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Tunable Fano resonances in transport through microwave billiards
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We present a tunable microwave scattering device that allows the controlled variation of Fano line shape
parameters in transmission through quantum billiards. Transport in this device is nearly fully coherent. By
comparison with quantum calculations, employing the modular recursive Green’s-function method, the scat-
tering wave function and the degree of residual decoherence can be determined. The parametric variation of
Fano line shapes in terms of interacting resonances is analyzed.
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Asymmetric Fano line shapes are a ubiquitous feature ofn contrast to recent investigations of mesoscopic dots and
resonance scattering wheat leasy two different pathways single-electron transistor®,12,19, where comparison be-
connecting the entrance with the exit channel exist. Fan@veen theory and experiment has remained on a mostly
resonances have been observed in a wide array of differegjualitative level, our model system allows for a detailed
subfields of physics starting with photoabsorption in atomsyuantitative analysis of all features of tunable resonances.
[1-3], electron and neutron scatterifg,5], Raman scatter- Our microwave scattering device consists of two commer-
ing [6], photoabsorption in quantum well structur€g, cially available waveguidegheight h=7.8 mm, width d
scanning tunnel microscopy8], and ballistic transport =15.8 mm, and length=200 mm) which were attached both
through quantum dotgartificial atoms” [9-12. Interest in  to the entrance and the exit sides of a rectangular resonator
observing and analyzing Fano profiles is driven by their highheight H=7.8 mm, width D=39 mm, and lengthL
sensitivity to the details of the scattering process. For ex=176 mm). At the junctions to the cavity metallic dia-
ample, since Fano parameters reveal the presence and thBragms of different openings were insert@dg. 1). The
nature of differentnon) resonant pathways, they can be usedmicrowaves with frequencies between 12.3 and 18.0 GHz,
to determine the degree of coherence in the scattering devicghere two even transverse modes are excited in the cavity
This is due to the fact that decoherence converts Fano res@nd one transverse mode in each of the leads, are coupled
nances into the more familiar limiting case of a Breit-Wignerinto the waveguide via an adaptor to ensure strong coupling.
resonance. Furthermore, they provide detailed information The experimental results are compared with the predic-
on the interaction between nearby resonances leading ftfons of the MRGM. We solve th& matrix for the single-
“avoided crossings” in the complex plarj@3,14, and to  particle Schrodinger equation for this “quantum dot” by as-
stabilization of discrete states in the continu(fresonance suming a constant potential set equal to zero inside and
trapping”[15,18).

Exploiting the equivalence of the scalar Helmholtz equa-
tion for electromagnetic radiation in cavities with conducting (a)
walls and the Schrddinger equation subject to hard-wall
boundary condition§17], we have designed a scattering de-
vice (Fig. 1) that allows the controlled tuning of Fano reso- d .
nances for transport through quantum billiards. The evolu-
tion of the Fano parameters as a function of the tuning
parameter, in the present case the degree of opening of the
leads, can be traced in unprecedented detail, since decoher-
ence due to dissipation is kept at a low level. By comparison
with calculations employing the modular recursive Green'’s
function methodMRGM) [11,18, the parametric variation
of Fano resonances and the degree of decoherence can be
quantitatively accounted for. Furthermore, the relevant path-
ways can be unambiguously identified in terms of wave
functions representing the contributing scattering channels.
Due to the equivalence between microwave transport and
s!ngle-electror) ’.“0“0” in two d|men3|0ns, our device also FIG. 1. (Color onling (a) Schematic sketch of the rectangular
simulates ballistic electron scattering through a quantum doEavity with leads attached symmetrically on opposite sides. Ex-

changeable diaphragms at the lead junctions allows one to control

the coupling between the cavity and the leads. The open even trans-
*Electronic address: rotter@concord.itp.tuwien.ac.at verse states are indicatgtd) Photograph of the experimental setup.
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infinitely high outside a hard-wall boundary. At asymptotic {0 = (R = pvmei e 3)
distances, scattering boundary conditions are imposed on the

leads. The coupling of the leads to the cavity of lengttan ~ Because of the symmetry of the scattering device, the injec-
be varied by two diaphragms which are placed symmetrition (ejection amplitude at the lefiright) side are equal.
cally at the two lead openings. The lead widihand the Accordingly, the injection amplitude into the second even
width of the rectangular cavitlp determine how many flux- mode of the cavity is given by

carrying modes are open at a certain energy each of the O (R T2 ig?

three regionglead-cavity-leagl We consider in the follow- tiy =t3) = V(1 -pH(1 - . (4)

ing the range of wave numbers where one qux-carryingAn‘,juOgous expressions can be dedugadl] for the other
mode is open in each of the leads, while the first and Secongartial amplitudes entering Eq1). We omit a detailed de-
even transverse modes are open inside the cavity, thus pr Eription of the phases in Eq€2)—«(4) since they do not
viding two alternative pathways of quantum ransport. In or-g jicitly enter our analysis in the following. The key obser-
der to further characterize the interfering paths, we decomyaiian in the present context is that the square mogtiie
pose the transport across the cavity into a muItipIe—scatterin;;homtonica"y decreasing in between the limiting valss
series involving three piecg®0], each of which is charac- _1 tor zero diaphragm openingv=0) and s2~0 for fully
terized by a mode-to-mode transm_lss_lgmflectlor)_ampll_- open diaphragmév=d). Inserting Eqs(2)—(4) into Eq. (1),
tude or a propagatorl) the tyarggmssmn Of. the INCOMING 5" ¢losed yet complicated expression for the transmission
flux from the left into the cavityt'™, or reflection back into probability [T(e,s)| as a function of the energy and the
the leadr), (2) the propagation inside the cavity from the opening param,etes can be derived. Close to a given reso-

left to the right,G* %, or from the right to the leftG'™), and nancee" this expression can be approximated by the Fano
(3) the transmission from the interior of the cavity to the form [§i21] P PP y

right, t®, or internal reflection at each of the two vertical
cavity walls with amplituder ™. For the Green’s functions ,  le= el + q(ry(9)/22
(i.e., propagatonsG-R(xz,x ) andGRY(x, ,xg) we choose a IT(e,9)|* = R 2 >
_ _ L . [e —&(9)] +[Ti(s)/2]
mixed representation which is localxpand employs a spec- !
tral sum over transverse mode3{-?(xg,x )=GR"(x_,xz)  where s(s) is the position of theith resonancel’i(s) its
=3 |mexpliky|xr=x_|){n|, wherexg_are thex coordinates of  width, andg;(s) the complex Fano asymmetry parameter, all
the right(left) lead junction with|xg—x_|=L. The longitudi-  of which depend ors. Window resonances appear in the
nal momentum for each channelin the cavity is given by limit g— 0 while the Breit-Wigner limit is reached fdg|
k,=k?—(k%)?, with the momentunk=12¢ and the threshold > 1. It should be noted that, in generglcannot be simply
k valueski=nw/D. Decoherence due to dissipation of the identified with the ratio of resonant to nonresonant coupling
microwave power in the cavity walls can be easily incorpo-strength[22,23. Moreover, since Fano resonances can be
rated by analytically continuing, into the complex plane, identified as resulting from the interference between reso-
k,=k?-(K%)?+ik. The quantitative analysis of Fano reso- hances related to the eigenmodes in the cavity, the parameter
nances for these systems can be used to accurately determfhéepends very sensitively on the specific constellation of the

the degree of dissipation present. The multiple-scattering exnvolved resonance pol¢&4,25. Figure 2 presents both the
pansion of the transmission amplitudids then given by experimental and theoretical dependence of the transmission

probability [T|? on k (or €). In the measurement, the dia-
phragms were successively closed in steps of 1 mm. The

(5

[

T(k =tHGH Z[r(R)G(RL)r(L)G(LR)]n t® data sets of Figs. (2)-2(c) represent the transmission
=0 probability for three different values of the opening of the
=tLGR[1 - rRGRUyLGLRT LR, (1)  diaphragmsv=5.8, 8.8, and 15.8 mnrespectively. Note

. L the remarkable degree of agreement between the measured
The identification of the resonant and nonresonant pathwayg, 4 the calculated data without any adjustable parameter.

yvith help of Eq_.(_l) is. straightforward:. due to the absence of |, Fig. 2(a) wherew/d~0.37,transport is suppressed and
interchannel mixing in the rectangulre., nonchaoticcav- o giated only by resonance scattering with narrow Breit-
ity, the nonresonant cqn'trlbutl'on correspo'nd.s to theO Wigner shapes centered at the eigenenergies of the closed
term of the sum describing direct transmission while they;iary as indicated by the tick marks. With increasing

resonant contribution is made up by all multiple-bounce cony; ‘R ; P
- : . . iaphragm openinfFig. 2(b)] transport acquires a signifi-
tributions (n=1). The various amplitudes entering EQ)  cant nonresonant contribution, leading to the widening

can be parametrized in terms of four phases and two moduli§ the overlap of resonances. Finally, for fully open
[21]: the moduluss of the reflection gmplitude of the wave leads[Fig. 2(c)], w/d=1 (or s~0) resonances appear as
incoming in mode 1 and reflected into mode 1 at the leftharrow window resonances in a nonresonant continuum.
diaphragm, The trajectory of the resonance parameter as a function of
L) = gddr ) s can be both experimentally and theoretically mapped out
11 — ’ . . .
in considerable detail.
and the modulug of the partial injection amplitude of the Different types of resonances can be identified by charac-
incoming wave into the lowest mode of the cavity, correctedteristically different variations of their resonance parameters.
for the partially reflected flux, The evolution of the Fano parameter as a functiowtd (or
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mode number n=kd/z FIG. 4. (Color onling Real part of the asymmetry parameter
|Re(q)| as a function of the diaphragm openingd. The data rep-
resent fits to the experiment. Solid circles(epen trianglesA)

‘correspond to resonances originating from the fisgtcongl even
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FIG. 2. Total transmission probabilit§f*®(y2ed/,w/d) for
transport through the rectangular cavity with three different open
ings of the diaphragmsta) w/d=37%, (b) w/d=56%, and(C)  q4\ity eigenstate. Typical wave functiof(x,y)[? for these two
w/d=100%. For better comparison, the experimental and the calz|agqes of resonances are shown in the inset. The « resonances al-

culated results are shown as mirror images. The positions of aUvays keep arfRe(g)|> 10, above which the Fano resonances are
eigenstates in the closed cavity are indicated by the gray tick mark§,ery close to the Breit-Wigner line shapRe(q)=]. The A reso-

Eor j‘” the calculated curves shown, a damping constank of 50065 undergo a complete evolution from Breit-Wigner to window
=10" was used. type asw/d varies between 0 and 1.

s) for one resonance is highlighted in Fig. 3. The transitionminimum, is very sensitive to any noninterfering incoherent
from a narrow Breit-Wigner resonance via a somewhat Widebackground, we can determine an upper bound for the damp-
asymmetric Fano profile to a window resonance is clearlylng by comparison between experiment and theory to be
observable. The good agreement with theory allows one tq<104 As illustrated in Fig. 3, even a slightly larger value
accurately determine the degree of decoherence present @ =103 would drastically deteriorate the agreement be-
the experiment. As the Fano profile, in particular, near itsyween experiment and theory. In line with the value
; =10 we obtain an imaginary part of the complex Fano
1-0-_ w/d=100% parameter for systems without time-reversal symmgis]

. ® out of our fitting procedure as Im=<0.1. We note that by
£ " W/d=68% X using superconducting cavities could still be further re-
=~ 0.6 N 2 duced[26], however with only limited influence on the re-
C 0.4+--~~ tea’ 3 sult, since we have already nearly reached the fully coherent
______ f;—’ w/d=43% g limit.
Ji ‘.:,/ w/ad=30% ~ Following the parametric evolution of a large number of

resonances we find a characteristic pattern of Fano resonance
parametergFig. 4). As example we show the evolution of
theq parameter as a function of the openingd. Obviously,
— two distinct subsets of resonances appear in the rectangular
@ billiards: one set is characterized by a large and only weakly
3 dependent asymmetry parametgrA second set of reso-
nances features a strongly varyiggon the log-scalefrom
large values near the Breit-Wigner limit to values close to
1-5'00 1_5'05 1_5'10 1_5'15 g=~0 for wide opening, y_|eld|ng qwmdow resonance. For
mode number n=kd/z these. resonances, the widkhfirst increases WItI’W/.d in-
creasing from close to 0, then reaches a local maximum, and
FIG. 3. Fano resonance near the second even excited transverd@ally decreases slightly whem/d— 1 (not shown. A simi-
mode atkd/m~1.5095. Experimental and theoretical results for |ar nonmonotonic behavior df was recently observed in a
four different cavity openingéw/d) are shown. Curves with equal Single-electron transistor experime®. Such features can
w/d ratio are displayed in the same line styelid, dashed, dotted, be understood in terms of avoided crossings in the complex
and dash-dotted For all calculated curves a damping facter — plane[13,14 between interacting resonances. While the von
=10"*was used, except for the additional gray dashed curve showNeumann—-Wigner theorerf27] for bound states predicts
for which k=10"% andw/d=0.68. avoided crossings between states of the same symmetry and
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thus a nonmonotonic variation of the eigenenergy, interactindgjmit. This one-to-one mapping is supported by the data of
resonances can also display avoided crossings on the imagfig. 2, where only second-mode resonan@edicated by the
nary axis, i.e., exchange of the width of resonances and thygng tick marks “survive” the transition ofw/d— 1, while
leading to a nonmonotonic behavior of one of s in- 5 first-mode resonanceshort tick marks vanish in the
volved. The two resonance poles approach each other in the, o\ qround of the transmission spectrum. The present obser-
complex energy plane and undergo an avoided crossing aSAtion has far-reaching implications for other systems. By

function of the coupling paramete: As a result of this acing the evolution of a given resonance as a function of a
“resonance trapping” effect, the larger resonance gets evehacing 9

larger for increasing and will form a background, on top of co_ntrol parametgr the nature of the resonant channel can be
which an increasingly narrow resonance is situgtes). uniquely determined.

For the present system, the interacting resonances can be In summary, the rectangular microwave cavity attached to
completely characterized in terms of scattering wave functwo leads allows one to study the interplay between resonant
tions that can be unambiguously determined theoreticalland nonresonant transport in unprecedented detail. By con-
(see inset Fig. ¥} Resonances that undergo a complete evotrolled change of the opening, tuning a Fano resonance from
lution from Breit-Wigner resonances to a window resonancehe Breit-Wigner limit to the window resonance limit has
are all associated with the second even excited state in thsecome possible. Fano resonances can be used to accurately
cavity, while resonances that maintain their Breit-Wignerdetermine the degree of decoherence present in a scattering
shape are connected to transport through the transvergrvice. Nonmonotonic behavior of resonance parameters can
ground state of the cavity. This mapping is controlled by thepe related to avoided crossings between interacting reso-
amplitude p for transmission through the first transversepances, which can be unambiguously associated with differ-
mode [see Eqs(3) and (4)]. In the case thap?>1/2 all  ent resonant modes of the cavity. The latter feature is a con-
resonances associated with the first mode are broader thagguence of the separability of the wave function in the
the resonances associated with the excited state and Viggsed cavity. Future investigations along these lines for non-
versa for_p2< 1/2. For geometric reasons the scattering deseparable chaotic cavities promise new insights into the reso-
vice studied heréFig. 1) always favors transport through the nance dynamics of open chaotic systems.
first cavity mode and therefong?>1/2. In this way we ar-
rive at the remarkably simple result that all resonances asso- We thank D.-H. Kim, C. Miller, E. Persson, I. Rotter, C.
ciated with a first mode feature a weakly varyiggwhile all ~ Stampfer, and L. Wirtz for helpful discussions. Support by
resonances associated with the second mode undergo ttiee Austrian Science Foundatig@rant No. FWF-SFB016
complete evolution from the Breit-Wigner to the window is gratefully acknowledged.
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