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We investigate electron transport through clean open quantum dots �quantum billiards�. We present a semi-
classical theory that allows to accurately reproduce quantum-transport calculations. Quantitative agreement is
reached for individual energy-dependent and magnetic field dependent elements of the scattering matrix. Two
key ingredients are essential: �i� inclusion of pseudopaths which have the topology of linked classical paths
resulting from diffraction in addition to classical paths and �ii� a high-level approximation to diffractive
scattering. Within this framework of the pseudopath semiclassical approximation �PSCA�, typical shortcom-
ings of semiclassical theories such as violation of the anticorrelation between reflection and transmission and
the overestimation of conductance fluctuations are overcome. Beyond its predictive capabilities the PSCA
provides deeper insights into the quantum-to-classical crossover.
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I. INTRODUCTION

The ability to controllably fabricate, manipulate, and ex-
amine structures on the submicrometer scale has let to the
observation of quantum phenomena in electron transport
such as, e.g., universal conductance fluctuations in chaotic
billiards and weak localization �WL�, which dominate trans-
port at the nanoscale.1,2 By reducing the characteristic sys-
tem size below the electronic inelastic mean free path, trans-
port enters the so-called ballistic regime.3 Ballistic electron
transport is a prime candidate for semiclassical
descriptions4–26 where the classical trajectories carry an am-
plitude which reflects the stability of the classical orbits and
a phase which contains the classical action and accounts for
quantum interference.27 On a more fundamental level, the
semiclassical framework provides a conceptually powerful
bridge between classical and quantum mechanics allowing
an intuitive approach to quantum mechanics and quantum
chaos, in general, and to transport through open quantum
dots or so-called quantum billiards, in particular.4–6

Several semiclassical approximations �SCAs� based on
the approximation of the constant-energy Green’s function
for propagation in a billiard have been proposed and com-
pared with numerical quantum-transport calculations or
experiment.8–19,28,29 While many qualitative features could
be well reproduced, quantitative agreement on a system-
specific level has remained a challenge.

One underlying difficulty is the multiscale nature of the
quantum-to-classical transition for transport through open
quantum dots. For the semiclassical approximation to hold,
the de Broglie wavelength � should be vanishingly small
compared to all characteristic dimensions of the device. Such
asymptotic theories have been successfully employed to re-
produce, upon ensemble averaging, random matrix theory
results for chaotic cavities �see, e.g., Refs. 7 and 20–23�. A
quantitative comparison on a system-specific level with full
quantum calculations or experiments is, however, only pos-
sible in the nonasymptotic regime where � is small compared

to the linear dimension D of the dot, ��D but still compa-
rable to the width of the lead �or quantum wire� d, ��d.
Moreover, for billiards with sharp edges the proper
asymptotic limit is, rigorously, out of reach. The present
theory addresses this nonasymptotic semiclassical regime,
often also referred to as the “near” semiclassical regime. We
show that the proper inclusion of diffractive contributions
allows to quantitatively reproduce quantum calculations. The
diffractive coupling between classical paths gives rise to
pseudopaths that are missing in the standard SCA and are the
key to remedy many of the deficiencies of semiclassical ap-
proximations.

We show in the present communication that this pseudo-
path semiclassical approximation �PSCA� can reach quanti-
tative agreement with full quantum simulations provided a
high-order diffraction theory for the coupling between clas-
sical paths is used. For the scattering at the leads we develop
an approximation involving elements of both the uniform
theory of diffraction �UTD� �Refs. 30 and 31� and the geo-
metric theory of diffraction �GTD� �Ref. 32� referred to in
the following as the GTD-UTD approximation. With these
ingredients good agreement with quantum simulations is
found.

One key conceptual insight is the unambiguous identifi-
cation of the paths that contribute to quantum transport. We
apply the present theory to a circle-shaped regular quantum
dot for which the enumeration of paths, more precisely of
path bundles, is easily possible. Unlike for chaotic dots, for
which the exponential proliferation of contributing paths as a
function of the path length makes their unique identification
difficult, for regular systems their enumeration and identifi-
cation is straightforward up to large path lengths.33

The circular billiard is depicted in Fig. 1. The leads are
attached at right angle and have equal width d. In order to
probe the local topology of the cavity we require sufficiently
long dwell times such that d /��1. The wavelength of the
electron � fulfills ��� for the semiclassical limit to hold
inside the cavity. However, as in experimental or numerical
studies of quantum billiards ��d. Our semiclassical theory
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can thus be quantitatively compared with quantum-
mechanical numerical calculations for the circular billiard.

This paper is organized as following: In Sec. II, we re-
view both the standard SCA as well as the PSCA. These
approximations differ by the different path sets entering the
corresponding Green’s function. In Sec. III, we introduce the
GTD-UTD diffraction approximation which is a key to the
quantitative agreement between the PSCA and quantum me-
chanics for transport properties. The important role of
pseudopaths and a proper diffraction theory is demonstrated
on the level of quantum-mechanical length-area spectra16 in
Sec. IV. Finally, we compare in Sec. V the semiclassical
predictions for a variety of quantum-transport properties that
play a key role in the understanding of the quantum-to-
classical crossover, in particular, conductance fluctuations
�CF�, WL, and quantum �nonthermal� shot noise, with quan-
tum calculations.

II. QUANTUM TRANSPORT THROUGH BILLIARDS

We consider ballistic transport through quantum billiards
for which transport properties are determined by the wave
number �k� and magnetic field �B� dependent quantum-
mechanical Hamiltonian S-matrix. Dissipative or dephasing
processes are neglected. �We will return to the effect of de-
coherence below.� Moreover, we refer to a “clean” billiard
when elastic scattering at a disorder potential in the interior
of the structure is absent. In this limit, the S-matrix repre-
sents elastic scattering at the boundaries of the billiard only.

The S-matrix elements Sn,m
�j,i��k ,B� describe the scattering

from transverse mode m in lead i to mode n in lead j. We
denote the transmission amplitudes from lead 1 to lead 2 as
tnm�k ,B�=Snm

�2,1��k ,B� and the reflection amplitudes back into
lead 1 as rnm�k ,B�=Snm

�1,1��k ,B�. According to the Landauer
formula the conductance g of a quantum billiard is directly
proportional to the total transmission T�k ,B�,

g�k,B� =
2e2

h
T�k,B� =

2e2

h
�
n=1

M

�
m=1

M

�tnm�k,B��2, �1�

where M is the number of open modes in the leads having
equal width d. The S-matrix elements can be determined by a

projection of the lead modes �m�yi� �yi is the transverse co-
ordinate in the lead� onto the Green’s function G�yj ,yi ,k ,B�
for propagation from yi to yj at the cavity-lead junction of
lead i and lead j, respectively. The S-matrix elements at
B=0 are given by the Fisher-Lee equations37

tnm�k,B = 0� = − i�kx2,nkx1,m

�� dy2� dy1�n
��y2�G�y2,y1,k,B = 0��m�y1� ,

�2�

where kx1,m �kx2,n� is the longitudinal wave number in lead 1
�lead 2�. The prefactor �kx2,nkx1,m is due to flux normaliza-
tion. We use atomic units ��= �e�=meff=1�. At zero magnetic
field, the mode wave functions take the form

�m�y� =�2

d
sin

m	y

d
. �3�

For nonzero magnetic field B�0, Eqs. �2� and �3� have to be
modified �see, e.g., Refs. 34 and 35, and references therein�.
We use the modular recursive Green’s-function method to
calculate the exact quantum-mechanical S-matrix elements
for a given k and B �for details see Refs. 34 and 35�.

A. Semiclassical approximations to transport

The starting point of semiclassical approximations are the
S-matrix elements �Eq. �2��. In a first step, the quantum-
mechanical Green’s function G is replaced by a correspond-
ing semiclassical expression which represents the Fourier-
Laplace transform in stationary phase approximation of the
semiclassical limit of the Feynman propagator. It describes
propagation along classical paths with fixed energy. Depend-
ing on the class of paths included, a hierarchy of different
semiclassical approximations to the Green’s function results.
These are to be distinguished from the different level of ad-
ditional approximations employed in the evaluation of the
integral �Eq. �2�� which projects the Green’s function onto
the lead function. The latter gives rise to another set of semi-
classical approximations to the S-matrix elements.

We focus first on the replacement of G by a semiclassical
approximation. For the latter we consider two different levels
of approximation, the standard SCA and the PSCA. Both
result from the stationary phase approximation �SPA� to the
full Feynman propagator reducing the continuous set of
paths entering Feynman’s path integral to a discrete subset of
paths. Assuming that the classical action S is much larger
than � and that well localized and separated stationary points
with 
Si=0 exist, the standard SCA contains exclusively
classical paths. However, near sharp edges of the cavity or
near the cavity-lead junctions, the de Broglie wavelength is
not negligibly small and the SPA will fail. This leads to dif-
fractive corrections which can be taken into account within
the framework of the PSCA. One of its salient features is that
the basic notion of a propagator consisting of a sum over a
discrete set of paths is preserved. Diffraction effects simply
appear as additional contributions to the path sum �see Sec.
II C�.

lead 2

lead 1

d

��

FIG. 1. �Color online� Geometry of the circular billiard of radius
� with perpendicular leads of equal width d. In accordance with
previous work �Refs. 34–36� on the circular and the stadium billiard
of equal area a=4+	, we choose d=0.25 and �=�1+4 /	.
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The classical action for an electron moving along a path q
is given by Sq=kLq+Baq /c, where Lq is the length and aq is
the directed enclosed area of the path. The enclosed area of
open paths is determined according to Ref. 13. aq can have
both positive and negative values depending on the rotational
direction of the path. In all our semiclassical calculations
�standard SCA as well as the PSCA�, the magnetic field en-
ters only via the Aharonov-Bohm phase Baq /c. The curva-
ture of the paths as well as the effect of nonzero magnetic
field on the diffraction at the lead �introduced in Sec. III� is
neglected since we consider the regime of weak magnetic
fields ���ck /B with � being the radius of the circular cav-
ity�.

B. Standard semiclassical approximation

The Green’s function within the standard SCA entering
Eq. �2� is given by4

GSCA�yj,yi,k,B� =
2	

�2	i�3/2 �
q:yi→yj

��Dq�yj,yi,k��

� exp	iSq�yj,yi,k,B� − i
	

2
�q
 , �4�

where Dq�yj ,yi ,k� is the deflection factor �a measure for the
divergence of nearby trajectories which is inversely propor-

tional to the element M̃12 of the stability matrix� and �q is
the Maslov index. The deflection factor is defined as

�Dq�yj,yi,k�� =
1

�kxj
��kxi

�
� �2Sq

�yj � yi
� , �5�

where xi �yi� is the longitudinal �transverse� component of
the trajectory’s starting point �i� and end point �j�, respec-
tively. The Maslov index increases by two for every reflec-
tion at the hard-wall boundary of the billiard and by one
when passing a focal point along the trajectory. Equation �4�
contains a sum over all classical paths q connecting the en-
trance lead i with the exit lead j �see Sec. II C�.

Evaluation of Eq. �2� with GSCA,

tnm
SCA�k,B� = − i�kx2,nkx1,m

�� dy2� dy1�n
��y2�GSCA�y2,y1,k,B��m�y1� ,

�6�

proceeds either numerically11 or analytically by invoking an-
other set of SPAs. It was recognized from very early on that
the SPA as applied to Eq. �6� is poorly justified in the non-
asymptotic regime when ��d. Therefore, various diffraction
integral approximations have been proposed.10,12 The trans-
mission amplitudes then take the form

tnm
SCA�k,B� =

− 1
�2	i

�kx2,nkx1,m �
q:yi

0→yj
0

cn��2,k,d�

� ��Dq�k��exp	iSq�k,B� − i
	

2
�q
cm��1,k,d� ,

�7�

expressed in terms of diffraction coefficients cm�� ,k ,d� de-
scribing the diffractive coupling from the entrance lead mode
m into the dot and from the dot into the exit lead mode n. For
path q, the angle �1 stands for the entrance angle into the
cavity and �2 is the exit angle out of the cavity. Deviating
from previous calculations, we introduce for cm,n�� ,k ,d� a
combination of Keller’s GTD �Ref. 32� and the UTD.30,31

The derivation of cm�� ,k ,d� within the GTD-UTD is given
in Section 2 of the Appendix. The inclusion of diffraction
effects in terms of diffraction coefficients in Eq. �7� pre-
serves the structure of the semiclassical transmission ampli-
tude in terms of a discrete sum over paths contributing to
transport. The diffraction coefficients provide �- and
k-dependent weighting factors for each path contributing to
the transmission from mode m to mode n. Within the frame-
work of the diffractive couplings into and out of the leads,
the entrance and exit leads are treated as point scatterers.15

The point scatterer placed at the center of each cavity-lead
junction is marked by yi

0 in Eq. �7�. Each path bundle which
connects the entrance and the exit lead is replaced by an
appropriately weighted representative path q connecting the
center of the entrance lead with the center of the exit lead.
Consequently one can replace the deflection factor as given
in Eq. �5� by its value in the closed circular billiard Dq

=1 /�kLq, where Lq is the length of the path.
The diffractive lead-dot couplings in Eq. �7� should be

distinguished from diffractive corrections included in the
propagation in the interior of the billiard. We refer to Eq. �7�
as the standard SCA while inclusion of diffractive correc-
tions in the billiard corresponds to the PSCA.

C. Paths entering the standard semiclassical Green’s function

Classical paths in a regular billiard �such as the circle�
feature a highly ordered structure of their length and en-
closed area distribution �see Fig. 2�. The branch structure of
the “length-area” distribution of paths connecting the en-
trance with the exit point is a specialty of the circular cavity.
Along each branch the number of bounces off the wall in-
creases by one from one path to its next-higher neighbor. The
points of convergence of each branch mark those paths that
bounce off the wall infinitely many times and thus run ex-
actly along the cavity boundary. In the limit �→	 /2 �where
� is the entrance angle as given in Fig. 1� each branch con-
tains an infinite number of paths. In our numerical calcula-
tions �see Sec. V� paths near this cluster point effectively do
not contribute as they are cut off by vanishing diffraction
coefficients cn��→	 /2,k�→0.

The distribution of paths eventually reflected back to the
entrance point �Fig. 2�a�� is symmetrically distributed rela-
tive to the a=0 axis due to time-reversal symmetry. Every
path has a counterpart of equal length but opposite sign of

TRANSPORT THROUGH OPEN QUANTUM DOTS: MAKING… PHYSICAL REVIEW B 81, 125308 �2010�

125308-3



the enclosed area. The lowest left and right branches consist
of polygons with a number of revolutions nR=1 in the cavity.
The polygons can be characterized by an angle 
= 2	

nC
, where

nC is the number of corners. Along each branch nC increases
by one from one path to the next. The paths of the next-
higher branches revolve twice �nR=2� around the circle and

=

2	nR

nC
= 4	

nC
. All higher branches can be described analo-

gously.
The branches of transmitted paths are not symmetric rela-

tive to the a=0 axis but show a clear off-set �Fig. 2�b��. Path
pairs with similar length do not have, in general, the same
topology but differ in the number of bounces off the hard
wall boundary. As a consequence, these path pairs have dif-
ferent Maslov indices and thus do not interfere construc-
tively. Figure 2 also illustrates the difference between the
open and closed billiard, i.e., the effect of “path shadowing”
or suppression of longer paths due to their prior exit from the
structure. All paths that would be geometrically reflected off
the closed lead in the closed system are missing in the open
billiard. The difference between the closed and open billiard
is particularly evident in reflection since all paths with four-
fold symmetry leave the cavity via lead 2 before being re-
flected back to lead 1. This is system specific for the circular
billiard with perpendicular leads �see Fig. 1�.

The distinctly different path distributions for transmission
and reflection point already to a clear structural deficiency of
the SCA. Many quantum properties of transport are a conse-
quence of the intrinsic coupling between transmission and
reflection. The standard SCA does not incorporate this quan-
tum aspect of nonlocality. Classically, the path sets of trans-
mission and reflection are disjoint. The distribution of trans-
mitted paths is markedly different from the one of reflected
paths. In quantum transport, transmitted and reflected paths
are intertwined and must share the information on the rela-
tive phases. A semiclassical theory that reproduces quantum
features must therefore allow for coupling between the path
sets associated with transmission and reflection. This is the
key property of pseudopaths discussed in the following.

D. Pseudopath semiclassical approximation

The pseudopath semiclassical approximation14,15 goes be-
yond the standard SCA by systematically including diffrac-
tive corrections into the propagation in the interior of the
billiard. In the present case, diffractive corrections arise from
multiple backscattering, i.e., internal reflections at the leads.
We point to the conceptual similarity to “pseudo-orbits”38 as
well as to “diffractive orbits”31,39,40 introduced for the study
of the density of states in closed billiards and to “Hikami
boxes”2,41 introduced for elastic scattering at short-ranged
potentials in the interior of a diffusive quantum dot.

In line with multiple-scattering theory the pseudopath
semiclassical Green’s function can be expressed in terms of a
�semiclassical� Dyson equation,15

GPSCA = GSCA + GSCAVGPSCA = GSCA�
i=0

�

�VGSCA�i. �8�

In the present case, GSCA plays the role of the unperturbed
Green’s function and the perturbation “potential” V accounts
for the �internal� diffractive scatterings at the lead opening.
The unperturbed propagation inside the cavity GSCA is
equivalent to the free propagation in the “closed” system.

For a two-terminal system, the perturbation potential V is
given by

V = �V1 0

0 V2

 , �9�

where V1 and V2 describe the diffractive scattering off lead 1
and lead 2, respectively. The semiclassical Dyson equation,
Eq. �8�, reads

�G1,1
PSCA G1,2

PSCA

G2,1
PSCA G2,2

PSCA
 = �G1,1
SCA G1,2

SCA

G2,1
SCA G2,2

SCA
 + �G1,1
SCA G1,2

SCA

G2,1
SCA G2,2

SCA

��V1 0

0 V2

�G1,1

PSCA G1,2
PSCA

G2,1
PSCA G2,2

PSCA
 . �10�

To first order, the PSCA to the Green’s function �denoted by
GPSCA�1�� connecting lead i with lead j includes terms in V of
the form,

FIG. 2. �Color online� Two-dimensional length vs enclosed area
distribution of classical paths within the open �black dots� and
closed �orange triangles� circular billiard for �a� reflection and �b�
transmission. Each point represents one classical path which con-
nects the centers of each lead. The inset of �a� shows typical paths
for the path topology of the three first branches.
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GPSCA�1� = �
l=1,2

Gj,l
SCAVlGl,i

SCA

= �
l=1,2

�
qj,l�

�
ql,i

Gqj,l�
SCAv��ql�

,�ql
,k,d�Gql,i

SCA. �11�

Equation �11� may serve as example to illustrate the physics
entering Eq. �10�. It describes propagation from lead i to lead
j via one intermediate visit to lead l where diffractive inter-
nal backscattering with amplitude v��ql�

,�ql
,k ,d� takes place.

Diffractive internal backscattering refers to the reflected
component of the wave approaching the lead opening from
the inside. The path from lead i to lead l, ql,i as well as from
lead l to lead j, qj,l� , are classical paths described by GSCA.
Diffractive scattering couples the incident path ql,i with angle
�ql

to the exiting path qj,l� with angle �ql�
thereby coupling

two disjoint subsets of classical paths and generating a first-
order pseudopath. The determination of the diffraction coef-
ficient v��ql�

,�ql
,k ,d� will be discussed in more detail in Sec.

III. From a conceptual point of view, the pseudopath semi-
classical approximation �Eq. �10�� is closely related to the
diagrammatic perturbation theory.1 Both leads 1 and 2 �i.e.,
V1 and V2� act much like Hikami boxes,2,41 where electrons
cannot be described semiclassically since the characteristic
potential length scale �in our case the sharp edges of the
leads� is smaller than the electron wavelength �. Thus, the
wave nature of electrons has to be taken into account as
diffraction at the point scatterers allowing classically distinct
path sets to mix. This is crucial for the quantum corrections
to the transmission and reflection amplitudes and repairs
some of the deficiencies of the standard SCA �see Sec. V�.

E. Paths entering the pseudopath semiclassical Green’s
function

Within the PSCA pseudopaths are formed by joining clas-
sical paths together via diffraction. With each increasing or-
der of the PSCA the length-area distribution gets more and
more densely filled with paths, or equivalently, the number
of paths increases with the order of the PSCA �Fig. 3�.
Pseudopaths form product sets of classical paths, e.g., join-
ing a given classical path for transmission with a classical
path contributing to reflection �or in reverse order� forms the
set of transmitted pseudopaths to first order. Reflected first-
order pseudopaths result from joining two classical transmit-
ted paths or two classical reflected paths. This coupling al-
lows to recover the nonlocality of quantum transport.
Higher-order pseudopaths are constructed analogously. With
increasing order and increasing �combined� path length the
total number of pseudopaths exponentially proliferates. This
is in sharp contrast to the power-law growth of purely clas-
sical paths for regular systems and explains why the effect of
diffractive scattering is more likely visible in regular than in
chaotic systems where the exponential proliferation of clas-
sical orbits may mask the diffractive contributions.

The length-area distribution of first-order pseudopaths
contained in Eq. �10� contributing to reflection is �of course�
still symmetric �Fig. 3�a��. In addition, new branches appear
with classical and pseudopath partners of approximately

equal length. The change in the branch structure is more
dramatic in the spectrum of transmitted paths �Fig. 3�b��. The
pseudopaths lead to a “symmetrization” of the length-area
distribution. The symmetrization results primarily from paths
which change their rotational direction through diffractive
scattering �see the pseudopath in the inset of Fig. 3�b��.
Branches of classical paths are now completed by symmetric
pseudopath “partner” branches of approximately equal
length and different enclosed area.

The weight and the phase of interfering paths are strongly
influenced by the diffraction coefficient v��� ,� ,k ,d�. As will
be demonstrated in Sec. V, the previously employed Fraun-
hofer theory of diffraction12–15 is not sufficiently accurate as
to give quantitatively reliable results for transport properties.
The same holds for the Kirchhoff theory of diffraction10

which is closely related to the Fraunhofer theory of diffrac-
tion and gives similar results for the diffraction coefficients
�see Fig. 5 in the following section�. For a quantitative agree-
ment between the PSCA and quantum mechanics, it is thus
necessary to go beyond low-order diffraction approximations
and use a more sophisticated theory of diffraction. We
present such a theory in the following section.

FIG. 3. �Color online� Length-area distribution of first-order
pseudopaths �blue dots� for �a� reflection and �b� transmission.
Zeroth-order pseudopaths �i.e., the classical paths� are denoted by
orange triangles �same as Fig. 2�. The number of first-order pseudo-
paths up to length L=40 is larger by more than a factor of 60
compared to the number of classical paths.
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III. DIFFRACTION AT THE LEAD

The contribution of a given classical path �within the cir-
cular billiard� with path length Lq to the standard semiclas-
sical Green’s function, GSCA, is

Gq
SCA =

1
�2	kLq

eikLq−i3	/4−i	/2�q. �12�

This equation is also valid for the propagation in free space.
Equation �12� is the basic building block entering the Dyson
Eq. �10� together with the diffraction coefficient
v��� ,� ,k ,d�. In line with the far-field approximation under-
lying diffraction theory, v��� ,� ,k ,d� is assumed to be inde-
pendent of the length of the path approaching or exiting the
diffractive scattering region.

A successful application of the pseudopath semiclassical
approximation outlined in the preceding subsection requires
the determination of accurate diffraction coefficients
v��� ,� ,k ,d�. Different approximations have been used in the
past for the inclusion of diffraction effects: Kirchhof diffrac-
tion approximation �KDA�,10 Fraunhofer diffraction approxi-
mation �FDA�,12–15 GTD,32 and the UTD.30,31 We have de-
veloped a theory for the reflection at open lead mouths by
combining the GTD with the UTD �the GTD-UTD� to take
into account paths that scatter multiple times between the
edges of the leads �see Section 1 of the Appendix�. With this
theory we obtain diffraction coefficients in excellent agree-
ment to quantum mechanics.

Consider, as a test case, the diffractive scattering �Fig. 4�
at the lead mouth described by the first-order term �Eq. �11��,

Gq�,q
PSCA�1�

= Gq�
SCAv���,�,k,d�Gq

SCA. �13�

The incoming path q is incident at angle � �measured with
respect to the surface normal� and is diffractively scattered
into angle �� under which path q� leaves the scattering re-
gion. We compare �Fig. 5� the present GTD-UTD theory
with the FDA, the KDA, and exact quantum-mechanical
�QM� calculations.10 Even for a typical k value in the low-
mode regime �k=2.5	 /d�, the agreement between the GTD-
UTD and the exact QM calculations is very good whereas
both the FDA and the KDA display clear deviations from the

QM values. While these deviations do not appear dramatic at
first glance, they are, in fact, quantitatively very important as
the diffraction coefficient enters the Dyson series �Eq. �10��
to all orders. Note, however, that the GTD-UTD would fail
in the limit �→	 /2 �as indicated by the kink at ��=�
=3	 /8 in Fig. 5�c��. This deficiency is of no concern for the
present applications as the probability for diffractive scatter-
ing tends to zero in this limit. The maximum of the diffrac-
tive reflection probability is clearly around the specular value
���−�. However, it is important to note that the probability
distribution possesses a local maximum at the backscattering
angle ����. A non-negligible part of the electron wave is
backscattered into the direction from where it came from.
This diffractive back reflection should not be confused with
the well-known Andreev back reflection in which the back-
reflected particle simultaneously undergoes a particle-hole
exchange.42 Back-reflected paths are responsible for the sym-
metrization of the distribution of transmitted paths �Fig. 3�b��
and are crucial for the understanding of the weak-localization
dip in the transmission.16

While the KDA and the FDA have been successfully used
in the past to explain certain features of conductance
fluctuations,10,12–15 only the GTD-UTD is precise enough to

FIG. 4. �Color online� Sketch of diffraction at an open lead
mouth: a path q reaches the orifice under an angle � and is back-
scattered into a path q� that leaves with an angle �� �the angles �
and �� as depicted in the figure have opposite signs�. The dashed
lines denote that r� and r�� are in the far-field region.
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FIG. 5. �Color online� Absolute square of the diffraction coeffi-
cient �v��� ,� ,k ,d��2 for diffractive scattering �see Fig. 4� within the
FDA, the KDA, the GTD-UTD, and exact quantum-mechanical
data for angle of incidence �a� �=	 /8, �b� �=	 /4, and �c� �
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reproduce transport semiclassically on a quantitative level
�see Sec. V�. In Sec. V B we compare the results for trans-
port properties obtained by implementing the GTD-UTD and
the FDA to full quantum-mechanical calculations.

IV. PATHS IN QUANTUM TRANSPORT

The information on paths governing quantum transport
can be reliably extracted from the two-dimensional Fourier

transforms of the quantum-mechanical S-matrix elements,16

Snm�k ,B�. The S-matrix elements display a strongly fluctuat-
ing pattern as a function of k and B �see Fig. 6 for T22�k ,B��.
Since the canonically conjugate variables to the wave num-
ber k and the magnetic field B are the length L and the
directed area a, respectively, the Fourier transform

S̃nm
j,i �L,a� =� dk� dBe−i�kL+B/ca�Snm

j,i �k,B� �14�

allows the unambiguous identification of quantum paths con-
tributing to quantum transport via their length and enclosed
area �Figs. 7�a�–7�d��. No a priori assumption as to the ex-
istence of classical paths q�L ,a� with path length L and area
a enters Eq. �14�. The two-dimensional path-length-area
spectrum allows to identify both classical as well as nonclas-
sical contributions to the full quantum spectra. Figure 7 dis-

plays examples of path-length-area spectra �S̃ij�L ,a��2. �Note
that Fig. 7�c� is the absolute square of the Fourier transform
of the transmission amplitude whose absolute square is plot-
ted in Fig. 6�. Obviously the strong fluctuations of conduc-
tance in quantum transport �Fig. 6� are the result of the in-
terference of clearly identifiable �quantum� paths �Fig. 7�.

The quantum-mechanical S-matrix elements Snm�k ,B� are
determined with the help of the modular recursive Green’s-
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function method34,35 and then numerically Fourier trans-
formed. Finite discretized intervals must be used when per-
forming the Fourier transform numerically. The integration
intervals are denoted by �k=kmax−kmin ��B=Bmax−Bmin�
and the numerical grid spacings by 
k �
B�. Accordingly, the
resolvable length is �L=2	 /
k and the resolvable area in-
terval is �a=2	 / �
B /c�. The magnitude of the S-matrix el-
ements decreases with increasing length, which is an obvious
consequence of open systems: the probability to stay within
the cavity decreases with increasing length. The parameter

k must be chosen sufficiently small such that the maximum
resolvable length ��L� lies already in the region of strongly
reduced amplitudes. Otherwise, the Fourier spectrum is vis-
ibly backfolded onto the fundamental interval. The magnetic
field interval is further restricted by the requirement that the
curvature of the paths is negligible, i.e., the cyclotron radius
ck /B should be much larger than the circle radius �. We
chose the interval �k and �B as well as the number of inter-
val points such that a maximum length of �L=100 is re-
solved �in Figs. 7�a�–7�d� only the contributions with L
�40 are shown, the insets contain the entire spectrum�. Ex-
cept for R11, the absolute square of the S-matrix elements is
considerably damped at a length of �L=100. Thus, the
graphs represent essentially the entire length-area spectrum.
Only for R11, contributions with L�100 are non-negligible
which leads to a backfolding near L=0 �the lowest branch
structure near L=2 in Fig. 7�b��.

The quantum length-area spectra provide detailed infor-
mation on the paths contributing to transport through a spe-
cific system. They represent the paths entering the full Feyn-
man path integral. The following general trends can be
observed. Long paths are more prevalent in S-matrix ele-
ments connecting low mode numbers �in the present case

they contribute more strongly to S-matrix elements S̃11 than

to S̃22�. Lower modes favor smaller entrance and exit angles
that are associated with longer paths with a larger number of
bounces off the cavity boundary. The most important obser-
vation is the remarkably close correspondence of the
quantum-mechanical length-area spectrum to its classical
counterpart. Important contributions are located near classi-
cal paths. Moreover the branch structure of classical paths is
reproduced �Figs. 7�a�–7�d��. On the other hand, there are
distinct structures which do not correspond to classical paths

and which can be identified using the distributions in Figs.
3�a� and 3�b�. The quantum-mechanical length-area spectra
confirm the existence and substantial role of nonclassical
paths, the pseudopaths: these are those paths that are one or
several times diffractively reflected off the lead before exit-
ing the cavity. Two examples are given in the following: for
T̃22 we identify an ensemble of diffractive paths which,
among others, contribute to a symmetrization of the spec-
trum �nonclassical branches in Fig. 7�c�, two of them to-
gether with the classical partner branches are marked by ar-
rows�. R11 reveals the importance of paths that are
geometrically reflected off the open lead �e.g., the periodic
contributions near a=0 along the length axis belong to hori-
zontal paths bouncing increasingly many times back and
forth�.

The importance of a given class of paths to quantum
transport can be delineated by inverting this decomposition
process. Deleting a selected class of paths �classical or non-

classical� from S̃ij�L ,a� and performing the inverse Fourier

transform gives rise to truncated S-matrix elements S̄ij�k ,B�
from which certain path contributions have been removed in
a controlled manner. This is the key to detailed quantitative
tests of semiclassical theories. Since summation of the
�P�SCA over arbitrarily long paths is prohibitively compli-
cated we can compare truncated quantum and semiclassical
S-matrix elements where both quantum and classical paths
only up to a maximum path length L�Lmax are included.
The length-area spectra also allow sensitive tests for the
proper diffractive weight of a given class of paths in a semi-
classical theory. To this end, we first calculate the S-matrix
elements within the PSCA and then perform the Fourier
transform �Eq. �14�� in analogy to quantum calculations. To
analyze the role of a proper diffraction coefficient we use
either the GTD-UTD �which gives good agreement with
quantum mechanics, see Fig. 5� or the FDA �with poor
agreement with quantum mechanics, see likewise Fig. 5�.
The fact that back reflection into the cavity is poorly de-
scribed within the FDA is mirrored in the semiclassical
length-area spectrum where important nonclassical �diffrac-
tive� contributions have a far too low weight �Fig. 8�c��. In
particular, the diffractive change in the rotational direction is
insufficiently described �see Fig. 5 for ���0�. A clear indi-
cation for the essential role of the corresponding paths is the
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improvement within the GTD-UTD. The length-area spec-
trum within the GTD-UTD remarkably reproduces even fine
details of the quantum-mechanical spectrum �compare Figs.
8�a� and 8�b��. The nonclassical path sets in Fig. 8 can be
identified using the path distributions within the PSCA �Fig.
3�. The length-area spectra do not leave any ambiguity as to
which paths contribute by which phase and weight. By tak-
ing into account pseudopaths and weighting them with the
appropriate diffraction coefficients the quantum-mechanical
path spectrum is reproduced on a quantitative level. In the
following section we demonstrate how the accurate represen-
tation of the length-area spectra within PSCA directly trans-
lates into quantitative reproduction of transport properties.

V. APPLICATION TO TRANSPORT THROUGH REGULAR
BILLIARDS

Phase-coherent ballistic transport governed by quantum
interference influences the conductance in several important
ways: the conductance strongly fluctuates as a function of the
Fermi energy, the magnetic field, or the cavity geometry
�conductance fluctuations, CF�. The conductance is, on aver-
age, suppressed compared to the classical prediction and in-
creases with external magnetic field �weak localization, WL�.
The noise carries the signatures of quantum-mechanical un-
certainty �shot noise�.

Path interference has been the key to the understanding of
phase-coherent ballistic transport.7–26,43 For chaotic systems
and large mode numbers quantum-transport properties have
been attributed17–23 to the interference of classically allowed
paths �SCA�. We demonstrate in the following for the circu-
lar billiard at low mode numbers �accessible to experiments�
that CF, WL, and shot noise cannot be explained by the
interference of classical paths alone. In this regime, the SCA
overestimates the CF, does not reproduce the weak-
localization dip and also shows poor quantitative agreement
with the quantum-mechanical prediction for shot noise.
These difficulties can be overcome with the PSCA when a
high-level diffraction approximation, the GTD-UTD, is em-
ployed. For technical reasons, we perform in both the SCA
and the PSCA the summation over paths only up to a maxi-
mum cutoff length Lmax. Correspondingly, we truncate the
full quantum scattering matrix elements by setting all ele-

ments S̃nm�L ,a� with lengths exceeding Lmax to 0 and carry
out the inverse Fourier transform. This allows a quantitative
comparison between semiclassical and quantum calculations
unaffected by the �inevitable� unitarity deficiency of a trun-
cated semiclassical path sum.

A. Conductance fluctuations

CF have been identified as a direct manifestation of
phase-coherent transport �see, e.g., Refs. 1, 2, 8, 18, and
44–47, and references therein�. The strong fluctuations of the
conductance as a function of, e.g., energy originate from path
interference and thus give evidence for the wave nature of
electrons in quantum dots. The CF offer one of the most
stringent testing grounds for a semiclassical theory, when

good agreement on the level of each individual S-matrix el-
ement is required.

In the following, we compare the results for CF within the
PSCA with the GTD-UTD, the SCA, and the quantum-
mechanical calculations as a function of k at vanishing mag-
netic fields B=0. Results for B�0 averaged over k can be
found in Sec. V B.

The semiclassical and quantum-mechanical results both
display strong fluctuations of the conductance �i.e., the total
transmission T�k ,B=0��. Their amplitude is, however, ex-
tremely sensitive to any deficiencies in the semiclassical ap-
proximations �inappropriate weighting of paths, missing
paths�. We emphasize that the comparison of Fig. 9 is on a
fully differential level. No energy or ensemble average is
involved. Unsurprisingly, the agreement between the SCA
and the quantum data is poor and on a level of qualitative
agreement at best �Figs. 9�a� and 9�b��. The functional de-
pendence of T�k ,B=0� and R�k ,B=0� seems only weakly
related to the quantum-mechanical prediction. By ensemble
averaging �e.g., over a suitable k interval� these discrepancies
would be �partially� removed �or masked�. To correctly re-
produce the fluctuations in T�k ,B=0�=�m,n

M �tmn�k ,B=0��2, all
individual mode-to-mode amplitudes tmn have to be accurate.
Obviously, the contribution of pseudopaths included in the
PSCA but missing in the SCA significantly improves the
agreement with the quantum conductance fluctuations �Figs.
9�c� and 9�d��.

Even for averaged quantities, such as the averaged con-
ductance �T��k and the variance of the conductance fluctua-
tions �=��T2��k− �T��k

2 , the deficiencies of the SCA are still
visible, in particular, at larger cutoff lengths Lmax. Both �T��k
and � are overestimated �Fig. 10� as compared to quantum
mechanics which can be attributed, in part, to the lack of
correlation among purely classical paths.

In contrast, the PSCA shows very good agreement with
quantum mechanics for both the averaged conductance as
well as for the variance. For averaged quantities �Fig. 10� the
inclusion of up to fourth-order diffractive scattering for
Lmax=40 is sufficient while for fully differential quantities
�Fig. 9� fifth-order corrections for Lmax=40 still improve the
agreement.

We point out that for the present system, taking into ac-
count paths up to a length of Lmax=50 which corresponds to
16 radial traversals through the billiard, one reaches 70% of
the unitarity level within both the truncated quantum me-
chanics and the PSCA. The essential contributions to CF,
WL, and shot noise �see the following sections� is thus
rooted in this subset of relatively short paths.

B. Weak localization

WL is a well-known quantum correction to the classical
diagonal approximation �see, e.g., Refs. 1, 2, 8, 16–20, 28,
and 48–52, and references therein� where the later corre-
sponds to the restriction to terms q=q� in the double sum
over paths when calculating �tnm

SCA�2 from Eq. �7�. Off-
diagonal terms q�q� give rise to quantum interferences
which manifest themselves as an increase in the averaged
total reflection �R�B���k=�m,n�Rnm�B���k at B=0 in form of a
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pronounced peak. Correspondingly, the averaged total trans-
mission �T�B���k=�m,n�Tnm�B���k features a dip which is an
immediate consequence of unitarity. For the investigation of
the weak-localization dip �peak� we employ an average over
a small window �k= �2.2–2.8�	 /d of the k dependence of
the probabilities: �Tnm�B���k=��kdk�tnm�k ,B��2 and
�Rnm�B���k=��kdk�rnm�k ,B��2.

Since semiclassical theories are, by construction, not nec-
essarily unitary at a given level of approximation, the anti-

correlated peak-dip structure near B=0 provides a sensitive
test for semiclassical approximations. It has been shown that
the quantum anticorrelation between reflection and transmis-
sion ��R�B���k− �R�B=0���k�=−��T�B���k− �T�B=0���k� re-
quires a correlation of transmitted and reflected paths.16 This
correlation is absent in the SCA such that no transmission
dip is reproduced �see Fig. 11�b��.

The role of diffraction in a quantum billiard manifests
itself by a very good agreement of the PSCA with quantum-
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mechanical results �see Fig. 11�a��. Tests for WL as a func-
tion of the cutoff length Lmax of the paths as well as of the
order of diffractive scattering included show that conver-
gence toward the �truncated� quantum result is reached for
Lmax=40 when diffraction up to fourth order is included. We
note an improvement compared to previous third-order
calculations16 especially due to the inclusion of the �small�
real part of the diffraction coefficient v��� ,� ,k ,d�.

It is instructive to analyze the build up of the weak-
localization peak in reflection and of the dip in transmission
from individual S-matrix elements. In reflection only the di-
agonal elements R11�B� and R22�B� show a peak while the
off-diagonal elements R12�B� and R21�B� exhibit a dip �Figs.
12�c� and 12�d��. This is due to the fact that time-reversal
symmetric paths contributing to Rnm�B� with different parity
of modes m and n acquire an additional phase shift of 	. As
an example consider R21�B�, entering in mode m=1 and ex-
iting in mode m=2 produces a phase shift of 	. Thus the
time-reversal symmetric paths interfere destructively.

In transmission the major contribution to a dip originates
from T22�B� in the chosen energy window of two open
modes �Figs. 12�e� and 12�f��. Note that T21�B�=T12�B� be-
cause of the Onsager relation tnm

�2,1��k ,B�= tmn
�1,2��k ,−B� and the

symmetry of the circular billiard which ensures that tmn
�1,2��k ,

−B�= tmn
�2,1��k ,B�. Due to time-reversal symmetry, R�B�=R�

−B� giving rise to a symmetric peak in R as a function of B
�Fig. 12�. For unitary transport, T�B�=1−R�B�, which im-
plies a symmetric dip in transmission. For the truncated
quantum mechanics and semiclassics where long paths are
omitted unitarity is not preserved and T�B� is not exactly
symmetric but features a slight shift of the minimum toward
B�0.

Overall, the agreement between the PSCA and the full
quantum calculation �truncated at the same path length� is

remarkable �Fig. 12�. The residual minor deviations are
mainly ascribed to deficiencies in the diffraction coefficients
for which we use an analytical far-field approximation �Sec.
III and Appendix�. As, e.g., the diffraction coefficients
cm�� ,k ,d� enter Rnm, Tnm to the fourth power, a small defi-
ciency in cm�� ,k ,d� can have a sizeable effect on Rnm and
Tnm. The offset of the total reflection R and transmission T
within PSCA �Fig. 12�b�� compared to the quantum-
mechanical result �Fig. 12�a�� mainly originates from imper-
fections in R22 and T22 �compare Figs. 12�c�–12�f��. The im-
perfection could be cured by including a correction factor of
�0.97–0.99 in c2�� ,k ,d�.

To demonstrate how sensitively transport properties de-
pend on the weights of the contributing paths we show the
results for weak localization calculated within PSCA but
now using the FDA instead of the GTD-UTD for the diffrac-
tion coefficients �Fig. 13�. �We have used third order of the
PSCA here since the deviation between third and fourth or-
der is much smaller than the errors due to the simpler dif-
fraction theory.� It is striking that especially both R22 and T22
seem to be underestimated which is due to deficiencies in
c2�� ,k ,d� within the FDA. It is worthwhile pointing out that
the FDA diffraction could not be “repaired” by a correction
factor, as the errors in R22 and T22 are different. In other
words, transmission is more “sensitive” to a correct imple-
mentation of pseudopaths than reflection. Of particular im-
portance are paths which change the rotational direction.16

Since the FDA does not give sufficiently weight to this class
of pseudopaths �see Fig. 5� the transmission dip cannot be
well reproduced.

0.3

0.4

0.5

0.6

0.7

-0.4 -0.2 0 0.2 0.4
B/c

(a)
Lmax=40

Lmax=30

Lmax=20

PSCA

-0.4 -0.2 0 0.2 0.4
0.3

0.4

0.5

0.6

0.7

B/c

(b) Lmax=40

Lmax=30

Lmax=20

SCA

FIG. 11. �Color online� Comparison between truncated quantum
mechanics, the SCA, and the PSCA for the weak-localization dip in
transmission for different Lmax. �a� PSCA using the GTD-UTD for
all diffraction coefficients �red solid line�. �b� Standard SCA �red
solid line� �using the GTD-UTD for the diffraction coefficients
cm�� ,k ,d� for entering and exiting the circular cavity.� Black
dashed lines: quantum results.

0

0.1

0.2

0.3

-0.4 -0.2 0 0.2 0.4

B/c

(e)

T22

T21 T12

T11

-0.4 -0.2 0 0.2 0.4
0

0.1

0.2

0.3

B/c

(f) T22

T21 T
12

T11

0

0.1

0.2

0.3

0.4

(c) R22

R12 R21

R11

0

0.1

0.2

0.3

0.4

(d) R22

R12 R21

R11

0.5

0.6

0.7 (a)

QM

T

R 0.5

0.6

0.7(b)

PSCA with GTD-UTD

T

R

FIG. 12. �Color online� Weak localization for Lmax=40 as pro-
duced by quantum mechanics: left column �a�, �c�, and �e�, and
PSCA with the GTD-UTD: right column �b�, �d�, and �f�.

TRANSPORT THROUGH OPEN QUANTUM DOTS: MAKING… PHYSICAL REVIEW B 81, 125308 �2010�

125308-11



C. Shot noise

Another quantity characteristic for quantum transport is
the quantum shot-noise power of the current �see, e.g., Refs.
1, 18, 21, 45, and 53–60, and references therein�. At zero
temperature �T=0�, the time-dependent current noise is due
to the granularity of the electron charge and carries informa-
tion about the wave vs particle nature of charge transport.
The Fano factor F measures the amount by which the noise
in phase-coherent transport is suppressed relative to the Pois-
sonian value of uncorrelated classical electrons. Within the
Landauer-Büttiker picture, F can be expressed as53

F =
�Tr�t†tr†r���k

�Tr�t†t���k
=
��

n

�n�n�
�k

��
n

�n�
�k

�15�

with �n and �n being the eigenvalues of the Hermitian ma-
trices t†t and r†r, respectively.

Calculating the shot-noise power from nonunitary scatter-
ing matrices is obviously a delicate matter, as replacement of
rtr by 1− ttt leads, unlike for unitary descriptions, to different
results. Furthermore, such a replacement may result in nega-
tive and thus unphysical values for the shot-noise power, as
nonunitary scattering matrices allow for the possibility of
having �n�1 such that �1−�n��0 �for very high mode num-
bers as, e.g., in Ref. 18 such a situation may, however, be
unlikely�. By using Eq. �15�, such difficulties can be avoided
as both the transmission and reflection eigenvalues �n ,�n are,
by construction, real and positive not only for the truncated

quantum calculation but also for the PSCA and the standard
SCA. The standard SCA result for F strongly deviates from
the quantum-mechanical data �see Fig. 14�. For small cutoff
lengths Lmax, the value of F is smaller but increases more
rapidly than the quantum-mechanical result with Lmax. The
PSCA yields very good agreement with the quantum-
mechanical result for the shot-noise Fano factor F. Note that
for the largest cutoff length Lmax=50 the Fano factor F is
already converged to its asymptotic value F�0.28 suggest-
ing that long paths do not play a significant role for F. This
result agrees with the finding54,55 that the shot-noise power is
of similar magnitude for regular and chaotic billiards as dif-
ferences in the dynamics are most strongly felt by very long
paths.

VI. SUMMARY

We have presented a semiclassical theory which is able to
quantitatively reproduce full quantum results for scattering
through microstructures with a specific geometry, in the
present case a circular-shaped billiard with leads oriented
90° relative to each other. The present approach does not
invoke the limit of large mode numbers, �where the de Bro-
glie wavelength � is small relative to the lead width� but
requires � to be small only on the scale of the linear dimen-
sion of the microstructure �the circle�. This nonasymptotic
semiclassical theory allows a direct comparison with quan-
tum calculations as well with experiments on a system-
specific level for individual S-matrix elements avoiding any
ensemble averaging or fit parameters. This level of agree-
ment allows us to perform detailed semiclassical investiga-
tions of quantum-transport quantities such as the conduc-
tance fluctuations, the weak localization, and the shot noise.
Our studies show unambiguously that for reproducing these
quantities correctly, two major ingredients are, indeed, cru-
cial: �1� the inclusion of “pseudopaths” in the semiclassical
propagator which are diffractively backscattered from the in-
terior side of the cavity openings and �2� a sufficiently accu-
rate description of the diffraction coefficients for the injec-

0

0.1

0.2

0.3

-0.4 -0.2 0 0.2 0.4

B/c

(e)

T22

T21 T12

T11

-0.4 -0.2 0 0.2 0.4
0

0.1

0.2

0.3

B/c

(f)

T22

T21 T
12

T11

0

0.1

0.2

0.3

0.4

(c) R22

R12 R21

R11

0

0.1

0.2

0.3

0.4

(d)

R22

R12 R21

R11

0.3

0.4

0.5

0.6

0.7
(a)

QM

T

R

0.3

0.4

0.5

0.6

0.7
(b)

PSCA with FDA

T
R

FIG. 13. �Color online� Weak localization for Lmax=40. Left
column �a�, �c�, and �e�: quantum calculations, right column �b�, �d�,
and �f�: PSCA with diffraction coefficients from FDA.
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FIG. 14. �Color online� The k-averaged Fano factor F as a func-
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the GTD-UTD, the SCA, and QM. �Lmax=� corresponds to the
exact result.�
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tion, ejection, and back reflection of particle flux at the
cavity openings. We meet the latter requirement by develop-
ing a combined geometric and uniform theory of diffraction
�GTD-UTD�. Pseudopaths are crucial for reproducing the
conductance fluctuations in transport and lead to a reduction
in its variance. Also for the weak-localization effect, we find
that pseudopaths are crucial, as no signature of weak local-
ization appears in the transmission through the circular cav-
ity without their contribution �even when the advanced dif-
fraction theory is employed for all truly classical paths�. For
the shot-noise power we showed that a standard semiclassi-
cal calculation �without pseudopaths� gives sizeable discrep-
ancies. The inclusion of pseudopaths leads to agreement with
the quantum-mechanical result. We emphasize that the pa-
rameter regime in which we have identified the above effects
of pseudopaths coincides with the typical situation in
quantum-transport experiments. The latter usually feature
only a few open lead modes M.

The present results raise several interesting questions for
future investigations: the comparison between the semiclas-
sical approximations �PSCA and SCA� and full quantum cal-
culations were performed for truncated path sums up to a
finite path length L�Lmax. The primary reason for the trun-
cation was technical, as the number of diffractive pseudo-
paths exponentially proliferates with L→� also for classi-
cally regular structures and exact path sums become
prohibitively difficult to perform. There is, however, a sec-
ond conceptual motivation. In the experiment, decoherence
due to inelastic scattering limits phase-coherent transport to
path lengths L� l
, where the phase-decoherence mean free
path l
 typically allows only a moderate number of traversals
across the cavity. The latter restriction rules out that very
long paths with L� l
 contribute to quantum interference in
the experiment, a feature which is naturally incorporated by
way of the cutoff length Lmax in our semiclassical theory.
Clearly, such long paths can still provide incoherent contri-
butions. The present approach may thus contribute to a semi-
classical understanding of decoherence effects in regular
cavities.28

In the present treatment of diffractive scattering, both in-
ternal diffraction at the open lead mouth giving rise to
pseudopaths as well as the coupling between leads and cavity
was performed for sharp edges. The weight of diffractive
contributions can be changed by “rounding off” the lead
opening. An investigation of the dependence of the weak
localization on the smoothness of the edges is currently
underway.61 The introduction of rounded corners has, how-
ever, another profound effect, apart from changing the
weight of diffractive scattering: an open circle with rounded
edges of the leads is no longer regular but features a mixed
phase space. This raises the question as to the interplay be-
tween diffractive scatterings at the lead opening and chaotic
scattering in the interior of the billiard. For generic chaotic
systems a number of alternative semiclassical theories has
been proposed to explain universal features of quantum
transport �see, e.g., Refs. 17–23, and references therein�.
These theories typically employ an ensemble average and
rely on a �→0 limit which makes them complementary to
the present system-specific approach for finite �. Bridging
the gap between these two frameworks would be of great

interest. One key ingredient would be to clarify the interplay
between the diffraction-based pseudopaths and the chaos-
based correlated classical path pairs �Richter-Sieber orbits20�.
The relative weight for characteristic quantum-transport ef-
fects carried by these two classes of paths when both are
present �as in a chaotic billiard with sharp edges� remains an
open question.
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APPENDIX: GEOMETRIC AND UNIFORM THEORY OF
DIFFRACTION FOR THE COUPLING OF QUANTUM

LEADS TO A BILLIARD CAVITY

In a quantum billiard, the electron propagation in the
leads is determined by a quantum-mechanical wave while
the propagation inside the ballistic cavity can be described
semiclassically, i.e., by propagation along classical trajecto-
ries with a quantum phase. The strong scattering effects that
occur especially in the low mode regime at the orifices have
been described in past works on transport through open bil-
liards by the Kirchhoff diffraction approximation �KDA�
�Ref. 10� or on the level of the FDA.12–15 In the high mode
regime diffraction has been neglected altogether.8,17–24,26

Both the KDA and the FDA perform about equally well �see,
e.g., Fig. 5�. For the identification of pseudopaths in the Fou-
rier spectra of the conductance fluctuations, the KDA and the
FDA have been sufficiently precise. However, in order to
recover unitarity of the semiclassical S-matrix and weak lo-
calization in transmission, a more precise diffraction theory
must be implemented. For multiple-scattering paths, higher-
order products of the diffraction weights occur and even
small errors are rapidly amplified. We have therefore imple-
mented a combination of the GTD �Ref. 32� and the UTD
�Refs. 30 and 31� for the diffraction coefficients in open
billiards referred to in the following as the GTD-UTD. Both
theories have been previously applied separately to the cal-
culation of higher-order scattering corrections to Gutzwill-
er’s trace formula in closed quantum billiards.31 We discuss
in Section 1 of Appendix diffractive backscattering at a semi-
infinite half plane with an orifice and in Section 2 of Appen-
dix diffraction during propagation from a lead into a semi-
infinite plane.

1. GTD-UTD for backscattering into the cavity

The propagation between two points in a semi-infinite
plane with a connected lead is depicted in Fig. 15. In the
absence of a lead, the propagation between two points r� and
r�� in a semi-infinite plane is described by a sum of two
Green’s functions, G�r�� ,r� ,k�=Gdir�r�� ,r� ,k�+Grefl�r�� ,r� ,k�.
The first contribution corresponds to the direct path from r� to
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r�� �black dotted line� and is in the semiclassical approxima-
tion �Eq. �12�� given by

Gdir�r��,r�,k� =
eikL�r��,r��−i3	/4−i�	/2

�2	kL�r��,r��
¬ GSCA�r��,r�,k� ,

�A1�

where L�r�� ,r�� is the distance between the two points and � is
the Maslov index ��=0 in this case�. The second term cor-
responds to a propagation via a classical, specularly reflected
path �blue solid line�,

Grefl�r��,r�,k� =
eik�L�r��,a��+L�a� ,r���−i3	/4−i	

�2	k�L�r��,a�� + L�a� ,r���
. �A2�

The orifice gives rise to an additional scattered wave for
which we assume in the far-field limit ��k�r���1 and �k�r���
�1� a cylindrical wave emanating from the center of the
orifice �point b��. Invoking far-field approximations is at the
heart of semiclassical diffraction theories, the validity of
which need testing on a case-by-case basis �see below�.

The diffraction contribution to the Green’s function �red
dashed line in Fig. 15� is

GPSCA�r��,r�,k� =
eikL�r��,b��−i3	/4

�2	kL�r��,b��
v���,�,k,d�

eikL�b� ,r��−i3	/4

�2	kL�b� ,r��

= GSCA�r��,b� ,k�v���,�,k,d�GSCA�b� ,r�,k� .

�A3�

We refer to this term as the �first-order� pseudopath semiclas-
sical contribution because it corresponds to a classically for-
bidden path. We note the different scaling of GPSCA and Grefl

with k. The amplitude of Grefl scales as 1 /�k�L1+L2� while
the diffractive contribution scales as 1 /�k2L1L2. At large dis-
tances �far-field� and/or large k, the geometric reflection am-
plitude dominates over the diffraction amplitude, as ex-
pected.

The diffraction coefficient v��� ,� ,k ,d� as a function of
the incoming and outgoing angles has been calculated in the
past in the KDA and FDA. Both approaches have in common
that the amplitude of the cylindrical diffractive wave emanat-
ing from the orifice is determined from an integration over

the orifice using as a source the amplitude and the phase of
the unperturbed incoming wave in the absence of the bound-
ary. In other words, they are implementations of Huygens’
principle according to which each point of the lead opening
is the source of an outgoing circular wave. For details, we
refer the reader to Ref. 10 �for the KDA� and to Refs. 12 and
14 �for the FDA�.

Keller’s GTD �Ref. 32� has a different point of departure:
it originates from the far-field approximation of the exact
Sommerfeld’s solution for the wave scattering at a wedge62

�see Fig. 16�a��. In the following, we discuss the application
of the GTD and its refinement within the framework of the
uniform theory of diffraction UTD �Ref. 30� to the problem
of the diffractive scattering at the lead mouth �Figs. 16�b�
and 16�c��. Starting point of our determination of the diffrac-
tion coefficient v��� ,� ,k ,d� is the decomposition of the ori-
fice into two wedges with an inner angle of 	 /2 and outer
angle of 3	 /2 �see Fig. 16�a��. In the far-field limit, the
incident wave can be regarded asymptotically as a plane
wave. The GTD describes the scattering of a plane wave at
an infinitely sharp wedge32 �Fig. 16�a��. The total wave func-
tion is a sum of the incoming plane wave, the reflected plane
wave and an outgoing cylindrical diffracted wave, emanating
from the edge. There are two discontinuities: at the shadow
boundary �
�−
=	, for the definition of the angles see Fig.
16�a�� and the boundary of geometric reflection �
�+
=	�.
Outside a small region around these two angles, the dif-
fracted wave can be described by an outgoing cylindrical
wave modulated by a smooth diffraction coefficient. The dif-
fractive part of the Green’s function between the two points
r� and r�� in Fig. 16�a� can thus be approximated as63

GPSCA�r��,r�,k� = GSCA�r��,r�0,k�
1

2
D�
�,
�,GSCA�r�0,r�,k�

�A4�

with

FIG. 15. �Color online� Propagation between two points r� and r��
in a semi-infinite plane in the presence of an open �lead�. Contribu-
tions from the direct path �black dotted line�, from specular reflec-
tion �blue solid line�, and from scattering at the orifice �red dashed
line� are depicted.

FIG. 16. �Color online� �a� Diffraction at a wedge. �b� Diffrac-
tion at a lead described as diffraction at two wedges. The reference
path is marked by a red dashed line. The angle is counted positive
for a path lying on the left of the vertical axis, for a path on the right
the angle is negative. �In the present example � is negative and �� is
positive�. The points r� and r�� are assumed to be in the far-field
region. �c� Higher-order corrections enter via paths scattered be-
tween the wedges.
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D�
�,
� = − 2
sin 	/N

N � 1

cos
	

N
− cos


� − 


N

−
1

cos
	

N
− cos


� + 


N
� , �A5�

where N=3 /2 is the exterior angle �in units of 	� of a per-
pendicular wedge and r�0 is the position of the corner of the
wedge �Fig. 16�a��.

We now consider the lead opening as being composed of
two wedges �Fig. 16�b��. The obvious conceptual difficulty
lies in the fact that the two wedges are, in general, not in the
far-field limit �kd�1� of each other. With this caveat in
mind, diffraction at the lead can be considered within the
GTD to result from the interference of two paths that are
diffracted at the corners of the two wedges limiting the lead.
Summing up the diffraction weights and phases from the two
paths, we obtain the Green’s functions of the reference
pseudopath as in Eq. �A3� but with the GTD reflection coef-
ficient

vGTD���,�,k,d� =
1

2
DL���,��e−ik

d
2

�sin ��+sin ��

+
1

2
DR���,��e+ik

d
2

�sin ��+sin ��. �A6�

In Eq. �A6� we have neglected the difference of the incoming
angles at the left and at the right wedge, respectively, i.e., we
set �1=�2=� �Fig. 16�c��. Likewise, for the outgoing angles,
we set �1�=�2�=��. The phase differences of the right/left
pseudopath with respect to the reference path emanating
from the center of the orifice can then be written in linear
approximation with respect to the transverse lead coordinate
as k�L= � ik d

2 �sin ��+sin ��. The coefficients in Eq. �A6�
are defined as

DL���,�� = D�	/2 − ��,	/2 − �� ,

DR���,�� = D�	/2 + ��,	/2 + �� . �A7�

We note that both DL and DR have a singularity at the reflec-
tion boundary for ��=−�. However, in the sum of the two
terms, the singularities cancel out and the resulting back-
scattering amplitude is perfectly smooth �see Fig. 17, red
chain dotted line�.

The comparison of the GTD with the exact quantum cal-
culation for the diffraction coefficient, �v�� ,�� ,k ,d��2 �Fig.
17�, reveals sizeable deviations. Two deficiencies are note-
worthy: the almost complete missing of the back-reflection
peak and the failure at grazing angles �� ,�→ �	 /2. The
diffraction coefficient should approach zero in this limit but,
instead, converges toward a finite value �Fig. 17�. This be-
havior originates from treating the diffraction at the lead as
two independent local phenomena of diffraction at two sepa-
rate wedges.

The diffraction at a lead can be treated within the UTD by
using a double-wedge diffraction coefficient �see Refs. 64
and 65 and a more recent paper for arbitrary configurations
of the wedges, Ref. 66�. The double-wedge diffraction coef-
ficient cannot be separated into a sequence of single-wedge
diffraction coefficients and contains rather involved math-
ematical expressions �such as two-dimensional Fresnel inte-
grals� such that the beauty and structural simplicity of a
semiclassical approach is lost. We present in the following an
ansatz for double-wedge diffraction which assumes a separa-
tion of the diffraction process into a sequence of diffraction
events and we verify its validity by comparing with
quantum-mechanical results from Ref. 10. We show that the
shortcomings of Eq. �A6� can be �to a large extent� remedied
by taking diffractive paths of higher order into account, i.e.,
paths that pass between the two wedges once or several
times. This drastically improves the agreement with the
quantum-mechanical result. �We point to the conceptual
similarity of our approach to the treatment of double-wedge
diffraction illuminated by transition region fields by a sum
over higher-order diffracted fields.67�

In a first step, we include paths that scatter once between
the two edges �see green line Fig. 16�c��. There are two such
paths. One approaches the right wedge at angle �. It is scat-
tered into the angle 	 /2 �with respect to the surface normal�,
and at the left wedge, it is scattered into the angle ��. The
other path is scattered from the left wedge to the right one
with the same entrance and exit angles. The weights of this
pair of paths cannot be determined from the GTD diffraction
coefficients �Eq. �A5��: The GTD diffraction coefficient fails
in the limit of 
→0 and 
�→	 �definition of angles as in
Fig. 16�a�� because this is in proximity of the shadow bound-
ary into which the horizontal paths are scattered. This prob-
lem can be overcome by invoking the UTD.

Contrary to the GTD, the UTD is also valid on the zone
boundaries. The outgoing cylindrical wave is multiplied by a
diffraction coefficient which depends not only on the two
angles 
� and 
 but also on the distances r� and r, and on the
wave number k,

0

10

20

30

40

-0.4 -0.2 0 0.2 0.4

|v
(θ
',θ
,k
,d
)|2

θ'/π

θ=π/4

GTD: jmax=0
GTD-UTD: jmax=1

jmax=5
jmax=10

QM

FIG. 17. �Color online� Absolute square of the diffraction coef-
ficient �vGTD��� ,� ,k ,d��2 �or vGTD-UTD with jmax=0� compared with
�vGTD-UTD��� ,� ,k ,d��2 for jmax=1, jmax=5, and jmax=10 �for the
definition of jmax see text�, k=2.5	 /d. The QM result is taken from
Ref. 10.
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DUTD�
�,
,r�,r,k� = −
ei	/4

N
�

�,�=�1
� cot		 + ��
� − �
�

2N



�F	k
rr�

r + r�
a��
� − �
�
 , �A8�

where a����=2 cos2� 2	Nn�−�
2 � and n� is the integer which

most closely satisfies 2	Nn�−�= �	. The function F is
defined as a generalized Fresnel integral,

F�x� = − 2i�xe−ix�
�x

�

d�ei�2
�A9�

and has the asymptotic form

F�x� = 1 − i
1

2x
−

3

4

1

x2 + ¯ . �A10�

For x→�, i.e., for large distances and outside the transition
zones, F�x�=1, and DUTD�
� ,
 ,r� ,r ,k� reduces to
DGTD�
� ,
�. Within the transition zone, the distance depen-
dence of DUTD leads to a deviation of the scattered wave
from a purely cylindrical wave. This is necessary to ensure
the continuity of the total wave function at the zone bound-
aries. Furthermore, by using the UTD diffraction coefficient
we partially take into account the fact that the two wedges
are not in the far-field region with respect to each other.

Since the GTD fails for large �near grazing� angles, we
opt for a piecewise construction. We combine GTD and UTD
referred to in the following as GTD-UTD such that the dif-
fraction of the path with the smaller �absolute value� of the
angle is treated by the GTD and the path with the larger
angle on the level of the UTD. Accordingly, to first order the
GTD-UTD correction to the diffraction coefficient can be
written as

vGTD-UTD,1���,�,k,d� =
1

2
UL���,− 	/2,d,k�

�
eikd�−sin ��+sin ��/2

�2	kd

1

2
DR�+ 	/2,��

+
1

2
UR���,+ 	/2,d,k�

�
eikd�+sin ��−sin ��/2

�2	kd

1

2
DL�− 	/2,�� , �A11�

where �in analogy to Eq. �A7�� we have defined the UTD
diffraction coefficients at the left �L� and right �R� wedge as

UL���,�,r,k� = DUTD�	/2 − ��,	/2 − �,r� → �,r,k� ,

UR���,�,r,k� = DUTD�	/2 + ��,	/2 + �,r� → �,r,k� .

�A12�

In Eq. �A11�, the diffraction of the incoming path �with angle
��, is treated on the GTD level and the diffraction of the
outgoing path �angle ��� on the UTD level. This construction

introduces a first-order discontinuity �kink� at ���= ����. This
kink is, however, negligible for small angles and visible only
at large angles close to 	 /2, in other words the formula
breaks down in the limit � ,��→	 /2, see, e.g., Fig. 5�c�.
�One could alternatively ignore the fact that the UTD is not
multiplicative in the near field and employ for both scattering
events UTD, thus avoiding the kink. This ansatz, however,
breaks down similarly for grazing incidence: the diffraction
coefficient does not approach zero for the outgoing angle
��→	 /2. For small and medium angles this approach be-
haves equally well as the presented GTD-UTD approach.� At
large incident and/or outgoing angles the diffraction coeffi-
cient is already strongly suppressed such that the resulting
error is small.

The inclusion of the first-order GTD-UTD correction
�jmax=1, see Fig. 17� already considerably improves the
agreement with the quantum diffraction pattern. Higher-order
diffraction corrections include paths that are scattered several
times between the wedges. This includes paths that are inci-
dent and backscattered at an angle �	 /2 at the wedge. This
is exactly on the reflection boundary. In this limit, Reiche has
shown68 that the diffraction pattern of a plane wave with unit
amplitude incident on the wedge with an angle of �	 /2
reduces to a reflected plane wave with amplitude 1/2 and a
cylindrical wave. The Green’s function of a higher-order path
which scatters j times between the wedges is, therefore, a
product of the GTD diffraction coefficient, the UTD diffrac-
tion coefficient, and the Green’s function for free propaga-
tion along the distance jd, acquiring a factor 1/2 and a phase
of 	 for each reflection at a wedge. Summing the diffraction
corrections up to order jmax we obtain

vGTD-UTD���,�,k,d� = vGTD���,�,k,d�

+
1

4 �
odd:j=1

jmax

UL���,− 	/2, jd,k�gj�k�ei�−+DR�+ 	/2,��

+ UR���,+ 	/2, jd,k�gj�k�ei�+−DL�− 	/2,��

d

θθ

-θmθm

ky,m ky,m

kx,m

-

x

y

FIG. 18. �Color online� A lead of width d coupled to a half-
infinite plane. An incoming wave in mode m can be separated into
two rays �= ��m= �arcsin m	 /dk which diffractively scatter at
the lead wedges. The reference path is denoted by a red dashed line.
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+
1

4 �
even:j=1

jmax

UR���,+ 	/2, jd,k�gj�k�ei�++DR�+ 	/2,��

+ UL���,− 	/2, jd,k�gj�k�ei�−−DL�− 	/2,�� , �A13�

where

gj�k� =
1

�2	kjd

1

2 j−1ei�kjd+�j−1�	� �A14�

and

��� = k
d

2
��sin �� � sin �� . �A15�

Figure 17 demonstrates that the diffraction coefficient
v��� ,� ,k ,d�GTD-UTD is converged for jmax=5. Furthermore,
the condition v��� ,� ,k ,d�→0 for � ,��→	 /2 is fulfilled
and the agreement with the fully quantum-mechanical back-
scattering weight is excellent. The agreement deteriorates for
increasing entrance angles � but is still satisfying compared
to the simple FDA, �see Fig. 5�. Fortunately, large angles do
not play an important role because the overall diffraction
weight is very low. The GTD-UTD provides a remarkable
compromise between simplicity and accurate representation
of quantum-mechanical results for diffraction at a lead at-
tached to a semi-infinite half plane.

2. GTD-UTD for coupling from lead modes into the cavity

The flux-normalized wave function for mode m in a lead
of width d oriented parallel to the x axis is

�m�x,y� =� 2

dkx,m
eikx,mx sin�ky,my�

= − i� 1

2dkx,m
�ei�kx,mx+ky,my� − ei�kx,mx−ky,my�� ,

�A16�

where ky,m=m	 /d is the transverse momentum component
and kx,m=�k2− �m	 /d�2 the longitudinal component. Equa-

tion �A16� can be viewed as two rays emanating with angles
��m= �arcsin�m	 /dk� �Fig. 18�. In the GTD approxima-
tion, each ray hits an edge of the lead mouth and the two
cylindrical waves emanating from the edges cause, in turn,
an interference pattern at large distances. The GTD diffrac-
tion for scattering from the lead mode m into the half space
�in our application the cavity� can be written in direct anal-
ogy with Eqs. �A6� and �A7� as

cm
GTD��,k,d� =

− ieim	/2

�2dkx,m
	1

2
DL��,�m�eim	/2e−ikd/2 sin �

−
1

2
DR��,�m�e−im	/2eikd/2 sin �
 �A17�

with the scattering coefficients at left and right wedges,

DL��,�m� = D�	

2
− �,

3	

2
− �m
 ,

DR��,�m� = D�	

2
+ �,

3	

2
− �m
 . �A18�

The two paths have a phase difference of m	 at the lead
mouth and thus a phase difference �m	 /2 relative to the
reference path that starts at the center of the orifice �see Fig.
18�. With the flux normalization factor �kx,m from Eq. �2�
�kx,mcm

GTD�� ,k ,d� is dimensionless.
We include now higher-order scattering events on the

level of the UTD in order to improve Eq. �A17�,
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FIG. 19. �Color online� The absolute square of the coupling coefficient �cm�� ,k ,d��2 multiplied by kx,m for m=2 at two different wave
numbers �a� k=2.1	 /d and �b� k=2.5	 /d within the GTD and the GTD-UTD. Note the breakdown of the GTD for �→ �	 /2 near k
�2	 /d.
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cm
GTD-UTD��,k,d� = cm

GTD��,k,d� − i
eim	/2

�2dkx,m

1

4	 �
odd:j=1

jmax

UR��,+ 	/2, jd,k�gj�k�ei
++DL�− 	/2,�m� − UL��,− 	/2, jd,k�gj�k�

�ei�−−DR�+ 	/2,�m� + �
even:j=1

jmax

�− 1�UR��,+ 	/2, jd,k�gj�k�ei�+−DR�+ 	/2,�m� + UL��,− 	/2, jd,k�gj�k�

�ei�−+DL�− 	/2,�m�
 , �A19�

where

��� = � k
d

2
sin � �

m	

2
, �A20�

gj�k� is given in Eq. �A14�, and UL and UR are given by Eq. �A12�. Figure 19 illustrates that the UTD corrections become most
important when the value of k is close to a threshold, i.e., when the angle �m is close to 	 /2.

*iva.brezinova@tuwien.ac.at
1 S. Datta, Electronic Transport in Mesoscopic Systems �Cam-

bridge University Press, Cambridge, England, 1995�.
2 E. Akkermans and G. Montambaux, Mesoscopic Physics of Elec-

trons and Photons �Cambridge University Press, Cambridge,
England, 2006�.

3 C. W. J. Beenakker and H. van Houten, Solid State Phys. 44, 1
�1991�.

4 M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics
�Springer-Verlag, New York, 1991�.

5 N. V. Berry and K. E. Mount, Rep. Prog. Phys. 35, 315 �1972�.
6 M. Brack and R. K. Bhaduri, Semiclassical Physics, Frontiers in

Physics �Westview, Oxford, 2003�.
7 R. Blümel and U. Smilansky, Phys. Rev. Lett. 64, 241 �1990�.
8 H. U. Baranger, R. A. Jalabert, and A. D. Stone, Chaos 3, 665

�1993�.
9 T. Blomquist, Phys. Rev. B 66, 155316 �2002�.

10 C. D. Schwieters, J. A. Alford, and J. B. Delos, Phys. Rev. B 54,
10652 �1996�.

11 T. Blomquist and I. V. Zozoulenko, Phys. Rev. B 64, 195301
�2001�.

12 L. Wirtz, J.-Z. Tang, and J. Burgdörfer, Phys. Rev. B 56, 7589
�1997�.

13 L. Wirtz, J.-Z. Tang, and J. Burgdörfer, Phys. Rev. B 59, 2956
�1999�.

14 L. Wirtz, C. Stampfer, S. Rotter, and J. Burgdörfer, Phys. Rev. E
67, 016206 �2003�.

15 C. Stampfer, S. Rotter, J. Burgdörfer, and L. Wirtz, Phys. Rev. E
72, 036223 �2005�.

16 I. Březinová, C. Stampfer, L. Wirtz, S. Rotter, and J. Burgdörfer,
Phys. Rev. B 77, 165321 �2008�.

17 S. Rahav and P. W. Brouwer, Phys. Rev. Lett. 95, 056806
�2005�.

18 S. Rahav and P. W. Brouwer, Phys. Rev. B 73, 035324 �2006�.
19 P. Jacquod and R. S. Whitney, Phys. Rev. B 73, 195115 �2006�.
20 K. Richter and M. Sieber, Phys. Rev. Lett. 89, 206801 �2002�.
21 P. Braun, S. Heusler, S. Müller, and F. Haake, J. Phys. A 39,

L159 �2006�.

22 S. Heusler, S. Müller, P. Braun, and F. Haake, Phys. Rev. Lett.
96, 066804 �2006�.

23 P. W. Brouwer and S. Rahav, Phys. Rev. B 74, 085313 �2006�.
24 P. Pichaureau and R. A. Jalabert, Eur. Phys. J. B 9, 299 �1999�.
25 E. Bogomolny, Nonlinearity 13, 947 �2000�.
26 N. Argaman, Phys. Rev. B 53, 7035 �1996�.
27 R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path

Integrals �McGraw-Hill, New York, 1965�.
28 A. M. Chang, H. U. Baranger, L. N. Pfeiffer, and K. W. West,

Phys. Rev. Lett. 73, 2111 �1994�.
29 C. M. Marcus, A. J. Rimberg, R. M. Westervelt, P. F. Hopkins,

and A. C. Gossard, Phys. Rev. Lett. 69, 506 �1992�.
30 R. Kouyoumjian and P. H. Pathak, Proc. IEEE 62, 1448 �1974�.
31 M. Sieber, N. Pavloff, and C. Schmit, Phys. Rev. E 55, 2279

�1997�.
32 J. B. Keller, J. Opt. Soc. Am. 52, 116 �1962�.
33 R. Brunner, R. Meisels, F. Kuchar, R. Akis, D. K. Ferry, and J. P.

Bird, Phys. Rev. Lett. 98, 204101 �2007�.
34 S. Rotter, J.-Z. Tang, L. Wirtz, J. Trost, and J. Burgdörfer, Phys.

Rev. B 62, 1950 �2000�.
35 S. Rotter, B. Weingartner, N. Rohringer, and J. Burgdörfer, Phys.

Rev. B 68, 165302 �2003�.
36 H. Ishio and J. Burgdörfer, Phys. Rev. B 51, 2013 �1995�.
37 D. S. Fisher and P. A. Lee, Phys. Rev. B 23, 6851 �1981�.
38 T. Szeredi and D. A. Goodings, Phys. Rev. E 48, 3529 �1993�.
39 G. Vattay, A. Wirzba, and P. E. Rosenqvist, Phys. Rev. Lett. 73,

2304 �1994�.
40 N. Pavloff and C. Schmit, Phys. Rev. Lett. 75, 61 �1995�.
41 S. Hikami, Phys. Rev. B 24, 2671 �1981�.
42 A. Andreev, Sov. Phys. JETP 19, 1228 �1964�.
43 X. Yang, H. Ishio, and J. Burgdörfer, Phys. Rev. B 52, 8219

�1995�.
44 J. Tworzydło, A. Tajic, and C. W. J. Beenakker, Phys. Rev. B 69,

165318 �2004�.
45 P. Jacquod and E. V. Sukhorukov, Phys. Rev. Lett. 92, 116801

�2004�.
46 M. Y. Kharitonov and K. B. Efetov, Phys. Rev. B 78, 033404

�2008�.

BŘEZINOVÁ et al. PHYSICAL REVIEW B 81, 125308 �2010�

125308-18



47 B. Weingartner, S. Rotter, and J. Burgdörfer, Phys. Rev. B 72,
115342 �2005�.

48 M. Hartung, T. Wellens, C. A. Müller, K. Richter, and P.
Schlagheck, Phys. Rev. Lett. 101, 020603 �2008�.

49 E. Larose, L. Margerin, B. A. van Tiggelen, and M. Campillo,
Phys. Rev. Lett. 93, 048501 �2004�.

50 J. P. Robinson, H. Schomerus, L. Oroszlány, and V. I. Fal’ko,
Phys. Rev. Lett. 101, 196803 �2008�.

51 M. Kopp, H. Schomerus, and S. Rotter, Phys. Rev. B 78, 075312
�2008�.

52 V. A. Gopar, S. Rotter, and H. Schomerus, Phys. Rev. B 73,
165308 �2006�.

53 Y. M. Blanter and M. Büttiker, Phys. Rep. 336, 1 �2000�.
54 F. Aigner, S. Rotter, and J. Burgdörfer, Phys. Rev. Lett. 94,

216801 �2005�.
55 S. Rotter, F. Aigner, and J. Burgdörfer, Phys. Rev. B 75, 125312

�2007�.
56 B. A. Khoruzhenko, D. V. Savin, and H.-J. Sommers, Phys. Rev.

B 80, 125301 �2009�.
57 M. Novaes, Phys. Rev. B 75, 073304 �2007�.

58 J. Tworzydło, A. Tajic, H. Schomerus, and C. W. J. Beenakker,
Phys. Rev. B 68, 115313 �2003�.

59 C. H. Lewenkopf, E. R. Mucciolo, and A. H. Castro Neto, Phys.
Rev. B 77, 081410�R� �2008�.

60 J. Tworzydło, B. Trauzettel, M. Titov, A. Rycerz, and C. W. J.
Beenakker, Phys. Rev. Lett. 96, 246802 �2006�.

61 T. Dollinger et al. �unpublished�.
62 A. Sommerfeld, Vorlesungen über Theoretische Physik, Optik

�Dieterich’sche Verlagsbuchhandlung, Wiesbaden, 1950�.
63 The factor 1/2 �atomic units� in Eq. �A4� originates from �2 /2m

�SI units� and assures that the Green’s function is correctly nor-

malized �such that � �2k2
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