm~y1!.

~2.5!

Together with the reflection amplitudesr nm ~for which an
analogous relation holds!, the S matrix is completely deter-
mined and satisfies the unitarity condition implied by curre
conservation,

(
n51

M

~ utnmu21ur nmu2!51. ~2.6!

The integerM denotes the number of open channels in
leads. According to the Landauer formula, the total cond
tanceg through the quantum dot is given by

g5
1

p (
m,n51

M

utnmu25
1

p
Ttot, with Ttot1Rtot5M .

~2.7!

B. Inclusion of the magnetic field

Incorporation of the magnetic field into the MRGM pos
a number of complications. The solutions of these difficult
will be presented in this section. At the core of the problem
the preservation of separability of the Schro¨dinger equation.
The usage of gauge transformations as well as of Dy
equations for decomposing nonseparable structures
separable substructures plays a key role in accomplis
this goal. The fieldB5(0,0,B) enters the tb Hamiltonian
~2.1! by means of a Peierls phase factor,12,31

Vr ,r8→Vr ,r8•expF ~ i /c!E
r

r8
A~x!dxG , ~2.8!

with which the field-free hopping potentialVr ,r8 is multi-
plied. The vector potentialA(r ) satisfies“3A(r )5B. The
Peierls phase will, of course, in most cases destroy the s
rability of the eigenfunctions ofĤ tb. These difficulties can
be, in part, circumvented by exploiting the gauge freedom
the vector potential, i.e.,

A→A85A1“l, ~2.9!

wherel(r ) is a scalar function. By an appropriate choice
l, the wave function remains separable on a giv
symmetry-adapted grid. Specifically, to preserve separab
we employ the Landau gauge for a Cartesian grid,

A5~2By,0,0!, ~2.10a!

and the ‘‘symmetric’’ or circular gauge for a polar grid,
16530
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A5B/2~2y,x,0!5r3B/2. ~2.10b!

The scalar gauge potential generating the gauge transfo
tion from Eq.~2.10a! to Eq. ~2.10b! is l(x,y)5Bxy/2.

A major complication results from the fact that in th
presence of the magnetic field the separability on an un
stricted grid of a given symmetry does not imply the sepa
bility in the presence of boundary conditions of thesame
symmetry. We illustrate this problem with the help of on
typical example, thesemi-infinitequantum wire with lead
width d ~Fig. 1!. We impose hard-wall boundary condition
c(x,y56d/2)50 and consider first theinfinite quantum
wire along thex direction. Because of the Cartesian boun
ary conditions, the symmetry adapted gauge is the Lan
gauge A52Byx̂. Consider, for notational simplicity, the
Schrödinger equation in the continuum limit,

Hf~y,x!5
1

2 S p1
1

c
AD 2

f~x,y!

5
1

2 S 2
]2

]x2
2

]2

]y2
2

i2B

c
y

]

]x
1

B2y2

c2 D f~x,y!

5EFf~x,y!. ~2.11!

Since the longitudinal momentumpx52 i ]/]x commutes
with H, the separability of the wave function persists in t
presence of the magnetic field:f(x,y)5 f k(x)x(y), with
f k(x)5eikx. If, however, one introduces an additional Cart
sian boundary condition along they axis @i.e., c(x50,y)
50 for a semi-infinite lead#, the situation changes. In th
absence of the magnetic field,B50, the linear term inpx
vanishes, and thus the choicef (x)5sin(kx) @i.e., a linear
combination off 6k(x)] satisfies the boundary condition an
preserves the separability, even thoughpx is no longer con-
served in the semi-infinite lead. However, forBÞ0 and the
same boundary conditionc(x50,y)50, the term linear inB
and px destroys the separability. The wave function no
takes the general form

f~x,y!5(
m

eikmx(
n

cmnxmn~y!. ~2.12!

The breakdown of separability by the introduction of an a
ditional boundary condition indicates that the Green’s fun
tion of confined modules will be more complex than f
extended systems of the same symmetry-adapted grid

FIG. 1. Joining and disconnecting of modules by application
a Dyson equation: two semi-infinite leads. The hard-wall bound
conditions at the sites on the border of the modules are represe
by empty circles~accessible space by full circles!. The gray shaded
areasP andQ are those grid slices at which the Green’s functio
are evaluated~see text!.
2-3



ul
ld

be
ll
es
an
pl
tin
-
o
a

-
t

e

ar
he
th
u
nt
r
t

a

th

en
e

nc
b

or
b

or

te

rd
e

.

n

by

n’s
le a
t-

ith
se
-

ove.
mi-
he
ed
by

he
a

tter
be

wo
re-
der

ing

n
e

like
y-
lter-

or
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the same gauge. Therefore, the program of the mod
method of building up extended complex structures by we
ing together smaller modules of higher symmetry will
executed in reverse: nonseparable confined modules wi
generated by ‘‘cutting in pieces’’ larger separable modul
Confining boundary conditions will be introduced rather th
removed by the matrix Dyson equation. In the exam
above, the semi-infinite quantum wire is generated by cut
the infinite wire at the linex50, thereby imposing the addi
tional boundary condition. Just as connecting modules, s
disconnecting modules equivalent to the application of a m
trix Dyson equation,

GE5GC1GCV̄GE. ~2.13!

In this context,GE(GC) is the Green’s function of the ex
tended~confined! module andV̄ is the hopping potential tha
connects the modules. Solving Eq.~2.13! in reversed mode
~i.e., for GC rather than forGE) amounts to dissecting th
larger module.

Provided that the Green’s functions of all the necess
modules are available, we have to link them with each ot
to assemble the entire scattering geometry. However, in
presence of a magnetic field, we have to take into acco
that the different modules will be calculated in differe
symmetry-adapted gauges. Joining different modules
quires, therefore, in general a gauge transformation. For
Green’s function on the gridG(r i ,r j8), this transformation is
simplified by the fact that the matrix of gauge transform
tions,

@L~r j !# jk5exp@2 il~r j !/c#d jk , ~2.14!

is diagonal in the grid representation. Correspondingly,
transformation of both the hopping potentialV̄ and the
Green’s function is local, i.e.,

V̄~r i ,r j8!→V̄8~r i ,r j8!5L~r i !V̄~r i ,r j8!L* ~r j8! ~2.15!

G~r i ,r j8!→G8~r i ,r j8!5L~r i ! G~r i ,r j8!L* ~r j8!.

It is, thus, not necessary to transform gauges of differ
modules to one global gauge. Instead, it is sufficient to p
form a local gauge transformation at the points of the ju
tions $r i%, such that the gauges of the two modules to
joined agree at these points.

Finally, in order to extract theS matrix, i.e., the ampli-
tudestnm and r nm , matrix elements of the current operat
must be of gauge-invariant form. This requirement can
fulfilled by employing a double-sided gradient operat
which is defined as32

f DIg5 f ~x!Dg~x!2g~x!D* f ~x!52gDI f

with D5“2
i

c
A~x!. ~2.16!

With its help the transmission amplitudes can be evalua
as17,32,33
16530
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tnm~EF ,B!52
i

4Aunum
E

2d/2

d/2

dy2

3E
2d/2

d/2

dy18xn* ~y2!e2 iknx2~DI• x̂2!*

3G1~x2 ,x18 ,EF ,B!~DI8• x̂18!xm~y18!eikmx18.

~2.17!

The unit vectorsx̂n are assumed to be pointing in outwa
direction of thenth lead andum denotes the outgoing particl

flux carried byxm(y18)e
ikmx18 through the lead cross section

Determination of transverse statesxm(yi) and of the corre-
sponding longitudinal momentumkm as well as the normal-
ization factorsum will be discussed below. For reflectio
amplitudesr nm , a relation similar to Eq.~2.17! holds.32

From tnm and r nm , the conductance can be calculated
means of the Landauer formula@Eq. ~2.7!#.

C. Calculation of modules

This section is dedicated to the evaluation of the Gree
functions for those modules, which we need to assemb
circle and a stadium billiard: the half-infinite lead, the rec
angle, the circle, the half circle, and the link module. W
the exception of the circle and the link module, for all the
modules Eq.~2.3! is not applicable. This is due to the non
separability for confined geometries as discussed ab
Moreover, the spectrum in open structures like the se
infinite lead is continuous rather than discrete. Unlike in t
field-free case,34 the resulting integrals cannot be calculat
analytically. However, both problems can be overcome
applying a matrix Dyson equation.

1. Rectangular module

As illustrated above for the semi-infinite waveguide, t
Dirichlet boundary condition for the confined structure of
rectangle with magnetic field is not separable, no ma
which gauge is chosen. The separability can, however,
restored by imposing periodic boundary conditions on t
opposing sides of the rectangle. Topologically, this cor
sponds to folding the rectangle to the surface of a cylin
@Fig. 2~a!#. In this case we connect the first~P! and the last
~Q! transverse grid slice of a rectangular grid by a hopp
potentialuVPQ

x u5uVQP
x u521/2Dx2. The Green’s function of

this ‘‘cylinder surface’’ ~cs! will be denoted byGcs in the
following. The calculation of the rectangle Green’s functio
Gr will be obtained out ofGcs by a Dyson equation used her
in ‘‘reversed’’ mode, i.e., fordisconnectingtb grids. This
method for calculating the rectangular module may seem
a detour, but it is numerically more efficient than a strip-b
strip recursion. For completeness we mention that an a
native way to calculateGr was proposed in Ref. 35.

The Green’s function for the cylinder surface,Gcs, can be
constructed from separable eigenfunctionsuEm&5uEk

x&
^ uEkn

y &, according to Eq.~2.3!. Solving the tight-binding
Schrödinger equation for the cylinder surface, we obtain f
2-4
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the longitudinal eigenstates ^xj uEk
x&

5(NxDx)21/2exp(i2pkj/Nx), which results in a tridiagonal
symmetric matrix eigenproblem of sizeNy3Ny for the trans-
verse modes,36

Ekn^yl uEkn
y &5

21

Dx2 FcosS 2pk

Nx
1

B

c
ylDxD21G^yl uEkn

y &

2
1

2Dy2
~^yl 21uEkn

y &22^yl uEkn
y &

1^yl 11uEkn
y &!. ~2.18!

By ‘‘cutting the cylinder surface open’’ along a line of con
stantx, we obtain fromGcs the desired Green’s functionGr

for the rectangle@Fig. 2~a!#. We demonstrate this for th
rectangle Green’s functionGPX

r from the first transverse slic
P to any other sliceX. To determineGPX

r , we solve the
following system of Dyson equations:

GPX
r 5GPX

cs 2GPQ
r V̄QPGPX

cs 2GPP
r V̄PQGQX

cs ~2.19!

GPQ
cs 5GPQ

r 1GPQ
r V̄QPGPQ

cs 1GPP
r V̄PQGQQ

cs ~2.20!

GPP
cs 5GPP

r 1GPQ
r V̄QPGPP

cs 1GPP
r V̄PQGQP

cs , ~2.21!

where the first line is the reversed Dyson equation. The th
unknowns in the above equations are the Green’s funct
connecting the slices (P,X), (P,Q), and (P,P), i.e.,
GPX

r , GPQ
r , GPP

r . By solving these three equations, the u
knowns can be uniquely determined.

FIG. 2. Applying a Dyson equation in ‘‘reversed mode’’ to co
struct Green’s functions for~a! a rectangle out of a cylinder surfac
and ~b! a semicircle out of a full circle, respectively. In~a! the
periodic boundary conditions are transformed into hard-wall bou
ary conditions. The gray shaded areasP, Q, andX are those grid
slices at which the Green’s functions are evaluated~see text!.
16530
e
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2. Circle and half circle

In symmetric gauge,A5B/2(2y,x,0), the Dirichlet
boundary value problem for the circle with magnetic field
separable,uEm&5uEk

w& ^ uEkn
% &. On a discrete tb lattice, this

statement remains true provided that a circular grid is e
ployed. With the eigenstates for the azimuthal degree of fr
dom, ^w j uEk

w&5(NwDw)21/2exp(i2pkj/Nw) and radial eigen-
states gkn(% i)5A% i3^% i uEkn

% &, the finite difference
equation for thegkn(% i) results in a tridiagonal symmetri
eigenproblem

Ekn gkn~% i !52
1

% i
2Dw2 FcosS 2kp

Nw
2

% i
2BDw

2c D 21Ggkn~% i !

2
1

2D%2 F % i 21/2

A% i 21A% i

gkn~% i 21!22 gkn~% i !

1
% i 11/2

A% iA% i 11

gkn~% i 11!G . ~2.22!

The Green’s function for the circular module is then calc
lated by a straightforward application of Eq.~2.3!.

For the Green’s function of the half circle, we employ a
analogous procedure as in the preceding section: we dis
the circle Green’s function into half circles by means of
reversed Dyson equation. We demonstrate this by way of
example depicted in Fig. 2~b!, where the ‘‘full circle’’ ~fc! is
split up into two ‘‘half circles’’~hc!. The resulting two halves
are almost identical, with the exception of the two addition
radial grid slices, by which the right half circle is larger. F
assembling the stadium billiard we have to make sure
the tb grid of the half-circle module can be linked directly
a vertical grid@see Fig. 3~b!#. For this reason, only the lef
one of the two half circles in Fig. 2~b! can be used for this
purpose. Consider as example the Green’s functionGPX

hc de-
scribing the propagation from the grid sliceP at the junction
of the two half-circles to any radial grid sliceX situated on

-

FIG. 3. Applying a Dyson equation to construct Green’s fun
tions for ~a! a semi-infinite lead and~b! a stadium billiard out of
‘‘modules.’’ In ~a!, joining a transverse slice with a semi-infinit
lead schematically leaves the Green’s function of the lead invari
In ~b!, an additional link module is added to join the half circle a
the rectangle module~for details, see Ref. 10!. Notation as in Figs.
1 and 2.
2-5
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the ‘‘left half circle’’ @see Fig. 2~b!#. GPX
hc is determined by

the following system of Dyson equations:

GPX
hc 5GPX

fc 2GPP
hc V̄PQGQX

fc , ~2.23!

GPP
fc 5GPP

hc 1GPP
hc V̄PQGQP

fc , ~2.24!

which yields a unique solution forGPX
hc .

3. Link module

For the field-free case details of the construction of
link module @see Fig. 3~b!# have been discussed in Ref. 1
Due to the ‘‘one-dimensional nature’’ of this module, th
additional magnetic-field dependence can simply be incor
rated in its Green’s function by a multiplication with a gau
phase factor@see Eq.~2.14!#.

4. Semi-infinite lead

Because of its continuous spectrum, the Green’s func
for the semi-infinite lead poses an additional challenge
yond that of the nonseparability of the wave function d
cussed above. We therefore apply one further ‘‘trick’’ to b
pass this problem. Our approach is based on the observ
that adding a slice to a semi-infinite quantum wire leaves
wire ~up to irrelevant phases! invariant @see Fig. 3~a!#. We
assume a semi-infinite lead withxP@Dx,`) and hard-wall
boundary conditions atx50 andy56d/2. To this object,
we add a slice consisting of just one transverse chain o
grid points which we place atx50. The system of Green’s
functions for the propagation from the transverse chain ax
50 (P) back to itself~P! or to the first transverse slice o
the semi-infinite lead~Q! at Dx reads

GPP5GPP
0 1GPP

0 V̄PQGQP , ~2.25!

GQP5GQQ
0 V̄QPGPP . ~2.26!

Each multiplication involves a matrix product with a dime
sion equal to the number of transverse grid points. The
point now is that the system of Eqs.~2.25,2.26! can be closed
through the invariance condition for the semi-infinite lea
i.e., GPP5GQQ

0 @see Fig. 3~a!#. In Landau gaugeA
5(2By,0,0), the latter relation does not involve addition
gauge phases since these are already contained in the
ping matrix element. We additionally note that an equival
point of departure for the derivation ofGPP is the Bloch
condition for states in the lead.17,33

SettingZ5GPPV̄QP and using the Hermiticity condition
V̄QP5V̄PQ* [V̄* , Eqs.~2.25,2.26! can be converted to a qua
dratic matrix equation

ZZ2V̄21~GPP
0 !21Z1V̄21V̄* 50. ~2.27!

SolventsZ of a quadratic matrix equationQ(Z)50 can be
constructed from the eigenpairs (b i ,x i) of the corresponding
quadratic eigenvalue equationQ(b i)x i50, i P@1, . . . ,2N#,
in the diagonal form,37
16530
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Z5MBM21 with M5@x1 , . . . ,xN#, B5diag~b i !.
~2.28!

The quadratic eigenvalue equation is equivalent to a ge
alized eigenvalue problemAx̃5bCx̃ of twice the original
dimension.36 Its 2N-dimensional eigenvectorsx̃5(x,bx)
are solutions of the symmetric eigenproblem

S 2V̄* 0

0 V̄
D S x

bx
D 5bS 2~GPP

0 !21 V̄

V̄ 0
D S x

bx
D ,

~2.29!

where (GPP
0 )215EF2Ĥ1D

tb and Ĥ1D
tb is the Hamiltonian of

the one-dimensional transverse tb strip atx50. The Fermi
energyEF and the magnetic fieldB enter Eq.~2.29! as inde-
pendent parameters at which the eigenstatesx̃m and eigen-
valuesbm are evaluated. The longitudinal momenta of t
lead statesjm(x,y)5xm(y)eikmx/Aum are related to the ei-
genvalues by the relationb5exp(ikDx). The orthonormaliza-
tion and the completeness relations of the 2N eigenvectors
x̃m can be formulated in terms of matrix relations for th
generalized eigenproblem,

1

Aumun

x̃m
T Cx̃n52i

km

ukmu
dmn

and (
m

2N x̃mx̃m
T

um
52i

km

ukmu
C21.

~2.30!

With this specific choice of normalization the norm facto
um are determined such that every propagating state ca
unit flux. We note parenthetically that the quadratic eige
value equation could also be applied to the semi-infinite le
at zeroB field. However, in that case the Green’s function f
quantum wires can be calculated analytically10,34by complex
contour integration.

5. Scattering wave functions and efficiency of the MRGM

The MRGM is particularly well suited to determine tran
port coefficients as the Green’s function is then required o
at the junctions between the modules and does not have t
evaluated throughout the interior of the entire quantum d
Since for the calculation of the scattering wave function
Green’s function throughout the entire scattering region
needed, this particular advantage is lost. However, also
this case, the MRGM is still more efficient than the standa
RGM, as will be explained below.

The wave functionc(x) can be obtained at any pointx by
projecting the retarded Green’s function~by means of the
operatorDI) on the incoming wave~in modem),17,32

cm~x!52
1

2Aum
E

2d/2

d/2

dy18G
1~x,x8,EF ,B!

3~DI8• x̂18!xm~y18!eikmx18. ~2.31!

G1 contains the solution of the Dyson equations for
linked modules. That the evaluation of Eq.~2.31! can be
2-6
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BALLISTIC QUANTUM TRANSPORT AT HIGH . . . PHYSICAL REVIEW B68, 165302 ~2003!
done very efficiently results from two properties. First, t
number of recursions~i.e., of matrix inversions! needed to
obtainG1 is given by the fixed number of modules requir
to build up the scattering structure. This number is indep
dent of the de Broglie wavelength. The latter enters only
terms of the size of the matrices involved in the recursi
since with increasingEF ~decreasinglD) more grid points
are required to represent the continuum limit. Compared
the standard RGM the numerical effort is reduced since
that approach the number of recursions scales with the
density, i.e.}kF . A second advantage of the MRGM con
cerns the incorporation of the boundary conditions. In
modular method the boundaries coincide with the nodal li
of the symmetry-adapted coordinate system for the mod
For this reason the convergence towards the continuum l
is enhanced as compared to the slice-by-slice recursion.
calculation of the transport coefficients as a function of
Fermi wave numberkF ~or Fermi energyEF) is simplified by
the fact that the solution of the eigenvalue proble
(uEm&,Em) entering the Green’s function for each modu
@Eq. ~2.3!# is independent ofEF . For the evaluation of the
Green’s function at different values ofEF , the eigenproblem
Ĥ tbuEm&5EmuEm& therefore has to be solved only once. U
fortunately, this feature does not extend to the variation
the magnetic field since bothuEm& andEm are dependent on
B. Because of this property, a new solution of the tb eig
problem is required for each value of the field. The m
severe restriction of the MRGM is, however, that its app
cability is limited to those scattering structures which can
assembled from or cut out of separable modules. Also,
dom potentials and soft walls can only be included as long
they preserve the separability of each module. We mentio
this point that a ‘‘hybrid RGM’’ for dealing with arbitrary
boundary geometries was presented in the literature.17

III. NUMERICAL RESULTS FOR HIGH B FIELDS AND
LARGE kF

In this section we present first magnetoconductance
sults which were calculated with the MRGM at high ma
netic fieldsB and large Fermi wave numberskF . As proto-
type shapes of the cavity we use the circle and
Bunimovich stadium and consider different geometries
the attached quantum wires.

A. Accuracy checks

Several checks for the accuracy of the numerical res
have been performed. Exact relationships for transport c
ficients such as conservation of unitarity and the Onsa
relations are fulfilled with an accuracy greater than 10210.
The grid density is chosen such that the magnetic flux
unit cell isBD r /c,0.01~as in Ref. 38!. The typical number
of grid points per Fermi half wavelength is greater than 3
Only for very high energy calculations~Fig. 5! the relative
grid density is lower. For low magnetic fields, we can co
pare our results forutnm(kF)u2 with previous methods. As an
example we show in Fig. 4 a comparison forut11(kF)u2 with
the calculation by Yanget al.,8 which is based on a wave
16530
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function expansion in spherical waves. The agreement
the circle is very good, although diamagnetic terms are
glected in the approach of Ref. 8. For the stadium, the
ferences between the two methods are somewhat larger.
is in part due to the fact that the expansion of the stadi
wave functions in spherical waves leads to a unitarity d
ciency @see Fig. 4~b!#. We can also reproduce previous r
sults of Ref. 8 concerning weak-localization line shapes a
statistical magnetoconductance properties in chaotic
regular cavities. These will not be treated again. Our fo
will be on the high magnetic field and high-energy regim
where other methods failed.

B. Wave functions

The starting point for the analysis of the scattering sta
c(x) for ballistic transport through quantum dots is E
~2.31!. Figures 5 and 6 display the resulting electron dens
}uc(r )u2 in the scattering region. In Fig. 5 we consider t
wave functions at very highkF for both the circle and the
stadium billiard, which are prototypical structures for regu
and chaotic dynamics, respectively. LargekF corresponds to
the regime where the convergence towards classical sca
ing trajectories is expected to emerge. Figures 5~a! and 5~b!
illustrate the different dynamics for an injection at high (m
520) and at low mode numbers (m51), respectively. Since
high mode numbers correspond classically to a large in
tion angle, the wave function condenses around a penta
shaped whispering gallery trajectory. For low-mode inje
tion, a small circle representing the centrifugal barrier~or
caustic! is seen, as well as rays representing the aste
orbits.39 Figures 5~c! and 5~d! display scattering states for th
stadium. At low magnetic fields, the dynamics is chaotic a

FIG. 4. Comparison between the present MRGM~solid line!
and the wave-function matching technique~Ref. 8! ~dotted line! for
the first-mode transmission probabilityut11(kF)u2 at B/c51 in a
small window of kF : ~a! circle with perpendicular leads and~b!
stadium with perpendicular leads (d50.35,Adot541p). In both
cases,ut11(kF)u21ur 11(kF)u2 is also shown. Contrary to the MRGM
~solid line!, the wave-function matching technique~dotted line! de-
viates from the unitarity limit in~b!.
2-7
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a typical wave function features a quasirandom pattern w
a modest density enhancement near classically unstable
riodic orbits ~not shown!. For special values ofkF and B,
‘‘scars’’ emerge in the scattering wave functions@Fig. 5~c!#.
By contrast, for high magnetic fields, the classical mot
becomes regular. In the present example@Fig. 5~d!#. The
wave function condenses around a ‘‘bundle’’ of cyclotr
orbits executing three bounces at the cavity wall before
iting through the entrance lead. There has been an exten
discussion in the literature as to the existence of scar

FIG. 5. ~Color online! Absolute square of the scattering wav
functions uc(x,y)u2 at high kF @~a! kF525p/d, ~b! kF512.5p/d,
~c,d! kF56.01p/d] for the four quantum dots considered: circ
and stadium with relative lead orientation of 90° and 180°, a
Adot541p, and lead widthd50.25. The localization around clas
sical trajectories~see insets for comparison! is clearly visible. In
~a–c! the magnetic fieldB50. In ~d!, the magnetic fieldB/c
530.5 allows for a whole bundle of equivalent trajectories w
cyclotron radiusr c5kFc/B'2.48 to contribute to transport.

FIG. 6. ~Color online! Absolute square of the scattering wav
functionsuc(x,y)u2 in the edge state regime. The area of all geo
etries,Adot541p, lead widthd50.25, andkF51.5p/d. The four
plots correspond to the points in the transmission spectra~Fig. 7!,
indicated by~a–d!. The numbers along the longitudinal direction
the edge states count the number of antinodes between entranc
exit leads~see corresponding numbers in Fig. 7!. Note that edge
states in the magnetic field regionBc

n11,B,Bc
n have up ton trans-

verse nodes:~a! circle, 180°,n52, ~b! circle, 90°, n52, ~c! sta-
dium, 180°,n53, and~d! stadium, 90°,n51.
16530
h
pe-

-
ive
in

openquantum billiards.16 Our present results clearly unde
score that scars, defined here as the condensation of the
function near classical~not necessarily unstable! trajectories,
clearly exist for largekF . Figure 6 illustrates the formation
of edge states at high fields. With increasingB, fewer edge
states can be excited in the cavity. In Fig. 6~c! (B568.5),
three transverse edge states are present; while in Fig.~d!
(B5125), only a single edge state remains. For two ed
states carrying flux across the quantum dot, interferen
give rise to a stationary nodal pattern with a fixed number
antinodes along the boundary@see Figs. 6~a! and 6~b!#. We
note that we are not aware of any other method that ha
far been capable of investigating scattering states of o
structures in this high-magnetic-field regime.

C. Transport coefficients

The interference between different edge states gives
to characteristic fluctuations in the transport coefficien
Figure 7 shows the high-magnetic-field regime of the tra

a

-

and

FIG. 7. Transmission probabilitiesut11(B/c)u2 in the high-
magnetic-field limit for circle and stadium billiard with 180° or 90
lead orientation (kF51.5p/d,d50.25). Bc

1 and Bc
2 are the thresh-

old magnetic fieldsBc
n/c5kF

2/(2n11) ~vertical dash-dotted lines!.
Above Bc

1 , regular oscillations appear~see insets for magnifica
tion!. For Bc

2,B,Bc
1 , irregular fluctuations set in. Their large

scale structure can be explained by the number of interfere
maxima the two edge states form along the boundary between
trance and exit lead~see indicated numbers!. Points ~a–d! corre-
spond to the wave functions shown in Fig. 6.
2-8
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BALLISTIC QUANTUM TRANSPORT AT HIGH . . . PHYSICAL REVIEW B68, 165302 ~2003!
mission probability in the first modem5n51 for both circle
and stadium. Different orientations of the exiting quantu
wire were chosen~oriented 90° and 180° relative to the in
coming lead!. A few universal trends are easily discernib
Above a certain critical value of the magnetic field~denoted
by Bc

1), the strongly fluctuating transmission probabili
gives way to very regular oscillations in all four cases@see
insets of Fig. 7 for magnification#. The threshold valueBc

1

and the magnetic field, at which transport is termina
~separately displayed in Fig. 8!, are identical for all systems
investigated. Below Bc

1 , the transport signal display
‘‘beats,’’ i.e., the Fourier transform of the signal is charact
ized by several frequencies. The ‘‘universality’’~i.e., geom-
etry independence! of these features is related to the fact th
in the high-magnetic-field regime, transport is controlled
edge states~as depicted in Fig. 6!. These states play a ver
prominent role in the quantum Hall effect and have be
studied extensively.1,2,12,40,41At magnetic fields, where the
magnetic length is smaller than the system dimensionsl B

!D, they are the only states coupling to the quantum w
since bulk Landau states cannot be accessed by the le
The edge states shown in Figs. 6~a–d! correspond to the
points ~a!–~d! in the transmission spectrum in Fig. 7. B
comparison with the scattering wave functions~as in Fig. 6!,
we observe that in the magnetic field region,Bc

n,B,Bc
n21

edge states have up ton21 transverse nodes in the directio
perpendicular to the boundary. Furthermore, the numbe
longitudinal antinodes from entrance to the exit lead@see the
corresponding numbers in Figs. 6~a,b!# can be directly
mapped onto successive maxima in Fig. 7~see numbers
there!. The range ofB depicted in Fig. 7 corresponds toB

FIG. 8. Transmission probabilitiesut11(B/c)u2 in the high-field
limit, near the point where transport terminates. The dotted
stands for the circle billiards with both 90° and 180° lead orien
tion ~their transmission probabilities are identical! and the dashed
line for the stadium billiard with 90° lead geometry. The so
curves represent the upper and lower bounds of the oscillat
~offset for better visibility!. The two dash-dotted vertical lines mar
the point where transport breaks off and the analytically determi
threshold valueBc

0'355.3 ~see text for details!. The inset shows
that the transmission probabilities for the circle reach the maxim
value 1, which is only approximately true for the stadium with 9
lead geometry.
16530
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of

*Bc
2 at kF51.5p/d. The transmission spectrum becomes

creasingly complex asB is reduced, or equivalently,kF is
increased~not shown!.

To determine the positions of the valuesBc
n , we consider

the energy shift of Landau levels near the boundary. B
Landau levels are degenerate since their quantized en
En5(n11/2)B/c is independent of their position in spac
This degeneracy is lifted if a Landau state is placed in
vicinity of the cavity wall: with decreasing distance to th
boundary, the energy of the state increases. Therefore
energies of edge states associated with the quantum nu
n lie above the asymptotic bulk valueEn . When the incom-
ing electron is diffracted at the mouth of the entrance le
only those edge states whose energy is below the Ferm
ergy can carry the flux. Due to the sharp edges at the junc
between lead and quantum dot, all energetically access
edge channels are populated. The blow up of the scatte
wave function near the lead mouth~Fig. 9! highlights the
diffractive edge scattering. This is in contrast to smoo
edges where states in the lead could cross the lead junc
adiabatically, i.e., without changing their state
quantization.42 With sharp lead junctions, however, all edg
states with quantum numbern8<n will participate in trans-
port up to a magnetic field whereEn touches the Fermi en
ergy, En5EF , i.e., at the critical magnetic fieldsBc

n/c
5EF /(n11/2). These threshold values are indicated by
dot-dashed vertical bars in Figs. 7 and 8 forBc

2'71.1, Bc
1

'118.4, andBc
0'355.3 for a lead widthd50.25 andkF

51.5p/d. In our numerical data, both the position of the
threshold values as well as their independence of the ge
etry are in excellent agreement with this prediction. The o
exception is the critical magnetic fieldBc

0 . Its value (355.3)
lies slightly above the point where the transmission spectr
ceases~at B'351.8) ~see Fig. 8!. The reason for this devia
tion is the fact that the termination point of the spectrum

e
-

ns

d

m

FIG. 9. ~Color online! Electron densityuc(x,y)u2 for the circle
billiard with diffractive scattering highlighted. (Adot541p, lead
width d50.25, andkF51.5p/d.! The magnetic fieldB5118.7 is
just above the threshold to the single-edge state regimeBc

1

5118.44.
2-9
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not determined by the magnetic field of the lowest bulk La
dau level in the cavity~i.e., Bc

0), but by the highest field a
which the leads still carry flux. In the leads, however, t
magnetic length does not satisfy the conditionl B!d ~at kF
51.5p/d: l B'd/4.7). Contrary to the cavity, the lead wav
functions still ‘‘feel’’ the constriction by the opposing wal
For this reason the threshold magnetic-field values of
transverse lead states lie slightly below those of the b
Landau levels, leading to a termination already belowBc

0 .

D. Multichannel interferences

The regular oscillations aboveBc
1 as well as the complex

fluctuating pattern belowBc
1 can be explained by a multi

channel scattering description. This model can be viewe
a generalization28,45of a single-channel picture.2,43,44For this
description to be applicable, the cavity of the dot has to h
smooth boundaries and disorder must be absent. Under t
circumstances the flux transported by edge states is
served in the interior and changed only by diffractive sc
tering at lead junctions. At the junction, a fraction of the fl
will exit through the lead while the remaining portion of th
flux will continue to propagate along the boundary. The s
tionary scattering state can be viewed as the coherent su
position of repeated loops around the billiard. In order
translate this picture into an analytic expression, we de
amplitudes for transmission and reflection at the two le
junctions. We denote the amplitudes for transmission fr
transverse modem in the entrance lead to the edge state
the dot with quantum numberi by t̃ mi . The amplitudest̃ in8
stand for transmission from edge statei in the dot to the
transverse moden in the exit lead. The amplitudesr̃ i j ( r̃ i j8 )
describe edge state reflection at the entrance~exit! lead from
modei to modej. ~The tilde signs serve to distinguish the
amplitudes from the transport coefficients for the whole
ometrytnm andr nm .) We further define the following matri
ces:

@ T̃# i j 5 t̃ i j e
ik jL j 2 iBAj /c, @ T̃8# i j 5 t̃ i j8 , ~3.1!

@R̃8# i j 5 r̃ i j8 eik jL j82 iBAj8/c, @R̃# i j 5 r̃ i j e
ik jL j 2 iBAj /c,

~3.2!

whereL j ,Aj (L j8 ,Aj8) denote the lengthsL and areasA the
edge statej covers from entrance to exit~from exit to en-
trance! of the dot. The areasA can be determined in gauge
invariant form, although the corresponding classical orb
are not necessarily periodic.46 The transmission through th
whole cavityt j i 5@T# i j is then written as a geometric serie
of matrices,

T5T̃$11R̃8R̃@11R̃8R̃~11••• !#%T̃8

5T̃S (
i 50

`

~R̃8R̃! i D T̃8

5T̃~12R̃8R̃!21T̃8. ~3.3!
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Equation~3.3! serves as a convenient starting point for t
analysis of the transmission fluctuations. Consider first
regimeB.Bc

1 , where only the lowest transverse edge st
is excited. In this case Eq.~3.3! reduces to its scala
version2,43,44

Ttot5ut11u25
u t̃ 11u2u t̃ 118 u2

122Re@ r̃ 118 r̃ 11e
ig#1u r̃ 118 u2u r̃ 11u2

, ~3.4!

with g5k1(L11L18)2B(A11A18)/c. As expected, the fluc-
tuations of ut11(B/c)u2 are determined by an Aharonov
Bohm–type phaseg. At fixed kF , the oscillation period is
DB52pc/A1

tot . By A1
tot5A11A18 , we denote the area whic

the edge state acquires in one revolution around the
Taking into account that the dynamically accessible area
the edge state is somewhat smaller than the geometric a
A1

tot,Adot541p ~see Fig. 6!, the prediction for the oscilla-
tion period is in excellent agreement with our numeric
findings. Equation~3.4! also explains why the oscillation pe
riod is increasing with increasingB ~see Fig. 8!. This expla-
nation makes use of the somewhat counterintuitive fact
for increasing magnetic field skipping orbits with fixed qua
tum numbern have an increasing mean distance from t
boundary.44 Consequently, a largerB field implies a smaller
enclosed areaA1

tot and therefore a higher oscillation perio
DB. Furthermore, Eq.~3.4! accounts for the fact that fo
most structures the successive maxima ofTtot reach unity.43

~The small deviation from this rule of the stadium with 90
lead orientation will be explained below!. In addition to uni-
tarity, @ u t̃ 118 u21u r̃ 118 u251#, we have for identical lead junc

tions r̃ 115 r̃ 118 . ~We call two junctionsidentical if the local
environment of their lead mouths is the same and their
spective distance is larger than a few wavelengths.! Above
Bc

1 , scattering of an edge state at a junction is essential
one-dimensional process, for which the probability for tran
mission from left to right has the same magnitude as v
versa. Identical lead junctions therefore also implyt̃ 118

5 t̃ 11, provided that the two corners of the lead junctio
have the same shape. If, and only if, all of the three ab
conditions are fulfilled, Eq.~3.4! yields Ttot51 at the reso-
nance conditiong52pn,nPZ. Since for the two circle ge-
ometries and for the 180° stadium the two lead junctions
identical, we indeed find in these cases thatut11(B)u2 peri-
odically reaches unity. On the other hand, when the leads
attached to the stadium at an angle of 90°, one lead is
tached to the straight section while the other is attached
the semicircle. The local environment of the two lead mou
is in this case different~i.e., the lead junctions are not iden
tical!, for which reason our numerical results do not qu
reachut11u251, when the resonance condition is fulfilled fo
this geometry@see the insets of Fig. 7 and Fig. 8#. Another
relation exists between the resonance condition and the
havior of edge states. In the closed cavity an edge cha
always encloses an integer number of flux qua
@BA/(f0c)5mPN#. Therefore, the resonance condition
met whenever the energy of an edge state in the closed ca
crosses the Fermi edge.44
2-10
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One interesting feature of the transmission fluctuations
the single-channel regime of the circular dot (B.Bc

1) is their
invariance with respect to the lead orientation. The numer
results for the transmission probabilities of the circle w
180° and 90° lead orientation differ only at the tenth decim
digit. This fact, as well as the observation that in the case
the stadium billard the two lead orientations give differe
results, can again be explained by Eq.~3.4!. The important
point to note is that the interference phase (g5k1L1

tot

2BA1
tot/c) does not change when changing the positions

the leads around the circle. Due to the rotational symme
also the coefficientst̃ 11, t̃ 118 , r̃ 11, and r̃ 118 are the same for
different angles between the leads. The same is thus tru
the total transmissionTtot through the circular dot. The only
exception to this rule occurs when the two leads are in cl
proximity to within a few wavelengths. In this case the tran
mission probability changes as compared to the results
the 180° and 90° lead orientation~not shown!.

The fluctuations in the regimeB,Bc
1 displayed in Fig. 7

can be analyzed with the help of a multichannel scatter
description. In the intervalBc

2<B<Bc
1 , two channels corre-

sponding to two edge states are open in the cavity and
channel in each of the leads. From the entrance to the
lead mouth, the two edge channels acquire the pha
eik1L12 iBA1 /c and eik2L22 iBA2 /c, respectively. Their interfer-
ence at the exit lead will therefore give an oscillatory con
bution to the total transmissionTtot(B)5ut11u2 of the form
cos2@B(A12A2)/(2c)#. For closer analysis we need to evalua
Eq. ~3.3!, which involves the inversion of 232 matrices. In
the case of parallel lead orientation the corresponding
pressions are simplified due to the fact that the phases
quired from entrance to exit lead and vice versa are the s
(An5An8 andLn5Ln8),

t115@eiw1 t̃ 11t̃ 118 1eiw2 t̃ 12t̃ 218 1ei (2w11w2)~ r̃ 11t̃ 122 r̃ 12t̃ 11!

3~ r̃ 218 t̃ 118 2 r̃ 118 t̃ 218 !1ei (w112w2)~ r̃ 21t̃ 122 r̃ 22t̃ 11!

3~ r̃ 228 t̃ 118 2 r̃ 128 t̃ 218 !#/@12ei2w1r̃ 11r̃ 118 2ei2w2r̃ 22r̃ 228

2ei (w11w2)~ r̃ 21r̃ 128 1 r̃ 12r̃ 218 !2ei2(w11w2)~ r̃ 11r̃ 222 r̃ 12r̃ 21!

3~ r̃ 128 r̃ 218 2 r̃ 118 r̃ 228 !#, ~3.5!

with the abbreviated notationwn5knLn2BAn /c. In Fig. 10
we show one half period of the beats inTtot(B)5ut11(B)u2

for @pn,B(A12A2)/(2c),p(n11)#, as calculated with
Eq. ~3.5!. The absolute square of the numerator~dashed line,
N) and denominator~dotted lineD) of Eq. ~3.5! display very
similar oscillations, both in frequency and amplitude. Ho
ever, sinceTtot5N/D, a series of dips are superimposed
the term cos2@B(A12A2)/(2c)# at the points whereN and D
have their common minima. To classify these dips~i.e., an-
tiresonances! we make use of the fact28 that the unitarity of
Eq. ~3.5! can be satisfied by mapping the transport coe
cients at the lead junctions~which are assumed to be ident
cal! onto six independent parameters (r ,e,f,q,f1 ,f2),

t̃ 115 t̃ 118 5Ae~12r 2!ei [(f11c)/21q] ,
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t̃ 125 t̃ 218 5A~12r 2!~12e!ei [(f21c)/21q] ,

r̃ 115 r̃ 118 52@~12e!1er #ei (f11q), ~3.6!

r̃ 125 r̃ 128 5 r̃ 215 r̃ 218 5~12r !Ae~12e!ei [(f11f2)/21q]

r̃ 2252@e1~12e!r # ei (f21q).

Among those, the two parameterse and r are of particular
importance in this context. The variablee represents the cou
pling of the incoming lead state to the edge staten51 in the
interior, andr PR is related to the reflection coefficientr̃ 119 of

an incident channel at the lead mouth,r̃ 119 5rei (c1q). Both
quantitiese,ur u are restricted to the interval@0,1#. With these
terms the absolute square oft11 @Eq. ~3.5!# can be consider-
ably simplified,

Ttot5ut11u25
~12r 2!2

uau2ubu2
sin2~h/21q0!

sin2~h/21q01D!1G0
2

, ~3.7!

with f5(w21f2)2(w11f1), h5(w21f2)1(w11f1),
r 8 5 (12e)e2 if/21e eif/2, d 5 arg(r 8), q0 5 q 1 d, a 5 1
1r ei (h12q), b511re22id, and D5arg(b/a). The line-
width G0 is given by

G05U12ur 8b/au2

2r 8b/a
U . ~3.8!

In the generic case ofrÞ0, resonances occurring in Eq
~3.7! show a typical Fano profile of the form47

Ttot'utbgu2
~B/c2Bn /c!2

~B/c2Bn /c1D!21G0
2

, ~3.9!

with tbg being the coefficient for background scattering48

The Fano resonances atB/c5Bn /c2D will have an asym-
metric line shape unlessD50 ~i.e., r 50). This is, however,
the case for the billiard systems we consider, since almos

FIG. 10. One half period of the beatingpn,B(A12A2)/(2c)
,p(n11) in the transmission probabilityut11(B/c)u2 ~solid line!,
as calculated with our interference model@see Eq.~3.7!#. The nu-
merator ~dashed line,N) and denominator~dotted line, D) of
ut11(B/c)u2 show very similar oscillations~with a small offset!.
(N/D) features sharp ‘‘dips,’’ at the points whereN and D have
their common minima. These dips arewindow resonances~also
called Breit-Wigner antiresonances! and represent a symmetric lim
of the Fano resonance line shape. See the text for details.
2-11



ea
,

de
/

ol

e
rg
ce

rm
n-
ch
de

ur

h

r
pu
t
a
r o
so

f
h
rly

n
-
y

sp
n
o

rv
st
th

hu
a

tic

e
t in
has
ing
ntal
that
sion
the
cle
a

by
r

eld
or-

ua-
he
f dif-
ot,
atic
dot.

tive
nels
the

e of
, in-
of

cult
ch,
dge
gle

uld
ce

tic

ch-
able

can
the
c-
nd

nd
at-
als

ROTTER, WEINGARTNER, ROHRINGER, AND BURGDO¨ RFER PHYSICAL REVIEW B68, 165302 ~2003!
reflection of incoming lead states takes place at the l
mouths,r̃ 119 '0, and thereforer'0. Under this assumption
Eq. ~3.7! simplifies to

Ttot'
sin2~h/21q0!

sin2~h/21q0!1G0
2

, ~3.10!

with linewidth G05(12ur 8u2)/(2ur 8u). This equation de-
scribes symmetric resonance line shapes, which can be i
tified aswindow resonances~also called Breit-Wigner dips
antiresonances!, of the form

Ttot'
~B/c2Bn /c!2

~B/c2Bn /c!21G0
2

. ~3.11!

The physical picture resulting from this analysis is the f
lowing. In the magnetic-field regionBc

2<B<Bc
1 , where two

edge states are present in the interior of the dot and on
each of the leads, the transmission probability shows la
scale oscillations intersected by sharp window resonan
The large-scale envelope function is given by 1/(11G0

2). Its
maxima perfectly match with the roughly estimated te
cos2@B(A12A2)/(2c)# from above and can therefore be ide
tified with the numbered points in Fig. 7, each of whi
corresponds to an integer number of longitudinal antino
in the wave function along the boundary~see Fig. 6!. The
antiresonances superimposed on these oscillations occ
magnetic fieldsB5Bn ~where h/21q05np, nPZ) and
their linewidth is given byG0. As a result, resonances whic
are situated on maxima of the term 1/(11G0

2) are sharper
than at its mimima@see the numerical data in Fig. 7 fo
confirmation#. For an increasing number of edge states po
lated in the cavity (B,Bc

2), our numerical results show tha
the density of antiresonances is rapidly growing. This beh
ior finally leads to a resonance overlap for a large numbe
edge states, which is prerequisite for the onset of Eric
fluctuations~i.e., universal conductance fluctuations!.

For completeness, we remark that the above analysis
theB dependence ofTtot can analogously be carried out wit
kF instead ofB as the variable parameter. We can simila
identify threshold valueskc

n for kF , below which a number
of n edge states survive. The numerical results for the tra
mission probabilityTtot(kF) for the case of one or two par
ticipating edge states~not shown! can again be described b
expressions analogous to Eq.~3.4! or Eq. ~3.7!.

E. Comparison with experiments

A series of experiments13,44,49,50 have been performed
where Aharonov-Bohm oscillations~ABOs! similar to the
ones discussed here have been observed in ballistic tran
measurements. The origin of the ABOs in these experime
is, however, twofold. In Refs. 13 and 44, it is the presence
edge states in a quantum dot which gives rise to the obse
oscillations. In Refs. 49 and 50 on the contrary, the inve
gated scattering devices have the form of a ring, to which
scattering wave function is confined. The latter setup t
gives rise to ABOs already at low magnetic fields and h
therefore been more readily accessible to a theore
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description.51 However, to our knowledge, no quantitativ
description for magnetotransport through a quantum do
the regime of only one or two participating edge states
yet become available. We therefore discuss in the follow
the similarities and differences between the experime
data and our calculations. One important observation is
the magnetic fields where these quasiregular transmis
fluctuations appear in the experiment are lower than in
present calculation. For example, in the experiment for cir
and stadium shaped quantum dots in
GaAs/AlGaAs-heterostructure,13 the threshold magnetic-field
values would be~in SI units!

Bc
n5

2ph

~2n11!lF
2e

with lF5A2p

ns
. ~3.12!

With a given sheet density ofns53.631011 cm22 in the
interior of the dot, the threshold magnetic fields are given
Bc

2'3 T andBc
1'5 T. However, in the experiment, regula

oscillations were already observed below 2 T. At those fi
values we find highly irregular transmission fluctuations c
responding to a threshold magnetic fieldBc

n with n@1, in-
dicative of a high density of resonances and Ericson fluct
tions. We expect the origin of this discrepancy to lie in t
absence of sharp edges in the experiment and, hence, o
fractive edge scattering. In the experimental quantum d
the edges should be fairly smooth, leading to near-adiab
transitions to edge states at the entrance to the quantum
Therefore fewer edge channels are excited than by diffrac
edge scattering, where all energetically accessible chan
up to n are populated. Our present results suggest that
observed transmission fluctuations are a direct measur
the sharpness of the edges at the lead mouth. Therefore
vestigations of quantum dots with varying sharpness
edges would be desirable. However, since these are diffi
to fabricate, we point to a different experimental approa
which is based on the analogy between transport in the e
state regime and field-free transport through a rectan
where only few propagating modes participate.45 Such struc-
tures are accessible for microwave experiments.6,52The mea-
sured transmission through such a microwave device co
provide a stringent test for the multichannel interferen
model presented above.

IV. SUMMARY AND OUTLOOK

We have presented a technique for calculating ballis
magnetotransport through open quantum dots. Themodular
recursive Green’s function method~MRGM! is an extension
of the widely used standard recursive Green’s-function te
nique and is based on the decomposition of nonsepar
scattering geometries into separable substructures~modules!.
An unprecedented energy and magnetic-field range
thereby be explored with high accuracy. We applied
MRGM to transport coefficients and scattering wave fun
tions in the two extreme cases of high magnetic fields a
short wavelengths. For very small cyclotron radii, we fou
periodic oscillations in the transmission spectrum and be
ing phenomena, which are restricted to well-defined interv
2-12
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~as a function ofB andkF , likewise!. These features could
be explained by interferences between edge states, trav
along the boundary of the cavity. For these states scatte
only takes place at the lead junctions, whose sharp ed
play a crucial role for the dynamics of the system. Fo
detailed analysis, a multichannel interference model was
ployed. This model allows us to classify the observed tra
mission fluctuations in the framework of Fano resonanc
For only one edge state present in the circular dot transpo
independent of the lead orientation, provided that the l
mouths are identical and separated from each other. Fu
envisioned applications include the investigation of Andre
billiards,54 quantum Hamiltonian ratchets,55 fractal conduc-
cs

,

d
,

nd

ev
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tance fluctuations,55,56 and shot noise.57,58 Furthermore, the
MRGM also seems suitable to performab initio calculations
of the integer quantum Hall effect.59 The challenge is in this
case the inclusion of a disorder potential, which is comp
ible with the separability conditions.
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48J.U. Nöckel and A.D. Stone, Phys. Rev. B50, 17 415~1994!.
49R.A. Webb, S. Washburn, C.P. Umbach, and R.B. Laibow

Phys. Rev. Lett.54, 2696~1985!.
50S. Pedersen, A.E. Hansen, A. Kristensen, C.B. So”rensen, and P.E

Lindelof, Phys. Rev. B61, 5457~2000!.
51K.N. Pichugin and A.F. Sadreev, Phys. Rev. B56, 9662~1997!.
52T. Blomquist, H. Schanze, I.V. Zozoulenko, and H.-J. Sto¨ckmann,

Phys. Rev. E66, 026217~2002!.
53J. Cserti, A. Korma´nyos, Z. Kaufmann, J. Koltai, and C.J. Lam

bert, Phys. Rev. Lett.89, 057001~2002!.
16530
,

54H. Schanz, M.-F. Otto, R. Ketzmerick, and T. Dittrich, Phys. Re
Lett. 87, 070601~2001!.

55R. Ketzmerick, Phys. Rev. B54, 10 841~1996!.
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