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We investigate electronic quantum transport through nanowires with one-sided surface roughness in the
presence of a perpendicular magnetic field. Exponentially diverging localization lengths are found in the
quantum-to-classical crossover regime, controlled by tunneling between regular and chaotic regions of the
underlying mixed classical phase space. We show that each regular mode possesses a well-defined mode-
specific localization length. We present analytic estimates of these mode localization lengths which agree well
with the numerical data. The coupling between regular and chaotic regions can be determined by varying the
length of the wire leading to intricate structures in the transmission probabilities. We explain these structures
quantitatively by dynamical tunneling in the presence of directed chaos.
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I. INTRODUCTION

Deterministic dynamical systems with a mixed regular-
chaotic phase space give rise to many interesting features
that are present in neither the regular nor the chaotic limit
alone.1,2 These special features include, in the purely classi-
cal limit, the emergence of directed chaos, where the chaotic
part of phase space exhibits a diffusive motion with a drift in
a specific direction.3–6 Interestingly enough, such a biased
diffusion may be realized in a mixed phase space even with-
out external driving, requiring only broken time-reversal
symmetry.7 Quantized versions of mixed systems also have
interesting properties, since different regular and chaotic re-
gions in phase space, which are completely separated classi-
cally, become connected by dynamical tunneling.8 Dynami-
cal tunneling can be viewed as a generalization of
conventional tunneling through potential barriers to multidi-
mensional nonseparable dynamical systems where the tun-
neling path along a specific “reaction coordinate” is, in gen-
eral, not well-defined. Dynamical tunneling in phase space
plays an important role in spectral properties and
transport.9–17 The corresponding tunneling rates between
regular regions are substantially enhanced by the presence of
chaotic motion, giving rise to the notion of chaos-assisted
tunneling.14 Such dynamical tunneling processes were re-
cently observed with cold atoms in periodically modulated
optical lattices.18,19

In the present paper, we study transport in a long quantum
wire with one-sided surface disorder in the presence of a
perpendicular homogeneous magnetic field �see Fig. 1�. This
system features coexistent regions of regular motion �skip-
ping trajectories� and irregular motion induced by scattering
at the disordered surface. In the corresponding mixed phase
space �Fig. 2� we find directed regular and irregular motion,
which are quantum mechanically coupled by dynamical tun-
neling. As a result, this scattering system gives rise to many
interesting properties which are reflected in the transmission
through the wire—a quantity which is readily accessible in a
measurement. Surface disordered wires and waveguides have
recently received much attention, both theoretically20–25 and

experimentally.26–28 This is mainly due to the fact that nano-
wires, albeit being conceptionally simple, are very rich in
their physical properties. Nanowires are now also being re-
alized as graphene nanoribbons, for which surface disorder
seems to play an even more important role than for conven-
tional �semiconductor based� wires.29,30

In a previous paper31 we showed both numerically and
analytically that by increasing the number of open channels
N in the wire, or equivalently, by increasing the wavenumber
kF, the localization length � induced by surface disorder in-
creases exponentially. As we demonstrated, the localization
length � is related to tunneling of the lowest transverse wire
mode �m=1� from the regular island to the chaotic region in
phase space �see Fig. 2�. The dramatic increase in ���m=1
then follows directly from the exponential suppression of the
tunneling rates in the semiclassical limit of large kF �or small
de Broglie wavelength �D�. In the present paper we explore
the behavior of higher transverse modes, m�1. We give for
each of these modes m a remarkably accurate analytical es-
timate for its specific localization length, �m. Furthermore, all
modes in the regular island are effectively coupled to one
another by dynamical tunneling in the presence of irregular,
yet directed, motion: key is here the interplay between di-
rected regular motion �to the right in Fig. 1� and countermov-
ing irregular motion �directed to the left� which gives rise to
characteristic structures in the mode-specific transmission
probabilities Tm of the current-transporting regular modes m.
These intricate structures can be accounted for by a simple
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FIG. 1. Wire with one-sided surface disorder in a magnetic field
B, applied perpendicular to the scattering area. The solid line shows
a regular skipping trajectory and the dashed line an irregular trajec-
tory scattering at the disordered surface.
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scattering model incorporating the directed regular and ir-
regular current flows of opposite direction and their coupling
by tunneling.

This paper is organized as follows: In Sec. II we briefly
review the characteristic classical and quantum features of
our nanowire induced by its mixed phase space. In Sec. III
we provide analytic estimates for the individual mode local-
ization lengths �m. Technical details of the underlying calcu-
lations are deferred to the Appendix. In Sec. IV we analyze
the individual mode-to-mode specific transmission probabili-
ties Tm,m�, for which a conceptually simple transport model
based on the coupling by dynamical tunneling between regu-
lar and irregular directed flow in opposite directions. The
paper is rounded off by a summary in Sec. V.

We use atomic units, but include the constants �=meff
=e=4��0=1 where instructive.

II. WIRE WITH SURFACE DISORDER

A. Classical dynamics

We consider a two-dimensional �2D� wire with one-sided
surface disorder to which two leads of width W are attached
�Fig. 1�. A homogeneous magnetic field B perpendicular to
the wire is present throughout the system. We choose the
magnetic field to be directed in negative z direction. The
Hamiltonian H= 1

2 �p+A�2+V�x ,y� is then given in Landau
gauge �A=Byx̂� by

H =
1

2
�px + By�2 +

py
2

2
+ V�x,y� . �1�

In the leads �x�0 and x�Ll�

V�x,y� = V0���− y� + ��y − W�� , �2a�

and inside the quantum wire 0�x�Ll

V�x,y� = V0���− y� + ��y − W + 	�x��� . �2b�

V0 is taken to be arbitrarily large �V0→
� to represent hard
wall boundary conditions. To emulate stochastic classical
scattering at the upper wire surface we choose 	�x� to be a
random variable that is piecewise constant for a fixed inter-
val length l �see Fig. 1�. The random values of 	�x� are
chosen to be uniformly distributed in the interval

− �/2 � 	�x� � �/2. �3�

Thus, the wire is assembled from L rectangular elements,
referred to in the following as modules, with equal width l
�in x direction�, but random heights h �in y direction�, uni-
formly distributed in the interval h� �W−� /2,W+� /2�. In
the numerical computations we use l=W /5 and �= �2 /3�W.
The Hamiltonian Eq. �1� is nonseparable for a given realiza-
tion of disorder. For such types of systems, mixed regular
and chaotic motion is expected.

The classical motion in the wire proceeds on circular arcs
characterized by the cyclotron radius rc= pF /B and guiding
center coordinate y0=−px /B, interrupted by elastic reflec-
tions on the hard wall boundary. For y0 sufficiently small or
negative such that y0+rc�W−� /2, the electron performs

regular skipping motion, for which y0 is conserved. These
skipping trajectories generate a directed, ballistic motion to
the right �for the direction of the B field and boundary con-
ditions depicted in Fig. 1�. For trajectories hitting the upper
disordered boundary �y0+rc�W−� /2�, one finds irregular
motion for which numerical computations suggest an expo-
nential sensitivity on the initial conditions. Moreover, the
chaotic phase space component appears to be ergodically
covered and shows an average drift to the left, as discussed
below. These two properties of the classical wire dynamics
will be crucial for the understanding of its quantum transport
properties.

To visualize the classical dynamics for electrons with
Fermi momentum pF we choose as Poincaré section a verti-
cal cut at the entrance of the wire �x=0� with periodic
boundary conditions in the x direction.7 The resulting section
�y , py� for px�0 �Fig. 2�a�� shows a large regular region with
invariant tori corresponding to the skipping motion along the
lower straight boundary of the wire. The section for px�0
�Fig. 2�b�� shows only an irregular region, as all trajectories
with px�0 interact with the upper boundary. For the skip-
ping motion the area A in the Poincaré section enclosed by
the corresponding torus can be obtained by integration,

A = pFrc�arccos�1 − � − �1 − ��1 − �1 − �2� , �4�

where rc is the y position at the top of the skipping orbit.
The size Areg of the regular island is obtained for max= �W
−� /2� /rc. Outside of the regular region the motion appears
uniformly chaotic. Hierarchical structures of island chains
are absent.

The system displays directed chaos,5–7,13 i.e., the time av-
eraged velocity of almost all classical trajectories in the cha-
otic region of phase space approaches a nonzero constant vch
for long times. This chaotic drift motion arises here as tra-
jectories in the regular island have a nonzero average speed
vreg�0 directed to the right, while the velocity average over
the whole phase space is exactly zero,5 Aregvreg+Achvch=0.
Therefore the average velocity of the chaotic part must be
directed to the left, vch�0.
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FIG. 2. �Color online� Poincaré sections for �a� right-moving
�px�0� and �b� left-moving �px�0� classical electrons in the wire
shown in Fig. 1. In �a� a single regular island with invariant tori
�solid green lines� can be identified, which is separated from the
chaotic region �blue dots� by the outermost torus �dashed�. In �b�,
no such island appears. The gray-shaded part �y�W−� /2� indi-
cates the y range affected by disorder.
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B. Quantum description

Quantum mechanically, the scattering through the wire is
described in terms of the modes in the entrance and exit lead,
respectively, see Fig. 3�a�. The lowest transverse modes of
the incoming scattering wave functions reside inside the
regular island �Fig. 3�b��. Only their exponential tunneling
tail in the harmonic-oscillator-like potential �see Eq. �1��
touches the upper disordered surface at y�W−� /2. These
regular modes can be semiclassically quantized as32,33

A

h
=

BA
h/e

= �m − 1/4� with m = 1,2, . . . , �5�

where A is the area in the Poincaré section enclosed by a
given torus, see Eq. �4�, and A=rcA / pF is the area in posi-
tion space enclosed by a segment of a skipping orbit.

The quantum states of the system can be represented on
the Poincaré section by projecting them onto coherent states
coh�y,py��y��, which are Gaussian wavepackets of minimum
uncertainty, localized in the point �y , py�,

Hm�y,py� = 	

0

W

�m�y��coh�y,py��y��dy�	2

, �6�

to obtain a Poincaré-Husimi representation. Unlike previous
studies �see Refs. 34 and 35 and references therein� we use
the states themselves and not their normal derivative func-
tion as the section does not run along a border of the billiard.
The Poincaré-Husimi representation for the lowest lead
modes �Fig. 3�b�� clearly displays the localization on the
quantized tori.

Numerically, the particular realization of disorder allows
for an efficient computation of quantum transport for re-
markably long wires by employing the modular recursive
Green’s function method �MRGM�.36,37 We first calculate the
Green’s functions for M =20 rectangular modules with dif-
ferent heights. A random sequence of these modules is con-

nected by means of a matrix Dyson equation. Extremely long
wires can be reached by implementing an “exponentiation”
algorithm:38,39 Instead of connecting the modules individu-
ally, we iteratively construct different generations of “super-
modules,” each consisting of a randomly permuted sequence
of M modules of the previous generation. Repeating this pro-
cess leads to the construction of wires with lengths that are
exponentially increasing with the number of generations.
With this approach we can study wires with up to �1012

modules, beyond which limit numerical unitarity deficiencies
set in. For wires with up to 105 modules we can compare this
supermodule technique containing pseudorandom sequences
with truly random sequences of modules. For configuration-
averaged transport quantities the results are indistinguishable
from each other even in the semiclassical limit of small de
Broglie wavelength, �D� l, to be explored in the following.
Accordingly, we can simulate quantum wires with a length of
the order of �1012�D, which illustrates the remarkable de-
gree of numerical stability of the MRGM.

The transmission tmn and reflection amplitudes rmn for an
electron injected from the left are evaluated by projecting the
Green’s function at the Fermi energy EF onto all lead modes
m ,n� �1, . . . ,N� in the entrance and exit lead, respectively.
Here N= �kFW /�� is the number of open lead modes and kF
the Fermi wave number. We note that throughout this paper
only relatively weak magnetic fields are employed such that
the cyclotron radius always remains larger than the height of
the leads rc�W. In this limit, much below the quantum Hall
regime �where rc�W�, none of the N open lead modes are
quenched by the magnetic field. From the transmission am-
plitudes one obtains the dimensionless conductance g
=Tr�t†t�. The ensemble-averaged conductance �g is com-
puted for 20 different disorder realizations and three neigh-
boring values of the wavenumber kF �Fig. 4�a��. Initially �g
decreases sharply �not shown� since the contribution of
modes with high m �m�5 in the present case�, residing pri-
marily in the chaotic sea and transporting, on average, to the
left, rapidly vanishes with increasing L.

For larger lengths L, where the modes outside the regular
island have already decayed, the conductance shows a num-
ber of steps with increasing size. At first, the remaining four
modes in the island contribute fully to the conductance. With
increasing L, one regular mode after the other decays as well,
starting from the outermost regular mode. Finally, at very
large lengths of the wire, even the innermost regular mode
no longer contributes to transport, so that the conductance
decays to zero. In this limit and on this length scale, one-
sided disorder of the quantum wire leads to localization.

This behavior of the conductance can be qualitatively un-
derstood by imagining a wave packet started in the m-th
regular mode, see Eq. �5�. Initially it will decay with a rate
�m, as observed in other systems with a mixed phase space.9

This rate is smallest for m=1, where the wave packet has the
smallest overlap with the chaotic sea, see Fig. 3�b�. During
the characteristic tunneling time 1 /�m the wave packet
moves approximately with Fermi velocity vF to the right in
the wire. At the same time the part of the wave packet which
has tunneled into the chaotic sea is transported in the oppo-
site direction and no longer contributes to the transmission.
All island modes whose tunneling time 1 /�m is larger than
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FIG. 3. �Color online� �a� Nanowire with the regular transverse
modes �m�y� m=4,3 ,2 ,1 �green� for kFW /�=14.6, i.e., with a total
of 14 open channels. The gray-shaded part indicates the y-range
affected by disorder. �b� Poincaré-Husimi functions of these modes
and their quantizing tori. The axes are as in Fig. 2�a�.
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the propagation time L /vF will survive the transmission
through the wire, i.e., expressed in terms of rates

�m � vF/L . �7�

Thus for increasing L the different tunneling rates �m explain
the step-wise decay of the conductance. Because the tunnel-
ing rates �m decrease strongly with decreasing m, this step-
wise decay starts with the modes at the border of the island.

This behavior is a scattering manifestation of the recently
found “flooding” of regular islands by chaotic states for a
closed system.13 In contrast to an open system with a con-
tinuum of scattering states, such a closed system has a dis-
crete level spacing. It was shown that in closed systems the
well-known EBK-quantization condition is not sufficient for
the existence of a regular eigenstate on the m-th quantized
torus. In addition one has to fulfill

�m � �ch, �8�

where �ch is the mean level spacing of the chaotic states in
the neighborhood of the regular eigenstate. When condition
�8� is violated one observes eigenstates which extend over
the chaotic region and flood the m-th torus. In the case of the
wire studied above the corresponding closed system is ob-
tained by imposing periodic boundary conditions at x=0 and
x=L. Increasing L decreases �ch, which according to the
Weyl formula scales as �ch�1 / �WL��vF /L, where in the
last step vF= pF�1 /W is used �see Eq. �9� below�. Thus for
sufficiently large L, condition �8� is violated and the m-th

regular state no longer exists. Moreover, this happens at the
same characteristic length scales as for the open system, Eq.
�7�.

For the present scattering system the successive flooding
of the regular island at these characteristic lengths and the
resulting stepwise behavior of the conductance can be visu-
alized by considering averaged Poincaré-Husimi distribu-
tions gained from random superpositions of all modes enter-
ing from the left and scattering to the right �insets below the
curve of �g in Fig. 4�a��. One clearly sees how the contri-
bution to the transport from the regular region disappears
with increasing length of the wire. Also shown are the cor-
responding distributions obtained for scattering from right to
right. For small L these Poincaré-Husimi functions are first
outside the regular island which for increasing L is flooded
by the chaotic states. For the largest L we have complete
flooding, i.e., no regular modes are left and the chaotic
modes fully extend into the regular island. Thus the disap-
pearance of regular states and the flooding of the island by
chaotic states is nicely seen in the complementarity of the
Husimi pictures.

III. LOCALIZATION LENGTHS

We now want to investigate more closely the decay of the
conductance shown in Fig. 4. We find that in the regime
where g�1 the conductance follows an exponential decay as
a function of the wire length L. Such an exponential behavior
is a clear signature for the localization of scattering states.
The localization length � can be extracted from the conduc-
tance g according to the prescription �ln g�−L /�. �Note
that we always measure � and the wire length L in units of
the module width l.�

In addition, we can determine mode-specific localization
lengths for the regular modes m. To this end, we consider the
individual transmission probabilities Tm=�n�tnm�2 for the in-
coming mode m as a function of the wire length L, see Fig.
4�b�, where an average Tm=exp��ln Tm� over 20 disorder
realizations and three neighboring kF values is shown. For
each of the regular modes we observe an exponential decay
which allows us to define the mode localization lengths �m
for the regular modes. The modes outside the regular island,
on the other hand, couple strongly to the disorder and to each
other. They therefore do not show a mode-specific localiza-
tion length. The localization lengths can be obtained numeri-
cally by fitting to �ln Tmm�−L /�m. The largest mode local-
ization length is �1, as the corresponding regular mode m
=1 couples most weakly to the chaotic region. Thus T1 de-
termines the conductance for long wires L��1 such that �
=�1. The regular modes with m�1 contribute to the conduc-
tance for L��m, leading to the step-wise behavior observed
in Fig. 4.

We want to explore these localization lengths in the
quantum-to-classical crossover. To this end we introduce the
semiclassical parameter heff, the ratio of Planck’s constant to
the area of the Poincaré section,

heff =
h

2pFW
= � kFW

�
�−1

, �9�

which coincides with the inverse number of modes. We study
the semiclassical limit, heff→0 or equivalently kF→
, for
two different cases:

ξ1ξ2ξ3ξ4
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FIG. 4. �Color online� �a� Averaged conductance �g vs length L
of the wire for rc=3W and kFW /�=14.6. The step-wise decrease is
accompanied by the disappearance of the regular modes �lower set
of Husimi distributions� and the flooding of the island region by the
chaotic states �upper set�. The Poincaré-Husimi representations to
the left �right� of the curve correspond to scattering from left to
right �right to right� lead, respectively. �b� Transmission Tm

=exp��ln Tm� of the incoming mode m vs L. The gray vertical lines
correspond to the predicted localization lengths �m, Eq. �13�.
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�i� The cyclotron radius rc is kept fixed by adjusting the
magnetic field B=�kF /rc for increasing kF. This leaves the
classical dynamics invariant. In particular, the fraction of the
regular phase space volume stays constant, while the abso-
lute size Areg of the regular island scales as Areg�kF�heff

−1. At
the same time, �D decreases and approaches the semiclassi-
cal limit. In the numerical computations we use the value
rc=3W. The case m=1 was originally studied in our previous
paper.31

�ii� The magnetic field B is kept fixed. Since the cyclotron
radius rc=�kF /B increases for increasing kF, the electrons
follow increasingly straight paths, thus reaching the disor-
dered surface more easily. Therefore the fraction of the regu-
lar phase space volume decreases. As can be deduced from
Eq. �4� in the limit →0, the absolute area Areg still in-
creases, Areg��kF�heff

−1/2, but much slower than in the previ-
ous case. In the numerical computations we use the value
B=10.05 /W2 corresponding to rc=3W for heff

−1 =9.6.

A. Qualitative description

We start with a qualitative description that gives insight
into the overall dependence of the localization lengths for the
two cases above. It is based on the observation that tunneling
from the central mode, m=1, of a regular island to the cha-
otic sea can be approximately described as being exponen-
tially small in the ratio of island size to Planck’s
constant,9,15,16

�1 � exp�− C
Areg

h
� , �10�

with a system-dependent constant C.
Invoking again the equivalent description of a time-

dependent one degree of freedom system, its temporal decay
exp�−�1t� leads to an exponential decay, exp�−�1x /v1�, as a
function of propagation length x. This gives a localization
length �1��1

−1 �Refs. 11 and 12�, which in the limit of heff
→0 shows the following behavior,

�i� rc fixed: �1 � exp�c0heff
−1� , �11�

�ii� B fixed: �1 � exp�c0heff
−1/2� , �12�

where the constants c0 are different for each case and deter-
mined below. Checking with our numerical results �full lines
in Fig. 5� we find that, on a qualitative level, these estimates
correctly predict an exponentially increasing localization
length �1. Also displayed are the localization lengths for
higher modes �m, which are smaller for larger m. The onset
of their exponential increase with heff→0 can be linked to
the critical size of the island such that its area is large enough
to accommodate m modes, Areg�mh. From this relation one
can determine the corresponding values of heff. In case �i�
one finds for the numerically used parameters heff

−1 �3.5m, in
case �ii� one finds heff

−1 �0.32+0.59�m2+m�1.08+m2�. These
values �shown in Fig. 5 by the dashed vertical lines� provide
very good indications for the values of heff where the expo-
nential increase in the �m sets in.

The above analysis links the exponential increase in the
localization length to the existence of the island of regular

motion. Decreasing the surface roughness specified by � in-
creases the size of the regular island �see Fig. 2�a��, and thus
exponentially increases the localization length. Another con-
sequence is that if such an island does not exist, as e.g., for
two-sided disorder or for B=0, an exponentially increasing
localization length is absent.31 For wires with two-sided dis-
order large localization lengths do, however, reappear in the
quantum Hall regime where the cyclotron radius is much
smaller than the wire width, rc�W, and thus much smaller
than considered throughout this paper.

B. Quantitative description

We now go beyond the above qualitative reasoning and
derive analytical estimates for the localization lengths �m of
the island modes. For the present realization of disorder,
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FIG. 5. �Color online� �a� Mode localization lengths �m for con-
stant cyclotron radius rc=3W. �b� Mode localization lengths �m for
constant magnetic field B=10.05 /W2. For both �a� and �b�, the
Fermi wavenumber is given by kF=� / �Wheff�. The symbols con-
nected by full lines display the numerical results from the full cal-
culation. The dashed lines show the analytical predictions from �a�
Eq. �13� and �b� Eq. �14�, while the vertical gray lines indicate the
positions where the size of the regular island is large enough to
accommodate m modes �i.e., where Areg=mh�.
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transitions between modes only occur at the boundaries be-
tween adjacent modules of differing height. The wave func-
tions to the left and to the right of each discrete jump in
surface potential have to be matched. The corresponding
matching conditions can be drastically simplified by consid-
ering that the lowest transverse modes in each module will
differ only slightly from the corresponding modes in the
neighboring module of different height. This is because the
effective quadratic potential induced by the magnetic field,
Eq. �1�, plays the role of a tunneling barrier through which
only the evanescent part of the transverse modes may reach
the upper waveguide boundary where random fluctuations of
module heights occur. The evanescent part of the wave func-
tion can be represented by a WKB approximation for the
corresponding tunneling integral. Within this semiclassical
description, we obtain an approximate analytical expression
for the transmission coefficients and, consequently, for the
localization lengths. The details of this derivation are given
in the Appendix. We find for case �i� �fixed rc�

�m � �amheff
−2/3 − bm�exp�c0heff

−1�1 − dmheff
2/3�3/2� , �13�

and for case �ii� �fixed B�

�m � �amheff
−1/3 − bm�exp�c0heff

−1/2�1 − dmheff
2/3�3/2� , �14�

where in each case the constants am, bm, and dm depend on
m, while c0 is independent of the mode number �see the
Appendix for details�. The above predictions for the mode
localization lengths �m are in excellent agreement with the
numerically obtained values �Fig. 5�. Moreover, the leading
order dependence on heff is identical to the qualitative pre-
dictions in Eqs. �11� and �12�, respectively.

Alternatively, it is possible to determine the tunneling
rates �m using the recent approach based on a fictitious inte-
grable system.16,17 Converting the tunneling rates �m, evalu-
ated for a disordered wire with periodic boundary conditions,
into mode localization lengths �m one obtains similarly good
agreement with the data in Fig. 5 as with the expressions
given in Eqs. �13� and �14� �not shown�.40 The equivalence
of these two approaches confirms our previous assumption
that the decay of the regular island modes in the open wire
follows the same criteria as in the corresponding closed sys-
tem �see Sec. II B�.

IV. MODE-TO-MODE TRANSITION PROBABILITIES

Additional insights into the interplay between directed
regular motion to the right, directed chaotic motion to the
left, and chaos-assisted tunneling can be gained from the
mode-to-mode transition probabilities Tm�m= �tm�m�2. These
display intricate structures as a function of L �see Fig. 7� due
to the tunneling transitions between the counterpropagating
currents �details will be investigate below�.

The diagonal transmission of a given mode is given to
lowest order by Tmm=exp�−L /�m�. The dominant contribu-
tion to the off-diagonal transmission probabilities Tm�m with
m��m, can be constructed based on the following three-step
process �Fig. 6�: �i� Tunneling from the right-moving regular
mode m to the chaotic sea, �ii� propagation in the chaotic sea,

which has an average drift to the left, and �iii� tunneling into
the right-moving regular mode m�. This three-step process
incorporates all the basic elements of chaos-assisted
tunneling,14 however here in the presence of directed regular
and chaotic transport. In addition, the signature of chaos-
assisted tunneling is here analyzed not in terms of spectral
properties, but in the transmission properties of open sys-
tems.

A. Qualitative analysis

The study of mode-to-mode transmission probabilities as
a function of the length L gives insight analogous to a time-
dependent observation of a wave packet. Starting point are
the transmission probabilities Tm=�m�Tm�m for each regular
mode m, now plotted on a logarithmic scale �Fig. 7�a��,
which were previously shown on a linear scale �Fig. 4�b��.
We find that the transmission probabilities Tm which give rise
to the stepwise decay of the total transmission T also display
a stepwise decay on their own: For short wires, the Tm decay
exponentially with exp�−L /�m�. Beyond L��m a plateau is
reached, followed by a slower decay exp�−L /�m−1�. This se-
quence continues until Tm finally decays with the largest lo-
calization length �1.

In order to explain these structures, we first consider the
case of T4=�m�Tm�4 �the lowest curve in Fig. 7�a��. Its indi-
vidual contributions Tm�4 are shown in Fig. 7�b�. With in-
creasing L the dominant contribution switches from T44 to
T34 to T24 to T14 at the localization lengths �4, �3, and �2,
respectively. The appearance of the contributions
T34,T24,T14 can be well accounted for by the three-step
model mentioned above �details given below�. The subdomi-
nant plateaus occurring in Figs. 7�a� and 7�b� are due to
higher-order effects and will be discussed at the end of the
section.

The transmission of the innermost mode, T1=�m�Tm�1
�shown at the top in Fig. 7�a�� and of its individual contribu-
tions Tm�1 �shown in Fig. 7�c�� displays a qualitatively dif-
ferent behavior. Still, it can also be accounted for by the
same three-step model: the transmission of mode m=1 is
always dominated by the diagonal T11, as it has the largest

0 n’ Ln

m
m’

(i)(iii)

(ii)

FIG. 6. �Color online� Three-step process for transmission from
regular mode m at module boundary n to the left-transporting cha-
otic modes and finally to the regular mode m� at the module bound-
ary n�.
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localization length. For short wires the transmission prob-
ability T21 is the smallest of the off-diagonal contributions, as
in step �iii� the mode m�=2 couples most weakly to the
chaotic sea. However, coupling becomes efficient with in-
creasing wire length, leading to a higher saturation level than
T31 and T41. The saturation can be understood as an equilib-
rium of the rate of populating mode m� in step �iii� via the
chaotic sea and the rate of depopulation due to the finite
localization length �m� �step �i��. The value of the saturation
plateau will be determined from a quantitative analysis.

B. Quantitative analysis

We now demonstrate that dynamical tunneling in the pres-
ence of directed chaotic motion allows for a quantitative de-
scription of the transmission probabilities. While the direc-
tion of chaotic transport in step �ii� was not essential for the
above qualitative understanding of the transmission prob-
abilities, it is quantitatively of great importance. The three
steps of chaos-assisted tunneling �Fig. 6�, can be combined
to give the following estimate for Tm�m with m��m,

Tm�m�L� � �
n=0

L

�
n��n

Tmm�n�
1

�m

1

�m�
Tm�m��L − n�� , �15�

where the terms are related to the three-step process in the
following way:

�i� The first tunneling process from mode m to the chaotic
sea can take place at any module boundary n along the wire
consisting of L modules. The probability to remain in the
initial mode m, before tunneling, is given by Tmm�n�. The
probability of tunneling into the chaotic sea is proportional to
the inverse localization length �m

−1.
�ii� The chaotic sea features an average drift to the left.

This is incorporated in Eq. �15� by the restriction n��n,
where n� is the location of the second tunneling process. We
do not distinguish explicitly between modes of the chaotic
sea, as they are strongly coupled and mirror the ergodicity of
the underlying classical dynamics.

�iii� The second tunneling process at n� from the chaotic
sea to the regular mode m� has a probability proportional to
the inverse of the localization length �m�. The last factor in
Eq. �15�, Tm�m��L−n��, describes the transmission probabil-
ity within mode m� from the module boundary n� to the exit
lead at length L.

We now approximate the diagonal transmission probabili-
ties Tmm by their leading-order behavior, Tmm�L�
=exp�−L /�m�. For L, �m, and �m��1 this results in

Tm�m�L� �
�m�e

−L/�m − �me−L/�m�

�m − �m�
+ e−L�1/�m+1/�m��. �16�

Equation �16� is symmetric with respect to mode inter-
change, Tm�m�L��Tmm��L�. Three limiting cases can be de-
duced, as

Tm�m�L� � �
L2

2�m�m�
L � �m,�m�

�m�

�m
exp�− L/�m� �m� � L,�m

�m

�m�
exp�− L/�m�� �m � L,�m�.

� �17�

These quantitative predictions involving chaos-assisted
tunneling in the presence of directed chaotic motion are
shown in Fig. 7, demonstrating excellent agreement. Here we
have used the analytic predictions for the localization lengths
given in the previous section. Thus, this agreement is
achieved without any adjustable parameter. We emphasize
that without explicit use of directed chaotic motion, i.e.,
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FIG. 7. �Color online� �a� Transmission probabilities Tm of the
incoming mode m=1,2 ,3 ,4 vs L showing the same data as in Fig.
4�b�, but on a logarithmic scale. �b� Transmission probabilities Tm�4.
�c� Transmission probabilities Tm�1. The dashed lines show the pre-
dictions from Eq. �15�, using the analytical results for the localiza-
tion lengths �m. For the numerical results, the arithmetic means �Tm
and �Tm�m are taken. In regions where the distribution of transmis-
sion probabilities is log normal, the geometric mean �i.e., arithmetic
mean of the logarithms� might be more appropriate. For simplicity
we use the arithmetic mean everywhere, for which a slightly better
agreement between analytical and numerical results is found. The
purple ellipse indicates the region where the direct transition be-
tween island modes dominates �see text�. The results shown were
obtained with kFW /�=14.6, i.e., with 14 open modes.
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without a restriction on n� in Eq. �15�, one would get dras-
tically different predictions not compatible with the numeri-
cal results. This confirms the notion of chaos-assisted dy-
namical tunneling in the presence of directed chaos.

Corrections to the above estimates of the transmission
probabilities �Eq. �16�� can be determined as well. The direct
tunneling between regular modes �i.e., without a detour to
the chaotic sea� adds a contribution of the form

Tm�m
direct�L� � �

n=0

L

Tmm�n�
�m�m

�m�m�
Tm�m��L − n� , �18�

where the factor �m�m / ��m�m�� denotes the direct transmis-
sion probability from mode m to mode m� at a single module
boundary. Numerical results give a factor of the order of
�m�m�10, with little dependence on other parameters. Only
for very short wires, L�2�m�m��m, �m�, Eq. �18� gives the
dominant contribution to the transmission Tm�m�Tm�m

direct�L�
�L�m�m / ��m�m��, linear in L, which can, indeed, be ob-
served in Fig. 7�c�, indicated by the purple ellipse.

Higher-order tunneling processes give rise to the sub-
dominant plateaus in Fig. 7�b�. For example, T34�L� displays,
after the first plateau and the exponential decay exp�−L /�3�,
further plateaus related to chaos-assisted tunneling from
mode m=4 to mode m� and then another chaos-assisted tun-
neling from mode m� to mode m�=3. In general, this gives
for Tm�m with m�m��m� plateau values ��m /�m����m� /�m��
in the regime �m�+1�L��m�. Figure 8 shows the transmis-
sion probabilities Tm�4 compared to the model predictions
when these higher-order processes are also taken into ac-
count up to second order, showing excellent agreement.

V. SUMMARY

We have shown that in a perpendicular magnetic field 2D
nanowires with one-sided surface disorder feature a regular
island in phase space which leads to giant localization
lengths in the limit of large Fermi momentum kF, where the
classical phase space structure can be fully resolved quantum
mechanically. The coupling between the regular island and
the chaotic sea proceeds only by tunneling, which is expo-

nentially suppressed in the semiclassical limit. Based on this
understanding, we have derived analytical results for the
mode-specific localization length �m in the limit of large kF,
which show excellent agreement with the numerical data,
without resorting to any fit parameters.

Finally, we have investigated the behavior of the transmis-
sion probabilities Tmn between the lowest modes m ,n which
enter and exit the wire on the regular island in phase space. A
scattering model is presented which takes into account how
in the interior of the wire these modes dynamically tunnel to
the counterpropagating chaotic sea and back to the island.
Considering its simplicity, we find remarkably good agree-
ment with the numerical data.
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APPENDIX: ANALYTICAL ESTIMATES OF
LOCALIZATION LENGTHS

In this appendix we derive the analytical estimates of the
mode localization lengths �m. The wire consists of a chain of
rectangular modules, with its length given in units of the
module length l.

1. Reduction to a single module boundary

The transmission matrix can be constructed by connecting
the transmission matrices of the subsystems.

As a building block we first consider the connection of
only two substructures such as, e.g., two modules �see Fig.
9�. The transmission matrix tc from left to right is given by

tc = t�2���
n=0




�r��1�r�2��n�t�1�, �A1�

where t�1� , t�2� are the transmission matrices from left to
right of the two subsystems, r��1� is the reflection matrix
from the right side for system 1 and r�2� is the reflection
matrix from the left side for system 2.

We are interested in the transmission tmm
c of mode m into

itself for the case that mode m is well inside the regular
island. We can therefore neglect all terms involving reflec-
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FIG. 8. �Color online� Transmission probabilities Tm�4 as in Fig.
7�b�, but with the dashed lines showing the predictions from Eq.
�15� with second-order processes �i.e., coupling from mode m to m�
and then from m� to n� also taken into account.
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FIG. 9. Connection of two scattering systems. Transmission pro-
ceeds by transmission through the first system �t�1��, an arbitrary
number of reflections between the two systems �each of which gives
a term r��1�r�2��, and then transmission through the second system
�t�2��, leading to Eq. �A1�.
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tion matrices, as these would involve tunneling and are ex-
ponentially suppressed. This leaves

tmm
c � �t�2�t�1��mm = �

n=1

N

tmn
�2�tnm

�1� � tmm
�1� tmm

�2� , �A2�

where N is the number of modes in the module between the
two systems. In Eq. �A2� we have neglected all but the mth
term in that sum, as these terms involve tunneling to another
mode and then tunneling back.

Extending this analysis to a wire with L modules we get

tmm � �
i=0

L

tmm
�i,i+1�. �A3�

Here, tmm
�i,i+1� is the transmission of the mth mode into itself

from module i to module i+1, with i=0 and i=L+1 labeling
the left and right lead, respectively. From the Onsager-
Casimir symmetry relations41–43 follows that tmm only de-
pends on the two heights hi and hi+1, but not on the order in
which they occur. Additionally, for modes m well inside the
regular island, only the exponentially suppressed tunneling
tail reaches the upper side, so that the wave function in the
module with larger height h can be assumed to be that of an
infinitely high module as if unperturbed by the upper wall.
This means that only the smaller of the two heights will
influence the transmission. We express the small deviation of
tmm
�i,i+1� from unity by the function �m�h�, which will be related

to the localization lengths,

tmm
�i,i+1� = 1 − �m�min�hi,hi+1�� . �A4�

Ordering the modules with increasing heights h���, �
=1, . . . ,M, we can rewrite Eq. �A3� as a product over the M
modules,

tmm � �
�=1

M

�1 − �m�h�����LP� � exp�− L�
�=1

M

P��m�h����� ,

�A5�

where P� is the probability that at a module boundary the
minimal height of the adjacent modules is h���.

We use again that the mth mode is exponentially sup-
pressed at the upper boundary, from which follows that
�m�hmin�, belonging to the module with the lowest height
hmin�h�1�, is the dominant contribution in Eq. �A5�. Neglect-
ing all other contributions and using that the probability that
one of the modules at a module boundary is the lowest one is
P1=2 /M, tmm is simply given by

tmm � exp�−
2L

M
�m�hmin�� . �A6�

The transmission probability Tm��tmm�2 of mode m decays
according to Tm�exp�−L /�m�, allowing us to extract the
mode localization length �m as

�m �
M

4�m�hmin�
. �A7�

2. Transmission at the boundary of two leads

We now calculate the reduction �m�hmin� of the transmis-
sion amplitude from 1 at a module boundary with the lower
height hmin. This can be done by calculating the transmission
amplitude tmm for the simple system of two connected leads
with different widths wL and wR �see Fig. 10�.

We solve the Schrödinger equation in each lead and find
the transmission matrix element tmm by wave function
matching at the boundary between the leads. Inserting the
Hamiltonian Eq. �1� into the Schrödinger equation and sepa-
rating the wave function as exp�ikxx���y�, we get

� py
2

2
+ EF�� y − y0

rc
�2

− 1����y� = 0, �A8�

which is an effective one-dimensional Schrödinger equation
for a particle at energy E=0 in the diamagnetic potential
V�y�=EF��y−y0�2 /rc

2−1�, where y0=−kx /B=−rckx /kF �see
Fig. 11�.

The transverse mode wave functions �m�y�, which are
zero at the boundaries y=0 and y=w, satisfy the generalized
orthogonality condition44,45



0

w �kx,n
� + kx,m

� + 2kF
y

rc
��n

��y��m
��y�dy = � �nm, �A9�

where the modes �m�y� have been normalized to carry unit
flux, so that the scattering matrix is unitary.

We now assume that we have an incoming �right-moving�
wave �m

L+ in the mth mode in the left lead. The wave func-
tions �L in the left lead and �R in the right lead are given by

𝑤𝐿
𝑤𝑅B

𝑥

𝑦

FIG. 10. Two leads with widths wL and wR.
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FIG. 11. �Color online� Effective potential V�y� and lowest
mode in infinitely wide lead, for heff

−1 =9.6 and rc=3. In addition,
wL=hmin for the geometry chosen in this paper is shown.
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�L�x,y� = �m
L+�x,y� + �

n=1




rnm�n
L−�x,y� , �A10�

�R�x,y� = �
n=1




tnm�n
R+�x,y� , �A11�

where

�n
S��x,y� = �n

S��y�exp�ikx,n
S�x� . �A12�

The continuity condition for the wave functions at x=0 de-
mands that

�L�x,y��x=0 = �R�x,y��x=0, �A13�

and

��L

�x
�x,y��x=0 =

��R

�x
�x,y��x=0, �A14�

In order to extract tmm, we multiply Eq. �A13� by �kx,m
R+

+2kFy /rc�, add to it �−i� times Eq. �A14�, multiply this equa-
tion by �m

R+�y�, and integrate from y=0 to y=
. The right
hand side reduces to the generalized orthogonality relation
�A9� for the transverse wave functions in the lead and there-
fore simplifies to tmm,

tmm = Om+
m+ + �

n=1




rnmOm+
n− , �A15�

with OnR�
nL� being the generalized overlap integral between

mode nL in the left lead and mode nR in the right lead,

OnR�
nL� = 


0

w� �kx,nL

L� + kx,nR

R� + 2kF
y

rc
��nL

L��y��nR

R��y�dy ,

�A16�

where w� is the smaller of the two lead widths wL, wR. For
sufficiently high magnetic field B and Fermi momentum kF,
the wave functions in the mth mode are small at the upper
boundary, so that we expect tmm to be almost one. We define
its deviation from 1 by

tmm = 1 − �m, �A17�

where �m for two leads corresponds to �m�h1� of the rough
wire introduced in the previous subsection.

Inserting Eq. �A17� into the unitarity condition

1 = �
n=1

N

��tnm�2 + �rnm�2� , �A18�

2�m � �
n�m

�tnm�2 + �
n=1

N

�rnm�2, �A19�

we find that the rnm can be at most O���m�. The second term
in Eq. �A15� approximately corresponds to the orthogonality
condition �A9� for n�m, so that it is strongly suppressed.
The integrals can be estimated to be of order O���m� by
using that the difference between the mth modes on the left

and right side is of order O���m�, while the left-moving
modes are of order O�1� at the upper side of the wire, where
�m

R+�y� differs from �m
L+�y�. Utilizing that the integral and rnm

are both O���m�, the whole term should be of order O��m�,
such that a priori it cannot be neglected. Numerically, we
find that its magnitude does not exceed 0.2�m, quite indepen-
dently of the Fermi energy EF and the magnetic field B. We
neglect the second term in Eq. �A15� in the following, keep-
ing in mind that this will introduce an error of about 20% in
our result for the localization lengths.

We thus approximate

tmm � 

0

w� �kx,m
L+ + kx,m

R+ + 2kF
y

rc
��m

L+�y��m
R+�y�dy ,

�A20�

which is independent of the order of the leads. Without loss
of generality, we can choose wL�wR for the further calcula-
tion. Since the mth mode in the �wider� right lead is much
less affected by the upper boundary than the mth mode in the
�narrower� left lead, we replace the former by the wave func-
tion of the mth mode in an infinitely wide lead,

�m
R+�y� � �m


+�y� . �A21�

The transverse wave function of the mth mode in the left lead
differs from this only very slightly, see Fig. 12, so we write
it as

�m
L+�y� = N���m


+�y� − �m�y�� , �A22�

where �m�y� is negligible except near y=wL and is given by
�m�y�=�m


+�y� for y�wL, where �m
L+�y�=0. The normaliza-

tion factor N� is close to one and will be evaluated below.
The longitudinal momentum in the left lead can be written as

kx,m
L+ = kx,m


+ + �kx,m. �A23�

The difference �kx,m is very small and is numerically found
to be O��m�.
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FIG. 12. �Color online� Sketch of the first mode �m=1� trans-
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Inserting Eqs. �A21�–�A23� into Eq. �A20� and extending
the integral to y=
 �considering that the wave function
�m

L+�y� is zero for y�wL�, we have

tmm = 

0


 �2kx,m

+ + �kx,m + 2kF

y

rc
�N���m


+�y�

− �m�y���m

+�y�dy , �A24�

and thus

tmm = N��1 − A + �kx,mB� , �A25�

with

A = 

0


 �2kx,m

+ + 2kF

y

rc
��m�y��m


+�y�dy , �A26�

B = 

0




��m

+�y� − �m�y���m


+�y�dy , �A27�

To calculate N�, we use the flux normalization condition
from Eq. �A9�,

1 = N�2

0


 �2kx,m

+ + 2�kx,m + 2kF

y

rc
���m


+�y� − �m�y��2dy ,

�A28�

which we write as

1 = N�2�1 − 2A + C + 2�kx,mB�� , �A29�

with

B� = 

0




��m

+�y� − �m�y��2dy , �A30�

C = 

0


 �2kx,m

+ + 2kF

y

rc
��m�y�2dy . �A31�

Inserting N� into Eq. �A25�, we obtain

tmm =
1 − A + �kx,mB

�1 − 2A + 2�kx,mB� + C
�A32�

�1 −
1

2
C + �kx,m�B − B�� , �A33�

where we used that the integrals A ,B ,B� ,C are much smaller
than one. With the explicit expressions for B and B�, the last
term becomes

�kx,m�B − B�� = �kx,m

0




��m

+�y��m�y� − �m�y�2�dy ,

�A34�

which is of higher order than integral C since �m�y� is almost
zero where the wave function has its maximum and �kx,m is
already O��m�. Dropping this term, we arrive at a simple
expression for �m,

�m �
1

2
C = 


0


 �kx,m

+ + kF

y

rc
��m�y�2dy . �A35�

a. WKB approximation of �m(y)

To evaluate Eq. �A35�, we need an expression for the
function �m�y�, see Fig. 12. By inserting Eq. �A22� into Eq.
�A8� and imposing the boundary conditions �m

L+�0�
=�m

L+�wL�=0, we find that �m�y� has to be an eigenfunction
of the same Hamiltonian Hy as �m

L+�y�, but with boundary
conditions �m�0�=�m�
�=0. Instead of a normalization con-
dition, it has to satisfy �m�wL�=�m


+�wL�. Since the upper
boundary wL is already deep in the classically forbidden re-
gion, we use a WKB approximation for our solution for
�m�y�,

�m�y� = �m

+�wL���m�wL�

�m�y�

� �exp�− 

y

wL

�m�y��dy�� y � wL

exp�− 

wL

y

�m�y��dy�� y � wL
� ,

�A36�

with

�m�y� = �2�Vm�y� − E� = kF
�Vm�y�/EF, �A37�

where we have used that the effective 1D Schrödinger equa-
tion has eigenvalue E=0 and the effective potential Vm de-
pends on the longitudinal wave number kx,m �cf. Eq. �A8��.
Inserting the above expression into Eq. �A35�, we find

�m = ��m

+�wL��2

� �

0

wL �kx,m

+ + kF

y

rc
� exp�− 2


y

wL

�m�y��dy��
�m�y�/�m�wL�

dy

+ 

wL


 �kx,m

+ + kF

y

rc
� exp�− 2


wL

y

�m�y��dy��
�m�y�/�m�wL�

dy� .

�A38�

We extend the first integral to start at −
 and perform the
substitutions 	�=wL−y�, 	=wL−y in the first integral and
	�=y�−wL, 	=y−wL in the second. Since the integrals will
only give a significant contribution near y=wL, i.e., 	=0, we
expand �m�y� into a Taylor series to first order,

�m�wL + 	� � �m�wL� + �m� �wL�	 . �A39�

Defining �m��m�wL�, �m� ��m� �wL�, and �m

+��m


+�wL�, we
find
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�m = ��m

+�2


0




d	 exp�− 2�m	�

� ��kx,m

+ + kF

wL − 	

rc
� exp��m� 	2�

1 − 	�m� /�m

+ �kx,m

+ + kF

wL + 	

rc
� exp�− �m� 	2�

1 + 	�m� /�m
� . �A40�

Expanding the term in square brackets in powers of 	 gives

� . . . � = 2�kx,m

+ +

kFwL

rc
� + O�	2� . �A41�

Dropping the quadratic term, the evaluation of the integral
leads to

�m =
��m


+�2

�m
�kx,m


+ +
kFwL

rc
� , �A42�

with �m

+ and �m both evaluated at y=wL.

b. WKB approximation of modes �m
�+(y)

The next step in our calculation of �m, and, ultimately, of
the mode localization length �m, is to find an expression for
the value �m


+�wL� of the transverse wave function at the
upper boundary and for the longitudinal momentum eigen-
value kx,m


+ .
To do this, we rewrite the effective transverse Hamil-

tonian Hy, following from Eq. �A8�,

Hy =
py

2

2
+ V�y� , �A43�

with the potential

V�y� =
kF

2

2
�� y − yz

rc
�2

+ 2
y − yz

rc
� , �A44�

with the classical turning point yz=y0+rc, where the poten-
tial value V�yz�=0 equals the energy E=0. We linearize the
potential near the classical turning point �where the WKB
solution diverges�, which makes it possible to solve the ef-
fective Schrödinger equation analytically. The complete
wave function is constructed by connecting the solution of
the linearized potential near the classical turning point to the
WKB solution in the classically forbidden region.

The linearized Schrödinger equation is solved by the
Airy function Ai�z� with z= �2kF

2 /rc�1/3�y−yz�. The boundary
condition at the lower wall demands that ��y=0� is equal
to zero, so that z�y=0� must be a zero of Ai�z�. For the
solution for the mth mode, we choose the mth zero at z=zm
��−2.338,−4.088,−5.521,−6.787, . . .�, so that the wave
function has m−1 nodes. From this follows that

yz = − � rc

2kF
2�1/3

zm, �A45�

and by using y0=−rckx /kF we find

kx,m

+ = kF�1 +

zm

21/3 �kFrc�−2/3� . �A46�

For large kF the longitudinal momentum of the mth mode
kx,m


+ is only marginally smaller than the Fermi momentum kF
�remember that zm is negative�. The maximum of the mth
transverse mode is between z=zm and z=0, i.e., between y
=0 and y=yz. Since yz approaches y=0 for large kF, the wave
function stays closer and closer to the lower wall with in-
creasing kF.

The transverse wave function near the classical turning
point can now be written as

�m

+�y� = CmAi�zm + �2kF

2

rc
�1/3

y� . �A47�

We will construct the full solution for the wave function by
using the Airy function near the classical turning point and
the WKB solution �which takes the quadratic potential into
account� in the classically forbidden region. Before proceed-
ing, we determine the prefactor Cm. Since the WKB solution
is only used in describing the exponential tail for y�yz, cal-
culating Cm with the wave function of the linearized poten-
tial will only introduce a small error. Therefore, we insert Eq.
�A47� into the flux normalization condition Eq. �A9� and
obtain

1 = 

0


 �2kx,m

+ + 2kF

y

rc
���m


+�y��2dy , �A48�

which results in

Cm = ��4kFrc�1/3��m +
m

21/3�kFrc�2/3��−1/2
, �A49�

where �m=�zm


 Ai2�z�dz and m=�zm


 zAi2�z�dz. In the limit of
large kF, this simplifies to

Cm � ��4kFrc�1/3�m�−1/2. �A50�

Since we need to evaluate the transverse wave function �m

+

at y=wL, which is deep in the classically forbidden region,
we proceed by connecting the Airy function �valid near the
classical turning point� to the WKB solution �valid in the
classically forbidden region�. We write the WKB solution as

�m

+�y� �

Dm

��m�y�
exp�− 


yz

y

�m�y��dy�� y � yz,

�A51�

and from a short calculation we obtain that the two constants
Cm and Dm are related by

Dm = �2kF
2

rc
�1/6 Cm

2��
. �A52�

For evaluating the integral in Eq. �A51�, we insert the ex-
plicit form of the potential, use y=wL as the upper limit of
integration, and rewrite Eq. �A37� as
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�m�y� = kF�2
y − yz

rc
+ � y − yz

rc
�2

, �A53�

leading to



yz

wL

�m�y��dy� = kFrc

0

z̄
�2z� + z�2dz�, �A54�

with z̄= �wL−yz� /rc. We evaluate the above integral by ex-
panding the integrand in powers of z�,



yz

wL

�m�y��dy� = �2kFrc

0

z̄ �z�1/2 +
z�3/2

4
+ O�z5/2��dz�

�
2�2

3
kFrcz̄

3/2�1 +
3

20
z̄� . �A55�

Inserting this into Eq. �A51�, and using that yz�wL in the
limit of large kF, we obtain

�m

+�wL� �

Dm

��m�wL�
exp�−

2�2

3
kFrc�wL

rc
�3/2�1 −

yz

wL
�3/2

��1 +
3

20

wL

rc
�� , �A56�

neglecting higher-order terms.
We now insert this into Eq. �A42� and obtain

�m = Em exp�−
4�2

3
kFrc�wL

rc
�3/2�1 +

3

20

wL

rc
��1 −

yz

wL
�3/2� ,

�A57�

with the prefactor

Em =
�kFrc�−2/3

21/34��m

kx,m

+ /kF + wL/rc

�wL − y0�2/rc
2 − 1

, �A58�

where we used Eqs. �A37�, �A50�, and �A52�.

3. Semiclassical limit with constant cyclotron radius

To obtain our final result for the mode localization length
�m in the semiclassical limit of large kF, we insert Eq. �A57�
with wL=hmin into the expression Eq. �A7� for �m. We keep
the cyclotron radius rc=kF /B constant, such that the classical
dynamics is independent of kF. We expand the prefactor
M / �4Em� in powers of kF for kF→
, keeping the first two
terms in the expansion since they are of similar magnitude
for the parameter values used, and finally obtain

� = �amheff
−2/3 − bm�exp�c0heff

−1�1 − dmheff
2/3�3/2� , �A59�

where heff= �kFW /��−1 and the dimensionless parameters am,
bm, c0, and dm are given by

am = 21/3�5/3M�m
�

�1/3�2 + �/�
1 + �/�� , �A60a�

bm = − �zmM�m�1 +
�2

�� + ��2� , �A60b�

c0 =
4�2�

3

�3/2

�1/2 �1 +
3

20

�

�
� , �A60c�

dm =
− zm

21/3�2/3
�1/3

�
, �A60d�

where we have introduced the dimensionless parameters
�=hmin /W=1− �� /2W� and �=rc /W. Note that the factor c0
determining the asymptotic exponential behavior does not
depend on the mode number m. For m=1 and in the limit
� /��1 this corresponds to the result we have previously
reported.31

4. Semiclassical limit with constant magnetic field

Instead of keeping the cyclotron radius fixed, we alterna-
tively set the magnetic field B to a fixed value independent of
kF and again perform the limit kF→
. We repeat the above
procedure, introducing the magnetic length � through
B=1 /�2 and the dimensionless parameter �=� /W. As
above, we use �=hmin /W and obtain

�m = �amheff
−1/3 − bm�exp�c0heff

−1/2�1 − dmheff
1/3�3/2� , �A61�

with the dimensionless parameters am, bm, c0, and dm now
given by

am = �2��4/3M�m
�

�2/3 , �A62a�

bm = − 2�zmM�m, �A62b�

c0 =
4�2�

3

�3/2

�
, �A62c�

dm =
− zm

�2��1/3
�2/3

�
. �A62d�
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