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We present a tunable microwave scattering device that allows the controlled variation of Fano line shape
parameters in transmission through quantum billiards. Transport in this device is nearly fully coherent. By
comparison with quantum calculations, employing the modular recursive Green’s-function method, the scat-
tering wave function and the degree of residual decoherence can be determined. The parametric variation of
Fano line shapes in terms of interacting resonances is analyzed.
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Asymmetric Fano line shapes are a ubiquitous feature of
resonance scattering when(at least) two different pathways
connecting the entrance with the exit channel exist. Fano
resonances have been observed in a wide array of different
subfields of physics starting with photoabsorption in atoms
[1–3], electron and neutron scattering[4,5], Raman scatter-
ing [6], photoabsorption in quantum well structures[7],
scanning tunnel microscopy[8], and ballistic transport
through quantum dots(“artificial atoms”) [9–12]. Interest in
observing and analyzing Fano profiles is driven by their high
sensitivity to the details of the scattering process. For ex-
ample, since Fano parameters reveal the presence and the
nature of different(non) resonant pathways, they can be used
to determine the degree of coherence in the scattering device.
This is due to the fact that decoherence converts Fano reso-
nances into the more familiar limiting case of a Breit-Wigner
resonance. Furthermore, they provide detailed information
on the interaction between nearby resonances leading to
“avoided crossings” in the complex plane[13,14], and to
stabilization of discrete states in the continuum(“resonance
trapping” [15,16]).

Exploiting the equivalence of the scalar Helmholtz equa-
tion for electromagnetic radiation in cavities with conducting
walls and the Schrödinger equation subject to hard-wall
boundary conditions[17], we have designed a scattering de-
vice (Fig. 1) that allows the controlled tuning of Fano reso-
nances for transport through quantum billiards. The evolu-
tion of the Fano parameters as a function of the tuning
parameter, in the present case the degree of opening of the
leads, can be traced in unprecedented detail, since decoher-
ence due to dissipation is kept at a low level. By comparison
with calculations employing the modular recursive Green’s
function method(MRGM) [11,18], the parametric variation
of Fano resonances and the degree of decoherence can be
quantitatively accounted for. Furthermore, the relevant path-
ways can be unambiguously identified in terms of wave
functions representing the contributing scattering channels.
Due to the equivalence between microwave transport and
single-electron motion in two dimensions, our device also
simulates ballistic electron scattering through a quantum dot.

In contrast to recent investigations of mesoscopic dots and
single-electron transistors[9,12,19], where comparison be-
tween theory and experiment has remained on a mostly
qualitative level, our model system allows for a detailed
quantitative analysis of all features of tunable resonances.

Our microwave scattering device consists of two commer-
cially available waveguides(height h=7.8 mm, width d
=15.8 mm, and lengthl =200 mm) which were attached both
to the entrance and the exit sides of a rectangular resonator
(height H=7.8 mm, width D=39 mm, and length L
=176 mm). At the junctions to the cavity metallic dia-
phragms of different openings were inserted(Fig. 1). The
microwaves with frequencies between 12.3 and 18.0 GHz,
where two even transverse modes are excited in the cavity
and one transverse mode in each of the leads, are coupled
into the waveguide via an adaptor to ensure strong coupling.

The experimental results are compared with the predic-
tions of the MRGM. We solve theS matrix for the single-
particle Schrödinger equation for this “quantum dot” by as-
suming a constant potential set equal to zero inside and
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FIG. 1. (Color online) (a) Schematic sketch of the rectangular
cavity with leads attached symmetrically on opposite sides. Ex-
changeable diaphragms at the lead junctions allows one to control
the coupling between the cavity and the leads. The open even trans-
verse states are indicated.(b) Photograph of the experimental setup.
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infinitely high outside a hard-wall boundary. At asymptotic
distances, scattering boundary conditions are imposed on the
leads. The coupling of the leads to the cavity of lengthL can
be varied by two diaphragms which are placed symmetri-
cally at the two lead openings. The lead widthd and the
width of the rectangular cavityD determine how many flux-
carrying modes are open at a certain energy« in each of the
three regions(lead-cavity-lead). We consider in the follow-
ing the range of wave numbers where one flux-carrying
mode is open in each of the leads, while the first and second
even transverse modes are open inside the cavity, thus pro-
viding two alternative pathways of quantum transport. In or-
der to further characterize the interfering paths, we decom-
pose the transport across the cavity into a multiple-scattering
series involving three pieces[20], each of which is charac-
terized by a mode-to-mode transmission(reflection) ampli-
tude or a propagator:(1) the transmission of the incoming
flux from the left into the cavity,tsLd, or reflection back into
the lead,r sLd, (2) the propagation inside the cavity from the
left to the right,GsLRd, or from the right to the left,GsRLd, and
(3) the transmission from the interior of the cavity to the
right, tsRd, or internal reflection at each of the two vertical
cavity walls with amplituder sRd. For the Green’s functions
(i.e., propagators) GsLRdsxR,xLd andGsRLdsxL ,xRd we choose a
mixed representation which is local inx, and employs a spec-
tral sum over transverse modes,GsLRdsxR,xLd=GsRLdsxL ,xRd
=onunlexpsiknuxR−xLudknu, wherexR,L are thex coordinates of
the right (left) lead junction withuxR−xLu=L. The longitudi-
nal momentum for each channeln in the cavity is given by
kn=Îk2−skn

cd2, with the momentumk=Î2« and the threshold
k valueskn

c=np /D. Decoherence due to dissipation of the
microwave power in the cavity walls can be easily incorpo-
rated by analytically continuingkn into the complex plane,
kn=Îk2−skn

cd2+ ik. The quantitative analysis of Fano reso-
nances for these systems can be used to accurately determine
the degree of dissipation present. The multiple-scattering ex-
pansion of the transmission amplitudeT is then given by

Tskd = tsLdGsLRdHo
n=0

`

fr sRdGsRLdr sLdGsLRdgnJtsRd

= tsLdGsLRdf1 − r sRdGsRLdr sLdGsLRdg−1tsRd. s1d

The identification of the resonant and nonresonant pathways
with help of Eq.s1d is straightforward: due to the absence of
interchannel mixing in the rectangularsi.e., nonchaoticd cav-
ity, the nonresonant contribution corresponds to then=0
term of the sum describing direct transmission while the
resonant contribution is made up by all multiple-bounce con-
tributions snù1d. The various amplitudes entering Eq.s1d
can be parametrized in terms of four phases and two moduli
f21g: the moduluss of the reflection amplitude of the wave
incoming in mode 1 and reflected into mode 1 at the left
diaphragm,

r11
sLd = seifr , s2d

and the modulusp of the partial injection amplitude of the
incoming wave into the lowest mode of the cavity, corrected
for the partially reflected flux,

t11
sLd = t11

sRd = pÎ1 − s2eift
s1d

. s3d

Because of the symmetry of the scattering device, the injec-
tion sejectiond amplitude at the leftsrightd side are equal.
Accordingly, the injection amplitude into the second even
mode of the cavity is given by

t12
sLd = t21

sRd = Îs1 − p2ds1 − s2deift
s2d

. s4d

Analogous expressions can be deducedf21g for the other
partial amplitudes entering Eq.s1d. We omit a detailed de-
scription of the phases in Eqs.s2d–s4d since they do not
explicitly enter our analysis in the following. The key obser-
vation in the present context is that the square modules2 is
monotonically decreasing in between the limiting valuess2

=1 for zero diaphragm openingsw=0d and s2<0 for fully
open diaphragmssw=dd. Inserting Eqs.s2d–s4d into Eq. s1d,
a closed yet complicated expression for the transmission
probability uTs« ,sdu as a function of the energy« and the
opening parameters can be derived. Close to a given reso-
nance«i

R this expression can be approximated by the Fano
form f3,21g

uTs«,sdu2 <
u« − «i

Rssd + qissdGissd/2u2

f« − «i
Rssdg2 + fGissd/2g2 , s5d

where «i
Rssd is the position of theith resonance,Gissd its

width, andqissd the complex Fano asymmetry parameter, all
of which depend ons. Window resonances appear in the
limit q→0 while the Breit-Wigner limit is reached foruqu
@1. It should be noted that, in general,q cannot be simply
identified with the ratio of resonant to nonresonant coupling
strengthf22,23g. Moreover, since Fano resonances can be
identified as resulting from the interference between reso-
nances related to the eigenmodes in the cavity, the parameter
q depends very sensitively on the specific constellation of the
involved resonance polesf24,25g. Figure 2 presents both the
experimental and theoretical dependence of the transmission
probability uTu2 on k sor «d. In the measurement, the dia-
phragms were successively closed in steps of 1 mm. The
data sets of Figs. 2sad–2scd represent the transmission
probability for three different values of the opening of the
diaphragmsw=5.8, 8.8, and 15.8 mm,respectively. Note
the remarkable degree of agreement between the measured
and the calculated data without any adjustable parameter.
In Fig. 2sad wherew/d<0.37, transport is suppressed and
mediated only by resonance scattering with narrow Breit-
Wigner shapes centered at the eigenenergies of the closed
billiard as indicated by the tick marks. With increasing
diaphragm openingfFig. 2sbdg transport acquires a signifi-
cant nonresonant contribution, leading to the widening
and the overlap of resonances. Finally, for fully open
leads fFig. 2scdg, w/d=1 sor s<0d resonances appear as
narrow window resonances in a nonresonant continuum.
The trajectory of the resonance parameter as a function of
s can be both experimentally and theoretically mapped out
in considerable detail.

Different types of resonances can be identified by charac-
teristically different variations of their resonance parameters.
The evolution of the Fano parameter as a function ofw/d (or

ROTTERet al. PHYSICAL REVIEW E 69, 046208(2004)

046208-2



s) for one resonance is highlighted in Fig. 3. The transition
from a narrow Breit-Wigner resonance via a somewhat wider
asymmetric Fano profile to a window resonance is clearly
observable. The good agreement with theory allows one to
accurately determine the degree of decoherence present in
the experiment. As the Fano profile, in particular, near its

minimum, is very sensitive to any noninterfering incoherent
background, we can determine an upper bound for the damp-
ing by comparison between experiment and theory to be
k&10−4. As illustrated in Fig. 3, even a slightly larger value
of k=10−3 would drastically deteriorate the agreement be-
tween experiment and theory. In line with the valuek
=10−4, we obtain an imaginary part of the complex Fano
parameter for systems without time-reversal symmetry[19]
out of our fitting procedure as Imq&0.1. We note that by
using superconducting cavitiesk could still be further re-
duced[26], however with only limited influence on the re-
sult, since we have already nearly reached the fully coherent
limit.

Following the parametric evolution of a large number of
resonances we find a characteristic pattern of Fano resonance
parameters(Fig. 4). As example we show the evolution of
theq parameter as a function of the openingw/d. Obviously,
two distinct subsets of resonances appear in the rectangular
billiards: one set is characterized by a large and only weakly
dependent asymmetry parameterq. A second set of reso-
nances features a strongly varyingq (on the log-scale) from
large values near the Breit-Wigner limit to values close to
q<0 for wide opening, yielding a window resonance. For
these resonances, the widthG first increases withw/d in-
creasing from close to 0, then reaches a local maximum, and
finally decreases slightly whenw/d→1 (not shown). A simi-
lar nonmonotonic behavior ofG was recently observed in a
single-electron transistor experiment[9]. Such features can
be understood in terms of avoided crossings in the complex
plane[13,14] between interacting resonances. While the von
Neumann–Wigner theorem[27] for bound states predicts
avoided crossings between states of the same symmetry and

FIG. 2. Total transmission probabilityTtotsÎ2«d/p ,w/dd for
transport through the rectangular cavity with three different open-
ings of the diaphragms:(a) w/d=37%, (b) w/d=56%, and(c)
w/d=100%. For better comparison, the experimental and the cal-
culated results are shown as mirror images. The positions of all
eigenstates in the closed cavity are indicated by the gray tick marks.
For all the calculated curves shown, a damping constant ofk
=10−4 was used.

FIG. 3. Fano resonance near the second even excited transverse
mode atkd/p<1.5095. Experimental and theoretical results for
four different cavity openingssw/dd are shown. Curves with equal
w/d ratio are displayed in the same line style(solid, dashed, dotted,
and dash-dotted). For all calculated curves a damping factork
=10−4 was used, except for the additional gray dashed curve shown
for which k=10−3 andw/d=0.68.

FIG. 4. (Color online) Real part of the asymmetry parameter
uResqdu as a function of the diaphragm openingw/d. The data rep-
resent fits to the experiment. Solid circles •(open trianglesn)
correspond to resonances originating from the first(second) even
cavity eigenstate. Typical wave functionsucsx,ydu2 for these two
classes of resonances are shown in the inset. The • resonances al-
ways keep anuResqdu.10, above which the Fano resonances are
very close to the Breit-Wigner line shapefResqd=`g. The n reso-
nances undergo a complete evolution from Breit-Wigner to window
type asw/d varies between 0 and 1.
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thus a nonmonotonic variation of the eigenenergy, interacting
resonances can also display avoided crossings on the imagi-
nary axis, i.e., exchange of the width of resonances and thus
leading to a nonmonotonic behavior of one of theG’s in-
volved. The two resonance poles approach each other in the
complex energy plane and undergo an avoided crossing as a
function of the coupling parameters. As a result of this
“resonance trapping” effect, the larger resonance gets even
larger for increasings and will form a background, on top of
which an increasingly narrow resonance is situated[15].

For the present system, the interacting resonances can be
completely characterized in terms of scattering wave func-
tions that can be unambiguously determined theoretically
(see inset Fig. 4). Resonances that undergo a complete evo-
lution from Breit-Wigner resonances to a window resonance
are all associated with the second even excited state in the
cavity, while resonances that maintain their Breit-Wigner
shape are connected to transport through the transverse
ground state of the cavity. This mapping is controlled by the
amplitude p for transmission through the first transverse
mode [see Eqs.(3) and (4)]. In the case thatp2.1/2 all
resonances associated with the first mode are broader than
the resonances associated with the excited state and vice
versa forp2,1/2. For geometric reasons the scattering de-
vice studied here(Fig. 1) always favors transport through the
first cavity mode and thereforep2.1/2. In this way we ar-
rive at the remarkably simple result that all resonances asso-
ciated with a first mode feature a weakly varyingq, while all
resonances associated with the second mode undergo the
complete evolution from the Breit-Wigner to the window

limit. This one-to-one mapping is supported by the data of
Fig. 2, where only second-mode resonances(indicated by the
long tick marks) “survive” the transition ofw/d→1, while
all first-mode resonances(short tick marks) vanish in the
background of the transmission spectrum. The present obser-
vation has far-reaching implications for other systems. By
tracing the evolution of a given resonance as a function of a
control parameter the nature of the resonant channel can be
uniquely determined.

In summary, the rectangular microwave cavity attached to
two leads allows one to study the interplay between resonant
and nonresonant transport in unprecedented detail. By con-
trolled change of the opening, tuning a Fano resonance from
the Breit-Wigner limit to the window resonance limit has
become possible. Fano resonances can be used to accurately
determine the degree of decoherence present in a scattering
device. Nonmonotonic behavior of resonance parameters can
be related to avoided crossings between interacting reso-
nances, which can be unambiguously associated with differ-
ent resonant modes of the cavity. The latter feature is a con-
sequence of the separability of the wave function in the
closed cavity. Future investigations along these lines for non-
separable chaotic cavities promise new insights into the reso-
nance dynamics of open chaotic systems.
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