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Abstract – We investigate the distribution of the lowest-lying energy states in a disordered
Andreev billiard by solving the Bogoliubov-de Gennes equation numerically. Contrary to
conventional predictions we find a decrease rather than an increase of the excitation gap
relative to its clean ballistic limit. We relate this finding to the eigenvalue spectrum of the
Wigner-Smith time delay matrix between successive Andreev reflections. We show that the longest
rather than themean time delay determines the size of the excitation gap. With increasing disorder
strength the values of the longest delay times increase, thereby, in turn, reducing the excitation gap.
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A small metallic grain connected to a superconductor,
commonly referred to as “Andreev billiard” (AB) [1],
features very intriguing electron dynamics that has been
the focus of numerous studies, both theoretical and exper-
imental [2–28] (for a review see [29]). The energy spectrum
in such a grain is strongly influenced by the process of
Andreev reflection of quasi-particles at the contact
between the superconductor and the normal metal. At
this “SN interface” an incoming electron with energy ε
(counted from the Fermi energy EF) is back-reflected as
a “hole” with energy −ε and nearly opposite momen-
tum [1,30]. Such Andreev reflections result in the coupling
between electron and hole excitations in the normal metal
resembling those of electron-hole states in superconduc-
tors. In particular, the density of states (DOS) near
the Fermi edge (EF) is reduced and may exhibit an
“excitation gap” (E1). Details of this reduced DOS are
determined by the dynamics in the Andreev billiard
which, in turn, depends on the boundary geometry, the
position of the SN interface and on the potential surface
in the AB. The distance E1 of the first excited state in
the grain (“billiard”) from the Fermi level (set equal to
zero in the following) marks the size of the excitation
gap in the energy spectrum. While being much smaller
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Fig. 1: (Color online) (a) Geometry of an Andreev billiard (AB)
consisting of a rectangular normal (N) conductor of dimension
(1.5W , 3W ), where W is the width of the junction with
the superconductor (S). The dotted (dashed) line depicts the
electron (hole) part of a periodic electron-hole orbit created by
Andreev reflection at the SN interface. (b) A sample realization
of the landscape of the disorder potential inside N.

than the bulk gap ∆ of the superconductor, E1�∆,
E1 may considerably exceed the mean level spacing
δ, i.e. the average energy distance between adjacent
eigenstates, thus signalling the appearance of a gap.
Qualitative insights into the origin of spectral features

in an Andreev structure, in particular the appearance
of a gap, can be gained from a semiclassical analysis.
The semiclassical Bohr-Sommerfeld (BS) approximation
[10,11,15,18,27] allows to relate Andreev-reflected periodic
orbits with the energy levels of the Andreev billiard (see
fig. 1(a)). An energy eigenstate corresponds to a standing
wave along such a periodic electron-hole orbit with the
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action difference between electron and hole being quan-
tized. This simple picture implies that the lowest energy
E1 in the AB (i.e. the excitation gap) will be inversely
proportional to the length of the longest electron-hole
trajectories. As instructive as the BS approach may
be, it suffers from serious limitations, resulting from
the assumption of strictly retracing electron-hole orbits.
Corrections are due to short-range scattering off dis-
order [4,9,14,23], quantum diffraction [11,16,19,22,23,28],
deviations of the Andreev reflection from perfect
backscattering [22,28] as well as due to contributions from
trajectories that do not couple to the SN interface [18,28].
These corrections may turn out to be so large as to
render a prediction for the excitation gap based on the
BS approach unreliable. For example, the formation of
a sizeable excitation gap in chaotic Andreev billiards as
predicted by the Random Matrix Theory (RMT) and
verified numerically [10], is not reproduced by the BS
approximation [13].
In a realistic metal sample brought into contact with

a superconductor, deviations from the ballistic limit by
disorder scattering play an important role. If the elastic
mean free scattering path � is smaller than the linear
dimension of the metal grain, the trajectory between
two successive Andreev reflections at the SN interface is
dominated by disorder scattering in the interior of the
grain rather than by ballistic scattering off the grain
boundaries. It has been suggested that the shortening of
electron-hole orbits or, equivalently, of the average dwell
time τd between successive Andreev reflections by disorder
scattering would lead to an increase of the excitation
gap as compared to that of a clean SN junction [3,14].
Such a trend would qualitatively be in line with recent
investigations [23] which have found that the gap in the
ensemble-averaged density of states of an AB increases as
the mean free path decreases with respect to the clean,
ballistic limit (under the assumption of constant average
dwell times τd).
In this letter, we present numerical ab initio simulations

for a two-dimensional AB with disorder, employing the
Modular Recursive Green’s function Method (MRGM) in
combination with a wave function matching technique at
the SN interface [27,31]. Disorder is represented by elastic
scattering off a potential distribution with short-range
disorder with a correlation length lV small compared to
the Fermi wavelength, lV /λF = 0.12. Decohering processes
such as inelastic scattering are neglected in the following.
We choose a rectangular normal(N)-conducting cavity

with dimensions (1.5W , 3W ) where W is the width of
the superconducting lead (see fig. 1(a)). We construct
the disorder potential (fig. 1(b)) by decomposing the N
region into two quadratic modules of dimension (1.5W ,
1.5W ) within each of which we employ a separable
random potential, Vξ(x, y) = Vξx(x)+Vξy (y) (ξx, ξy
denote two different statistical samples, jointly refereed
to as ξ ≡ {ξx, ξy}). This “trick” is employed for reasons
of numerical efficiency, in particular for small λF [31].
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Fig. 2: (Color online) (a) Disorder-averaged state counting
function, 〈N(ε)〉ξ, for four different disorder strengths V0/EF =
0.007, 0.03, 0.1 and 0.24 (colored solid lines) and Weyl estimate
(black dashed line). The two lowest-energy eigenvalues of the
disorder-free system are marked by vertical bars. (b) Evolution
of the mean gap 〈E1〉ξ (red triangles) and the root mean square
deviation (blue squares) as a function of disorder strength V0
(in units of EF). Horizontal lines mark the RMT predictions.
(c) Statistical distribution of the lowest eigenvalue E1 for four
disorder strengths V0 (colored lines) compared with the RMT
distribution (black line). (d) Dependence of the Wigner-Smith
delay times on disorder strength V0. Both the mean delay time,
i.e., the dwell time 〈τd〉ξ (blue squares), and the maximum
delay times 〈τmax〉ξ (red triangles) are shown. The black dashed
line shows the estimate 〈τd〉ξ = 2π/Nδ′ from [32].

We ensure truly random scattering by destroying any
unwanted separability by rotating by 180◦ the random
potentials in the two squares relative to each other
(see fig. 1(b)). The spatial correlation of the random
potential is characterized by 〈Vξ(x, y)Vξ(x+ a, y)〉x,y =
〈Vξ(x, y)Vξ(x, y+ a)〉x,y = V 20 × exp(−a/lV ), with 〈· · ·〉x,y
indicating a spatial average over the whole disorder area
and lV the correlation length. For a given realization ξ
the potential has zero spatial average, 〈Vξ(x, y)〉x,y = 0,
and an amplitude, V0 =

√〈[Vξ(x, y)]2〉x,y which is chosen
to be small compared to the Fermi energy, V0/EF � 0.2.
For V0→ 0 the dynamics in the normal-conducting part
of the AB is entirely ballistic (no disorder scattering) and
regular (due to the rectangular confinement). Calculations
are performed with N = 24 open transverse modes fitting
in the lead width W of the superconductor. The SN
interface itself is assumed to be ideal (no tunnel barrier)
and the superconducting coherence length is assumed
to be smaller than any other length parameters in the
cavity. The superconducting gap ∆ was chosen as 0.2EF
to ensure that the energy E1 of the lowest-lying eigenstate
fulfills E1�∆.
In the fully ballistic limit, i.e., in the absence of

disorder, V0 = 0, we find the lowest energy E1 to be four
times larger than the AB’s mean level spacing δ (see
fig. 2(a) for the lowest eigenenergies). To investigate
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the influence of the disorder on the energy spectrum we
now gradually increase the disorder amplitude V0. For
each value of V0 we calculate the full energy spectrum
(below the superconducting gap ∆) for 500 different disor-
der realizations ξ, and determine the ensemble-averaged
state-counting function N(ε) (i.e., the integrated DOS)
in the ensemble average. For very weak disorder strength,
V0/EF = 0.007, we find 〈N(ε)〉ξ to be still very close
to the fully ballistic limit of V0 = 0 where the spectral
density close to EF is strongly suppressed relative to
the Weyl estimate N(ε) = ρε for the DOS per unit area
ρ=meff/(π�

2) (see fig. 2(a)). Increasing the disorder
amplitude V0, however, gradually shifts N(ε) towards
the Weyl distribution (see fig. 2(a,b)). In particular,
we find the size of the excitation gap to be reduced
with increasing values of V0, rather than increased.
The reduction of E1 is a sizeable (factor 2 in the range
0� V0/EF � 0.2) and robust effect. For comparison we
also show the gap as predicted by RMT for chaotic
systems (see fig. 2(b)). These RMT estimates are based
on a numerical calculation representing the internal
dynamics of the normal conductor in the AB by an
ensemble of 8000 symmetric random matrices of size
M ×M [17]. M is assumed to scale with the ratio of
cavity circumference C to the size of the SN junction W ,
M =N ×C/W (for N = 24 modes in the SN interface
we obtain M = 216). While the RMT value of the gap,
E1 ≈ 3.28δ, is in reasonable agreement with our numer-
ical data for finite disorder strength V0 �= 0, significant
discrepancies appear for the second moment (i.e. the
variance) of the distribution

√〈E21〉ξ (see fig. 2(b,c)).
The full quantum calculation shows first a steep increase
in the variance with increasing disorder strength before
levelling off, whereas the RMT result underestimates the
width of the distribution drastically. It should be noted
that, strictly speaking, the limit of universality is only
expected to hold for M �N �N1/3� 1 [10]. The latter
limit is difficult to reach in any realistic simulation for a
two-dimensional cavity. The fact that both the gap size
and the variance stay at an almost constant value in a
whole interval of the disorder strength, 0.1� V0/EF � 0.2,
possibly points to a saturation effect due to the disorder-
induced randomization of otherwise boundary-specific
scattering dynamics. The reduction of gap size and
variance for stronger disorder, V0/EF > 0.2, may be
related to a transition from weakly disordered scattering
to diffusive or localized dynamics.
The strong reduction of the gap size with increasing

disorder points to a mechanism qualitatively different from
the behaviour of the mean dwell time 〈τd〉ξ, which is only
negligibly affected by increasing disorder (see fig. 2(d)).
To uncover the underlying physics we employ a rigorous
approach that allows to relate the energy spectrum of
a quantum system to the dwell time distribution and
does invoke neither any semiclassical approximation nor
random matrix assumptions. Key to our approach is
the relation between the Wigner-Smith (WS) time delay

matrix Q and the scattering matrix S [33,34],

Q(ε) =−i�S†(ε)∂S(ε)/∂ε. (1)

Equation (1), well known for unbound quantum systems,
can be applied to the (bound) spectrum of an AB since an
eigenstate of the AB occurs at an energy ε for which the
determinant [5]

det
[
1+S(ε)S†(−ε)]= 0, (2)

where S(ε) is the scattering matrix of the open, normal-
conducting cavity with the superconductor replaced by
a normal-conducting waveguide of identical width W .
Expanding S(ε) around the Fermi energy (ε= 0) for small
ε yields

S(ε)S†(−ε) = �+2
i

�
εQ+ . . .≈ exp

(
2
i

�
εQ

)
, (3)

and, in turn, the approximate quantization condition for
Andreev states [21]:

1+ exp

(
2
i

�
ετn

)
= 0 . (4)

The Wigner-Smith delay times τn are the eigenvalues of
Q. They correspond to “sticking” times inside the normal-
conducting cavity between entering and leaving the cavity
through the opening. Since in an AB the opening is
replaced by an SN junction, τn measures the dwell time
between two successive Andreev reflections.
The values of τn (with n�N) provide a basis-

independent measure for the sticking time of “quantum
trajectories” without invoking model-specific assumptions
or semiclassical approximations. The only limitation of
eq. (4) is the error of order O(ε2) due to the Taylor
expansion and approximate resummation of the unitary
operator S(ε)S†(−ε) (eq. (3)). Equation (4) relates the
energy spectrum at small ε to the largest delay time
eigenvalues. In particular, the size of the excitation gap
E1 is determined by the maximal delay time value τmax,
such that

E1 ≈ �π

2τmax
≡ Ẽ1. (5)

The disorder-averaged maximum delay time, 〈τmax〉ξ, is,
indeed, monotonically increasing with increasing disorder
strength V0 (fig. 2(d)). In turn, eq. (5) suggests that the
disorder-averaged gap 〈E1〉ξ will be reduced.
To probe for the correlation between maximum delay

time (τmax) and the gap size (E1) hinted at by eq. (5), we
have performed a statistical analysis of the distribution
of (E1, τmax) pairs for 500 disorder realizations (fig. 3),

converted to (E1, Ẽ1) pairs using eq. (5). For a perfect
correlation we should expect the histogram to feature non-

zero bins only along the diagonal (Ẽ1 =E1). Deviations
from a perfect correlation, resulting in part from the
Taylor expansion eq. (3), provide a measure for the

accuracy of the estimate Ẽ1 as compared to the exact
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Fig. 3: (Color online) Smoothed distribution of (E1, Ẽ1)
pairs for three different strengths of the disorder potential,
(a) V0/EF = 0.007, (b) 0.03, (c) 0.24 (500 realizations of disor-
der were used). Black crosses in the contour plot mark the

mean value of the distribution. A perfect (E1, Ẽ1) correla-
tion would correspond to a non-vanishing density only along
the diagonal (drawn in the contour plot as guide to the eye).
(d) Product of the mean gap size 〈E1〉ξ and the mean of
the maximum Wigner-Smith delay time 〈τmax〉ξ as a function
of disorder strength. The constant value �π/2 (predicted by
eq. (5)) is shown for comparison.

gap size E1. For small disorder strength (V0/EF = 0.007)

the correlation between E1 and Ẽ1 is, indeed, near-perfect
and non-zero bins occur only in a very limited range of
values E1, Ẽ1 (see fig. 3(a)). With increasing disorder
strength (V0/EF = 0.03, see fig. 3(b)) the maximum in

the distribution shifts to smaller values of E1 and Ẽ1
while remaining near the diagonal. Both observations
underscore that increased disorder decreases the gap which
is, indeed, correlated with the maximum WS time delay
eigenvalue. For much stronger disorder (V0/EF = 0.24, see

fig. 3(c)), the (E1, Ẽ1) correlation is diminished as off-
diagonal bins become more significantly populated. While,
on average, the connection between the disorder-induced
reduction of the gap and the increase of the maximal delay
time 〈τmax〉ξ still holds, see fig. 3(d), for individual strong
disorder realizations this picture breaks down and small
(large) gap sizes may well occur for systems with small
(large) values of τmax.
The present simulations allow to directly inspect the

effect of disorder scattering on the wave function densities
in the particle and hole sectors. The latter provide a
microscopic picture of the decay of correlations between
gap and maximum delay time. In the ballistic limit
V0 = 0, the electron and hole wave function tend to closely
mirror each other (fig. 4(a)) in agreement with retracing
electron and hole orbits between two Andreev reflections.
With increasing disorder the similarity between wave
components in the electron and hole sheet gradually

0
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electron

electron
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hole

Fig. 4: (Color online) Electron and hole probability densities of
the lowest Andreev eigenstate at (a) zero disorder potential, (b)
finite disorder strength V0/EF = 0.15 (one disorder realization).

disappears (see fig. 4(b)). This observation supports
the picture that for strong disorder the wave function
of the lowest AB eigenstate is largely determined by
disorder scattering in the interior rather than by Andreev
reflections at the SN interface. Accordingly, the dwell
time between two Andreev reflections looses significance.
It is now instructive to inquire into the origin of the

discrepancy to those models suggesting that the presence
of disorder induces an increase rather than a decrease of
the gap in comparison to its clean, ballistic limit [3,14].
The key here is the disparate behaviour of the maxi-
mum, 〈τmax〉ξ ≡ 〈maxn=1,N τn〉ξ, and average dwell time,
〈τd〉ξ ≡ 〈

∑N
n τn/N〉ξ, the latter of which enters refs. [3,14].

For the system under study here, disorder scattering is
obviously able to “delay” for long-lived scattering states
the interval between two successive Andreev reflections.
The presence of disorder not only increases 〈τmax〉ξ, but
also reduces the minimal delay time 〈τmin〉ξ (see fig. 5).
As a consequence, the distribution of delay times P (τn)
becomes “stretched”, while leaving the mean value 〈τd〉ξ
almost unchanged. The fact that the average dwell time
〈τd〉ξ remains almost unaffected by the increasing disorder
(see fig. 2(d)) is in agreement with a general relation [32]
between the averaged trace of the matrix Q (see eq. (1)),
〈trQ〉ξ, and the mean spacing δ′ of resonant levels in a
(normal-conducting) scattering system, 〈trQ〉ξ = 2π/δ′ or,
equivalently, 〈τd〉ξ = π/Nδ (note that δ′ = 2× δ, with δ
being the mean level spacing in the corresponding AB).
Consequently, the mean dwell time should be indepen-
dent of the disorder configuration. This is, indeed, very
accurately confirmed by our numerical results for 〈τd〉ξ
(see fig. 2(d)). In turn, 〈τd〉ξ is unsuitable for character-
izing correlations between gap size and disorder strength,
because of its independence of V0. Therefore, relating the
gap size to the mean dwell time 〈τd〉ξ also fails to account
for the gap reduction observed here1. Clearly, the present
results do not preclude an increase of the excitation gap

1We emphasize here that throughout this letter, we have used the
definition of the gap as the position of the lowest energy state in the
AB above the Fermi energy (as in [17]), and of the dwell time as the

mean of the Wigner-Smith delay times, 〈τd〉ξ = 〈 1N
∑N
n=1 τn〉ξ.
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Fig. 5: (Color online) Distribution of Wigner-Smith delay
times, P (τn) (colored lines) for an ensemble average over 500
disorder realizations ξ and different disorder strength (V0/EF =
0.007, 0.03, 0.1, 0.24). For each ξ and V0, the delay times were
evaluated at 135 different energies in an interval EF± 0.1∆.
Increasing the disorder strength V0 amplifies the long time
tail of P (τn) (main plot, logarithmic scale), but concurrently
produces much shorter delay times (see the top right inset).
The disorder-free delay times are indicated by vertical bars,
with the lowest values starting at τ ≈ 2L/vF (the time of flight
across the cavity length L= 3W and back) and the largest
value at τ ≈ 13L/vF.

with increasing disorder for particular boundary shapes,
e.g. for a gapless excitation spectrum in the absence of
disorder. The present analysis suggests, however, that also
in such systems the behaviour of the longest WS time
delay eigenvalue will control the behaviour of the gap.
The results in fig. 5 demonstrate that for a disordered

cavity the strength of the disorder (V0) does have a crucial
influence on the distribution of delay times P (τn) (in
particular for long times). For chaotic cavities it was found
both classically [35] and quantum mechanically [10,31,36]
that the long time tail of the delay time distribution
does not depend on certain system-specific parameters as,
e.g., the Lyapunov exponent. We therefore expect that
the statistical distribution of the gap size undergoes a
crossover between the present case of a disordered AB and
the case of a chaotic AB. It would be interesting to study
such a crossover numerically, e.g., by tuning the disorder
correlation length lV from the diffractive limit of lV � λF
to the ballistic (chaotic) limit of lV � λF.
With the help of fig. 5, we can furthermore explain the

loss of correlations among pairs (E1, Ẽ1) for strong disor-
der (fig. 3(c)): The amplification of the maximal proper
delay times 〈τmax〉ξ by the increasing disorder translates
into an increase of the high-frequency components in the
elements of the scattering matrix S(ε). As, however, the

estimate of the gap size, Ẽ1, relies in part on a Taylor
expansion of S(ε) (see eq. (3)) which can only capture
weakly energy-dependent (i.e., low-frequency) compo-

nents, the accuracy of Ẽ1 deteriorates with increasing

disorder strength, thereby gradually diminishing the corre-

lations among pairs (E1, Ẽ1). The behaviour of the mean

values 〈E1〉ξ and 〈Ẽ1〉ξ can be understood by considering
the distribution of values dE = (E1−Ẽ1)/2 (corresponding
to a projection of the distributions of fig. 3(a–c) on an

axis perpendicular to the diagonal E1=Ẽ1). As we
have verified numerically (not shown), the width of this
distribution, var(dE) =

√〈d2E〉ξ, increases with increasing
V0, while its mean value stays almost unaffected by the
disorder strength at dE� δ. We speculate that the errors
due to the Taylor expansion and the resummation of
S†(ε)S(−ε) (see eq. (3)) are randomly distributed and
thus cancel out on average. This would explain why the
averaged values 〈E1〉ξ and 〈Ẽ1〉ξ = 〈�π(2τmax)−1〉ξ remain
correlated (see fig. 3(d)) while the correlation between

individual pairs (E1, Ẽ1) breaks down.
In summary, we have numerically calculated the energy

spectrum of electron-hole states in a rectangular Andreev
billiard with a tunable disorder potential. In contrast
to qualitative models based on the mean cavity dwell
time 〈τd〉ξ, we find a decrease of the gap size when
increasing the disorder amplitude. We show that this
decrease is controlled by the disorder dependence of the
largest Wigner-Smith delay time τmax between subsequent
Andreev reflections at the SN interface. The average dwell
time 〈τd〉ξ, on the other hand, only depends on the mean
level spacing, and is thus neither correlated with the
evolution of the gap size nor with the disorder scattering
strength. Stronger disorder, however, drastically increases
the value of τmax for long-lived scattering states. For
sufficiently strong disorder the correlation between the
gap size and τmax eventually breaks down for individual
disorder realizations, as the eigenenergies of the system
are then more strongly influenced by the specific disorder
potential rather than by the Andreev reflection process.
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