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Statistics of transmission eigenvalues in two-dimensional quantum cavities:
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We investigate the statistical distribution of transmission eigenvalues in phase-coherent transport through
quantum dots. In two-dimensional ab initio simulations for both clean and disordered two-dimensional cavi-
ties, we find markedly different quantum-to-classical crossover scenarios for these two cases. In particular, we
observe the emergence of “noiseless scattering states” in clean cavities, irrespective of sharp-edged entrance
and exit lead mouths. We find the onset of these “classical” states to be largely independent of the cavity’s
classical chaoticity, but very sensitive with respect to bulk disorder. Our results suggest that for weakly
disordered cavities, the transmission eigenvalue distribution is determined both by scattering at the disorder
potential and the cavity walls. To properly account for this intermediate parameter regime, we introduce a
hybrid crossover scheme, which combines previous models that are valid in the ballistic and the stochastic

limit, respectively.
DOI: 10.1103/PhysRevB.75.125312

Shot noise, i.e., the fluctuations of the current due to the
statistical nature of charge transport, has recently become an
intensively studied subject matter in the field of mesoscopic
physics. This phenomenon was investigated on a macroscale
almost a century ago,' and interest in it has recently wit-
nessed a revival (see Ref. 2 for an introduction to this topic
and Ref. 3 for an extensive review). On the experimental
side, modern semiconductor fabrication techniques have al-
lowed for high-precision experiments of quantum shot
noise.* On the theoretical side, it was demonstrated that
these measurements allow to extract detailed information on
microscopic transport mechanisms, which are difficult to ac-
cess otherwise.!03?

Since shot noise on the mesoscopic scale is due to the
quantum (probabilistic) nature of transport, a suppression
of shot noise has been predicted'® as transport becomes
more classical (or deterministic); i.e., when the ratio of the
Fermi wavelength Ny to the linear cavity size L vanishes,
Np/L—0. Whereas this prediction has meanwhile been
numerically'9-2123-232829 a5 well as experimentally® con-
firmed, it is still a subject of debate how to identify signa-
tures of the different sources of noise in this quantum-to-
classical crossover. On the theoretical side, different
analytical predictions describe the quantum-to-classical
crossover for cavities with ballistic scattering (off smooth
potential or boundary profiles)!®??>-2* or with disorder scat-
tering (off short-range impurities or rough boundaries).!”->
In ballistic dots, the crossover to the noiseless classical re-
gime is anticipated to be mediated by ‘“noiseless scattering
states.”?? The separation of phase space in noiseless classical
(i.e., deterministic) and noisy quantum channels is in sharp
contrast to the case of cavities with bulk disorder, where all
transporting channels are expected to contribute to shot
noise. 324262833 Testing the validity of these theories has
turned out to be a major challenge: Measurements suffer
from limited accuracy and seem to be able to explore only
the onset of the quantum-to-classical crossover where dif-
ferent models are difficult to distinguish from each other.?
Also numerical simulations for two-dimensional (2D)
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transport'>212330  guffer from slow convergence for
Ag/L— 0, which reason has prevented a detailed test of dif-
fering predictions in that limit. To circumvent this problem
an open dynamical kicked rotator model has recently been
used to mimic chaotic as well as stochastic scattering in a
one-dimensional system.?*>+2829 While being computation-
ally more easily tractable, especially in the semiclassical re-
gime of small A, these stroboscopic models, however, do
not fully incorporate features of 2D transport which contrib-
ute significantly to the shot noise as, e.g., whispering gallery
modes?® and an accurate description of diffraction at the dot
openings or at a bulk disorder potential.?>3

The aim of the present paper is to provide such a 2D
transport simulation in the quantum-to-classical crossover re-
gime. Our calculations are performed within the framework
of the modular recursive Green’s function method.** In our
single-particle model, the effects of finite temperature and
electron-electron interaction are neglected. Finite tempera-
tures would lead to a crossover from shot noise to thermal
noise, and inelastic electron-electron interactions would in-
crease the noise.'*!7 The effect of both mechanisms can,
however, be controlled in the experiment by reducing the
temperature and system size down to a regime where inelas-
tic scattering sources can be neglected.*%’ We study cavities
with N open channels in each of the two attached leads of
equal widths (injection from the left) and characterize the
transport problem by the transmission (¢) and reflection (r)
matrices of dimension N XN. Following the Landauer-
Biittiker theory, the transmission eigenvalues 7, of the
matrix ¢ determine the average current, (I)=Au>,T,, and
the shot-noise power,'> S={(I*))=Au=,T,(1-T,) (assuming
e=h=1 and a chemical potential difference Ay between the
two leads). Since all higher cumulants of the current, ((I)),
are also determined by the eigenvalues T,,, knowledge of the
distribution function of the eigenvalues, P(T), allows us to
obtain the full counting statistics of the transport problem.*’
The distribution P(T) will be at the center of our attention in
the present paper, as different mechanisms of transport leave
conspicuous signatures on its functional form. It was first
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FIG. 1. (Color online) Integrated distribution function of transmission eigenvalues, /(7). Top row: Rectangular billiard with tunable
shutters (see inset in Fig. 2). (a) Crossover from large to small shutter openings (at zero disorder, V,=0): I(T) for w/d=0.5, 0.4, 0.3, and 0.2
(top to bottom). (b) Crossover from clean to disordered samples (at half opening, w/d=0.5): I(T) for different disorder potentials V=0,
0.03EF, 0.05EF, and 0.1ER (top to bottom). The pronounced difference between (a) and (b) near T=1 is highlighted in the insets. Bottom
row: I(T) for (c) the circular- and (d) the stadium-shaped geometry for different values of k. In (c), we average over the intervals
45<N<50, 30<N<35, 20<N<25, I0<N<15, and 1<N<35 (top to bottom), and in (d) N=25, 10<N<15, and 1 <N<5 (top to
bottom), where N is the number of open lead modes. The RMT limit is indicated by black lines.

pointed out for the case of a diffusive wire that this system’s
eigenvalue distribution function features a bimodal distribu-
tion with maxima near values of very high (T~ 1) and very
low (T=0) transmission, respectively.!'%!! The effects of this
feature on the suppression of noise have been predicted' and
successfully measured in the experiment,*~¢ as well as simu-
lated numerically.?! For classically chaotic rather than diffu-
sive systems with N> 1 and time-reversal symmetry, random
matrix theory (RMT) predicts P(T) to follow also a bimodal
universal form,3°

Prur(T) =77 [T(1 -T2, T e[0,1]. (1)

For ballistic cavities, the quantum-to-classical crossover of
this eigenvalue distribution is predicted to proceed via
“noiseless states,”2224

PXT) = aPryr(T) + (1 = a)[ D)+ 5(1 -T7)]2. (2)

Noiseless (or deterministic) transport channels with eigen-
values 0 or 1 and weight (1-a) [represented by the last two
terms in Eq. (2)] are expected to appear as soon as the clas-
sical transmission bands®® in phase space can be resolved by
the quantum scattering process.”?> For a chaotic system, the
continuous crossover parameter « € (0,1) was predicted!® to
scale as a=exp(—7z/7p), with 7, being the dwell time and
75 the Ehrenfest time in the cavity. The latter estimates the
time that it takes for a well-localized quantum wave packet
to spread to the size d of the cavity (d=~ A, with A the area
of the dot) due to diverging classical trajectories. With the
help of the Lyapunov exponent A, which measures the rate
of this divergence, the Ehrenfest time is typically estimated

to be’” 7z~ A" In(d/\z). Note, however, that this estimate
requires corrections for regular or weakly chaotic systems.>
In the presence of a uniform disorder with a correlation
length smaller than the electron wavelength N (“short-range
bulk disorder”), the formation of noiseless states is sup-
pressed by stochastic scattering. Also, the trajectory-based
concept of the Ehrenfest time as a crossover parameter
breaks down here, leading to a different crossover form, 20

1 2/, 1-(1+2 In B)
(1 — u)?|ul
PA(T) = Pryr(T)1 d

3)

The crossover parameter B=exp(-7y/7p) € (0,1) features
the characteristic scattering time T, which measures the
time within which an initially well-localized wave packet is
stochastically scattered into random direction. Note that the
stochastic crossover, Eq. (3), interpolates between the same
limiting cases Pryr (for —1) and P,=[8(T)+8(1-T)]/2
(for B—0, i.e., vanishing disorder) as the ballistic crossover
in Eq. (2).

We now search for signatures of these two crossover sce-
narios in the numerical results for P(T). To this end, we
calculate transport through a rectangular cavity (see inset in
Fig. 2) with area of d X 2d and two tunable openings (“‘shut-
ters”) of width w (inspired by recent shot-noise
experiments®). The cavity interior contains a static bulk
disorder potential V with a mean value (V)=0 and a
correlation function (V(x)V(x+a))=(V?)exp(-a/ls). The
correlation length /- is smaller than the Fermi wavelength,
lc/Np=0.12, and the potential strength VO:\,/W corre-
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sponds to moderate disorder, Ve [0,0.1]X Ey (for details
on the disorder potential, see Ref. 25). In the limit of van-
ishing disorder strength (V,— 0), the motion inside the rect-
angular cavity becomes completely regular.

We calculate 400 equidistant points in the interval
kr€[40.1,40.85] X 7r/d. In order to better resolve the be-
havior of P(T) near T=1, we plot the integrated eigenvalue
distribution®*?® [(T)= [}P(7)d. For cavity parameters favor-
able to the appearance of noiseless scattering channels, i.e.,
vanishing disorder (V,=0), large openings (w=d/2), and
large kp, we find that I(T) features a very pronounced offset
at T=1 [see Fig. 1(a)], corresponding to a statistically sig-
nificant portion of effectively noiseless eigenvalues
T>0.999. To verify whether these “classical” transmission
eigenvalues are indeed due to direct scattering processes, we
control their weight by gradually decreasing the cavity open-
ings w [Fig. 1(a)]. Reducing w decreases the offset and
gradually shifts the distribution P(7T) toward its RMT limit
[Eq. (1)] for w—0. This behavior is all the more interesting
as our sharp cavity openings do give rise to diffractive
scattering,”>3% which might suppress the formation of noise-
less states. Our observation suggests, however, that noiseless
transmission can still occur when scattering states effectively
bypass any diffractive corners.?®?® To further test this hy-
pothesis, we now gradually turn on the bulk disorder strength
up to values of V(,=0.1 X Eg. Bulk disorder cannot be by-
passed by any transmitting state and should therefore destroy
the noiseless channels and, consequently, the offset
in I(T). We find that already a small disorder potential
(Vy=0.03 X E) suppresses the offset in I(T) entirely [Fig.
1(b)]. With higher values of V;, we reach the RMT limit for
I(T). The striking difference between the ballistic [Fig. 1(a)]
and the stochastic crossover [Fig. 1(b)] is best visualized by
zooming into the distribution I(7) at values close to T=1,
where the gradual vs “sudden” suppression of the offset be-
comes most apparent [see insets in Figs. 1(a) and 1(b)]. The
observation that /(T) depends on the specific character of the
diffractive scattering (“bulk vs surface disorder”) is in line
with recent investigations.'>?4-2633 The present results dem-
onstrate how these different noise sources influence the
emergence of noiseless scattering states in a genuine 2D sys-
tem.

To analyze our findings quantitatively, we compare our
numerical results for the eigenvalue distribution P(T) with
the analytical predictions of Egs. (2) and (3). Note, however,
that in our cavities, there will always be contributions from
ballistic and stochastic scattering sources, rather than from
either source alone. Stochastic scattering events do occur for
any variation of the potential on a scale smaller than A, such
as sharp cavity openings or short-range bulk disorder. Ballis-
tic broadening of wave packets is induced by scattering at
the cavity walls, which, except for the openings, are always
chosen to be sufficiently “smooth.” Particularly, in the re-
gime of weak disorder, both mechanisms will leave their
signatures on the transmission eigenvalue distribution. To
properly account for these signatures, we propose to merge
the crossover models [Egs. (2) and (3)] in the following way:
We start from the crossover model for a ballistic system,
PY(T) [Eq. (2)], which correctly describes the appearance of
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FIG. 2. (Color online) Evolution of the crossover trajectories in
the parameter space («,f3), obtained by fitting Eq. (4) to the data
displayed in Figs. 1(a) and 1(b). Starting parameters of both trajec-
tories: w/d=0.5 and V=0. Trajectory 1 for fixed w/d=0.5 (orange
triangles): V(=0.03Er, 0.05Er, and 0.1E. Trajectory 2 for fixed
V=0 (blue circles): w/d=0.4, 0.3, and 0.2. Inset: Rectangular cav-
ity with tunable shutter openings and disorder strength.

noiseless channels in the absence of bulk disorder [Fig. 1(a)].
Introducing disorder is expected to affect (a) the noisy as
well as (b) the noiseless part of P*(T) and will furthermore
induce (c) flux exchange processes between these two com-
ponents. The effect of the disorder on (a) and (b) is suggested
by Eq. (3): Whereas the indeterministic, intrinsically noisy
channels Pgyp(7) in (a) should remain unchanged, the deter-
ministic distribution P(T) in (b) is expected to evolve as
described by PA(T) in Eq. (3). The flux exchange between
the two phase-space components (c) is stochastic and should
mutually balance. This suggests the following crossover
model for cavities with both ballistic and stochastic scatter-
ing sources:

P*H(T) = aPgyr(T) + (1 - &) PA(T). 4)

This “hybrid” crossover model should serve as a good start-
ing point for analyzing the case of weak disorder
scattering,* allowing us to quantify the crossovers [Figs.
1(a) and 1(b)] in the 2D parameter space of a, 8 (0,1) (see
Fig. 2). Note that the classical (i.e., deterministic) limit in
this 2D space corresponds to the point (a=£B=0), whereas
the quantum or RMT limit is represented by the lines of the
parameter space at a=1 (ballistic “quantum chaos”) and at
B=1 (stochastic “quantum disorder”). For the shot noise
Fano factor F our hybrid model translates to the crossover
F=(1/4)X(l-alnB)/(1-1n B), thereby  reproducing
F=al4 in the absence of stochastic scattering (8— 0) and
F=(1/4)/(1-1In B) in the absence of ballistic scattering
(@—0). Fitting our numerical results for P(T) [Figs. 1(a)
and 1(b)] by Eq. (4) allows us to describe the crossover in
terms of different trajectories in the («, 8) parameter space.
In the absence of bulk disorder, the trajectory for decreasing
shutter openings (i.e., increasing dwell time) features small 8
as it approaches the RMT limit. On the other hand, increas-
ing the disorder potential V|, results in the approach of the
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RMT limit through a rapid increase in 8 while « tends to
zero [indicating the mergence of the two separate phase-
space components (a) and (b) for increasing V,]. Note that
with Eq. (4), we can directly quantify the signatures that
either ballistic or stochastic scattering in 2D cavities leaves
on P(T).

At this point, the question suggests itself whether the
above differences in the crossover behavior leave clear sig-
natures in any of the cumulants ({(/")) that might be acces-
sible experimentally. For “symmetric” cavities with an equal
number of incoming and outgoing channels, we have already
found previously? that such differences are hard to pin down
in the shot noise (i.e., in the second cumulant, m=2). A
straightforward evaluation of ((I")) for all m [using our
numerical data from Figs. 1(a) and 1(b) or, alternatively,
Egs. (2) and (3)] reveals that the above differences in the
crossover do not lead to characteristic signatures in any of
the individual current cumulants. Rather than appearing in
individual cumulants explicitly, the characteristic differences
in the values of P(T) near T=0,1 seem to be distributed
over all even cumulants of the current [the odd cumulants are
strongly suppressed due to the symmetry of P(T) with re-
spect to (T)=~0.5]. A possible strategy to circumvent this
limitation would be to resort to cavities with different de-
grees of opening to the left and right reservoirs. In such
“asymmetric” cavities,'®?%?7 the internal cavity dynamics is
expected to leave clear signatures already on the third cumu-
lant, a quantity which recently could be accessed experimen-
tally in tunnel junctions.’

We also probe for the influence of the underlying chaotic
classical dynamics on the transmission eigenvalue statistics
at vanishing bulk disorder (following previous investigations
on shot noise!*22>-30) To this end we contrast the transport
properties of a circular and a stadium billiard [see insets in
Figs. 1(c) and 1(d)]. Due to the classical scaling invariance
of ballistic billiards with constant potential in the interior, we
can probe the quantum-to-classical crossover, #i.— 0, by the
limit kp—. Although numerically very demanding, we
study the regime*! of comparatively long dwell time 7, to
assure a sufficiently “universal” behavior. For the circular
billiard, we can reach 50 open lead modes, whereas for tech-
nical reasons, only half as many modes can be accessed for
the stadium.>* Both geometries feature a fourfold symmetry,
for which case Pgyr [Eq. (1)] applies also for low mode
numbers®? N. Deviations from Pgyp can therefore be inter-
preted as contributions of noiseless channels.

Remarkably, for the low-energy interval kpe[1,5]w/d,
we find excellent agreement between the numerical distribu-
tion /(7) and its RMT prediction for borh the stadium and the
circle billiard [see Figs. 1(c) and 1(d)]. Differences between
regular and chaotic dynamics do not leave any imprint on
I(T). At higher electron energies (or smaller wavelengths),
the onset of noiseless scattering is similarly reflected in I(7)
for both geometries [Figs. 1(c) and 1(d)], irrespective of the
classical chaoticity or the lack thereof. This finding points to
the conclusion that the appearance of the first noiseless states
is uniquely determined by the requirement that quantum me-
chanics can resolve the largest classical transmission band in
phase space.???* Since both geometries feature the same lead
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FIG. 3. (Color online) Circular billiard (no disorder). Top bar:
Classical Poincaré surface of section [transmitted (reflected) trajec-
tories represented by black (white) regions]. Bottom bars: Cumula-
tive Husimi distributions H(x,p) of strongly transmitted scattering
states [Eq. (5)]. H(x,p) is shown for specific mode intervals N, and
black frames indicate the size of the Planck cell 4. For N=24, the
largest transmission band (see central black region in the Poincaré
surface) is larger than / and can be resolved by the quantum scat-
tering process. Above this threshold, noiseless scattering states ap-
pear in H(x,p) in form of pronounced density enhancements near
the largest transmission bands.

width d, which controls the size of these transmission bands,
noiseless states should appear at approximately the same kg
for both cavities.

To further investigate this issue, we demonstrate the quan-
tum resolution of the classical phase space explicitly. To this
end, we compare the Husimi distributions of scattering states
with the Poincaré surface of section recorded at the entrance
lead mouth.?*3° We calculate the cumulative Husimi function
containing those eigenstates |T;) of 'z, which correspond to
the largest transmission eigenvalues 7; within a given energy
interval:

M M
H(x.p) =2 Hix.p) = 2 (T|x.p)l. (5)

x,p) is a coherent state of minimum uncertainty with its
peak at the position x,p and the number of eigenstates |7})
that contribute to the above sum is chosen as M=2N (N the
number of open transport channels). In line with our calcu-
lations for the integrated eigenvalue distribution I(T) (see
Fig. 1), we now probe how electron energy, cavity opening,
and disorder strength affect the distribution H(x,p). In the
circular billiard, we probe the quantum-to-classical crossover
by evaluating H(x,p) in specific mode intervals N, corre-
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FIG. 4. (Color online) Rectangular billiard with tunable opening
(no disorder, same color coding as in Fig. 3). Top two bars: Large
shutter openings, w/d=0.4. Bottom two bars: Weakly open shutters,
w/d=0.2. Decreasing the shutter opening below the threshold value
w/d=~0.32 (where the size of the Planck cell & is equal to the
largest transmission band) reduces any pronounced enhancements
in the Husimi distributions H(x,p).

sponding to different electron energies (200 equidistant en-
ergy points per mode interval are calculated). We find that
for low mode numbers, H(x,p) covers large parts of phase
space more or less uniformly (see Fig. 3). For higher mode
numbers, H(x,p) shows a drastic enhancement near the larg-
est transmission bands in phase space and a strongly reduced
amplitude elsewhere. Comparing the size (area) of the
Planck cell 4 (indicated by the black frames in Fig. 3) to that
of the largest transmission band (see the central black region
in the classical Poincaré surface), we obtain an estimate for
the threshold value above which noiseless scattering should
appear. For the circular billiard, this threshold is given by
kp=24m/d (i.e., N=24), at which value the largest trans-
mission band and A& become equal in size.*> This estimate
indeed accurately predicts above which value of N our nu-
merical results for H(x,p) (Fig. 3) show significant enhance-
ments near the largest transmission bands.

We now perform a similar analysis for the tunable rect-
angle. For this cavity, we keep the electron energy fixed in
the averaging interval kp e [40.1,40.85] X 7/d and vary the
cavity opening w or, alternatively, the disorder strength V.
By tuning the cavity openings at fixed energy, we change the
size of the largest transmission band at a fixed value of A.
When these two phase space areas are equal in size, we
obtain a threshold value for the appearance of the first noise-
less state in terms of the cavity opening: w/d=~0.32. Com-
paring this estimate with our numerical results for H(x,p)
(see Fig. 4) again yields very good agreement: Whereas for
an opening of w/d=0.2<0.32 the Husimi function H(x,p)
looks rather flat (Fig. 4, bottom), very clear enhancements
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FIG. 5. (Color online) Rectangular billiard with tunable bulk
disorder (fixed opening ratio w/d=0.3, same color coding as in
Fig. 3). Top two bars: No disorder. Bottom bar: Moderate disorder,
Vy=0.1EF. Bulk disorder destroys the appearance of noiseless states
due to stochastic scattering.

around the largest transmission band appear for w/d=0.4
>0.32 (Fig. 4, top). In Fig. 5, we demonstrate that bulk
disorder in the cavity destroys any noiseless states by
strongly reducing any pronounced enhancements, which
would otherwise be present in H(x,p). We finally note that in
all of the above cases (Figs. 3-5), drastic enhancements in
H(x,p) always come along with a corresponding offset in the
integrated eigenvalue distribution /(7) and vice versa. This
evidence should unambiguously document the presence of
noiseless scattering states in 2D cavities.

To summarize, we have identified signatures of ballistic
and stochastic scattering in the quantum-to-classical cross-
over of clean and disordered samples. We propose a model
for the transmission eigenvalue distribution P(7), which
combines previous approaches for the ballistic and disor-
dered 1imit>*?® and which allows us to extract the contribu-
tions of different noise sources to our numerical results for
P(T). We provide evidence for noiseless scattering states>?
clean, genuine 2D cavities and confirm the corresponding
decomposition of the electronic flow in a classical and a
quantum component.”* The emergence of noiseless states is
found to be determined by the size of the largest classical
transmission band*® in phase space. The latter quantity, in
turn, depends on the system specific geometry of the cavity
and not necessarily on its chaoticity or on the lack thereof. In
the presence of bulk disorder, noiseless scattering states dis-
appear due to stochastic scattering, as previously
anticipated.?®
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