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We investigate the electronic eigenstates of graphene quantum dots of realistic size �up to 80 nm diameter�
in the presence of a perpendicular magnetic field B. Numerical tight-binding calculations and Coulomb-
blockade measurements performed near the Dirac point exhibit the transition from the linear density of states
at B=0 to the Landau-level regime at high fields. Details of this transition sensitively depend on the underlying
graphene lattice structure, bulk defects, and localization effects at the edges. Key to the understanding of the
parametric evolution of the levels is the strength of the valley-symmetry-breaking K-K� scattering. We show
that the parametric variation in the level variance provides a quantitative measure for this scattering mecha-
nism. We perform measurements of the parametric motion of Coulomb-blockade peaks as a function of
magnetic field and find good agreement. We demonstrate that the magnetic-field dependence of graphene
energy levels may serve as a sensitive indicator for the properties of graphene quantum dots and, in further
consequence, for the validity of the Dirac picture.

DOI: 10.1103/PhysRevB.81.245411 PACS number�s�: 73.22.Pr, 71.70.Di, 81.05.ue

I. INTRODUCTION

Graphene nanostructures1–12 attract increasing attention
mainly due to their potential applications in high mobility
electronics13,14 and solid-state quantum information
processing.15 In particular, low nuclear-spin concentrations
expected in graphene promise long spin lifetimes15–18 and
make graphene quantum dots �QDs� �Refs. 1–4� interesting
for spin-qubit operations.15 Moreover, graphene nanostruc-
tures may allow to investigate phenomena related to mass-
less Dirac Fermions in reduced dimensions.1,19–25 Intensive
research has been triggered by the unique electronic proper-
ties of graphene26 including the gapless linear dispersion and
the Landau-level �LL� spectrum.27–35 Recent advances in
fabricating width-modulated graphene nanoribbons have
helped to overcome intrinsic difficulties in creating tunneling
barriers and confining electrons in graphene, where transport
is dominated by Klein tunneling-related phenomena.36,37

Graphene QDs have been fabricated and Coulomb
blockade,1,2 quantum confinement,3 and charge detection4

have been demonstrated.
In this paper, we focus on the eigenenergies of graphene

quantum dots �see Fig. 1� as a function of a perpendicular
magnetic field. In graphene, the linear band crossing at the
so-called Dirac point suggests a close connection between
the dynamics of electrons and free, ultrarelativistic Dirac
particles.38 One might therefore expect a magnetic-field de-
pendence of quantum dot eigenenergies that closely mirrors
that of massless Dirac particles. Indeed, this connection has
been used recently to discuss the spectrum of ideal, circular
graphene dots with smooth confinement.20,22 However, in
more realistic models of finite graphene nanostructures,
quantum confinement, edge effects, and lattice defects intro-
duce a host of competing length scales absent from the
simple Dirac picture. Much progress has been made in un-
derstanding the unique LL spectrum, and the resulting Hall
effect, in graphene.27–33 The magnetic-field dependence of

the addition spectrum has been exploited in recent work to
�approximately� pin down the electron-hole crossover
point.39 In the present paper we report on a systematic study
of the B-field dependence of electronic eigenstates of
graphene quantum dots of experimentally realizable size �di-
ameter d�80 nm�. We highlight the interplay of different
length scales controlling the breakdown of the valley sym-
metry by K-K� scattering. The latter is found to be key to the
understanding of the diamagnetic spectrum. We find the
B-field dependence of the level variance to be a sensitive
measure for the strength of K-K� scattering and obtain good
agreement with experimental Coulomb-blockade data.

The paper is organized as follows: we first briefly sum-
marize the Dirac picture of Landau-level formation for mass-
less charged Dirac particles and discuss the length scales
relevant to its applicability to finite-size graphene quantum
dots �Sec. II�. In Sec. III we present realistic simulations for
graphene quantum dots with zigzag and armchair edges, with
edge roughness as well as with bulk disorder. A comparison
between the calculated B-field dependence of the level vari-
ance and experimental data is given in Sec. IV, followed by a
short summary �Sec. V�.

II. DIRAC PICTURE AND ITS LIMITATIONS

The remarkable similarity of the low-energy band struc-
ture of graphene with the dispersion relation of a massless

FIG. 1. �Color online� Shapes and sizes �50�50 nm2� of
graphene quantum dots confined by �a� a smooth valley spin-
conserving potential �Eq. �11�, the length scale of the confinement
is marked by �d�, �b� atomically sharp armchair and zigzag bound-
aries. Dots with disorder due to �c� bulk defects or �d� edge
roughness.

PHYSICAL REVIEW B 81, 245411 �2010�

1098-0121/2010/81�24�/245411�9� ©2010 The American Physical Society245411-1

http://dx.doi.org/10.1103/PhysRevB.81.245411


Dirac particle in two dimensions has been widely exploited
in a variety of theoretical models for graphene.26 However,
the applicability of such models requires careful consider-
ation of competing effects that go beyond the simple, yet
intriguing Dirac picture.40,41 A case in point is the diamagne-
tism, i.e., the magnetic response of a finite-size graphene
quantum dot. It is of considerable interest to inquire into the
applicability as well as the limitations of the well-known
diamagnetic theory of charged massless Dirac fermions.

The magnetic-field �B� dependence of the spectrum of
free Dirac particles was first solved in an early paper by
Rabi42 shortly after the Dirac equation was proposed. The
Dirac equation for a massless particle with charge q�=−�e��
in the presence of a potential V�x� with timelike coupling
and a perpendicular, homogeneous magnetic field B=��A
=−By� �ex reads

HD = H0 + HB = vF�� · �p� −
q

c
A�� + �0V�x�� �1�

with �� = ��x ,�y� the Pauli matrices and �0 the two-
dimensional unit matrix. In the limiting case of strong mag-
netic field where �qA /c�� �V�x�� the solution of Eq. �1� pre-
dicts the formation of Landau levels,20–22,26,43

En
D�B� = sgn�n��2�e��vF

2�n�B, n � Z0. �2�

We explicitly label this reference spectrum with the super-
script “D” �for Dirac equation�. Equation �2� contains several
remarkable features absent from nonrelativistic diamagne-
tism: a ground-state Landau level n=0 the energy of which
does not depend on B at all. Higher Landau levels n
= �1, �2, . . . are distributed symmetrically around n=0,
and feature a �B rather than a linear dependence on B known
from nonrelativistic diamagnetism. The high-field regime
�Eq. �2�� is controlled by just two length scales, the �energy-
dependent� de Broglie wavelength �F and the magnetic
length lB=��c / �eB�. The strong �weak� field regime is char-
acterized by lB	�F �lB��F�. In the limit of weak magnetic
fields, Eq. �1� predicts the lowest-order energy corrections to
scale linearly with B, unlike the conventional nonrelativistic
behavior �
B2�. Eigenstates of Eq. �1� form two-spinors with
definite helicity �or “chirality”�

ĥ��	 =
1

2
�� ·

p�

�p�
��	 = �

1

2
��	 �3�

in the absence of external fields.
The ideal, infinitely extended graphene sheet featuring a

honeycomb lattice made up by two interleafed triangular
sublattices �A and B�, can be described in nearest-neighbor
tight-binding approximation by the Hamiltonian44

H = 

i,s

��i,s	Vi��i,s� − t 

�i,j�,s

��i,s	�� j,s� + H.c., �4�

where the sum �i , j� extends over pairs of adjacent lattice
sites, �� j,s	 is the tight-binding orbital at lattice site j, Vi is a
locally varying potential, and t �on the order of 2.8 eV� is the
nearest-neighbor hopping matrix element. �In the numerical
calculations we take into account second- and third-nearest-
neighbor coupling24,45,46 in addition to Eq. �4� in order to

quantitatively account for the realistic band structure.� Close
to the Fermi energy, the band structure of Eq. �4� can be
approximated �assuming that Vi	 t� by a conical dispersion
relation around the K point,38

E�k + kK� = E�kK� + k�kE�kK� + O�kK
2 � � vF�k� , �5�

where we have set E�kK�=0. Note that the above expansion
ignores both the length scale of the graphene lattice constant
a=1.4 Å and preferred directions of the lattice: due to the
discrete lattice symmetry, the cone structure becomes
squeezed along the K-K� directions, an effect known as
triangular warping.26,41 More importantly, the band struc-
ture features two nonequivalent cones �valleys� at the K
and K� points in the reciprocal lattice. This additional degen-
eracy allows to formally represent the low-energy band
structure near E=0 in terms of Dirac-type four-spinors ��	
= ��A

�K� ,�B
�K� ,�A

�K�� ,�B
�K��� with amplitudes for the A-B sublat-

tice in real space and for the K-K� valleys in reciprocal
space. Operators in the four-spinor space can be represented
by tensor products of ��0 ,�� � matrices acting on A-B sublat-
tice amplitudes and analogous �0 ,�� Pauli matrices acting
on K-K� amplitudes. Choosing the origin in k space such that
the connecting line between K and K� is along y, the effec-
tive Dirac Hamiltonian in the absence of external scalar po-
tentials becomes47

H0 = �� · �p� −
q

c
A�� � 1 + �� � · �p� −

q

c
A�� � 2, �6�

where 1,2= �0�z� /2. In addition to chirality, the valley-
pseudospin projection

z�j	 = j�j	, j = �
1

2
, �7�

associated with the valley degree of freedom is conserved.
The upper �“particlelike,” E�0� and lower �“holelike,” E
�0� cones touching each other at K and K� with E=0 are
related to each other by a particle-hole transformation

Ĉ = �z � 0, ĈHĈ−1 = − H . �8�

In the presence of a timelike scalar potential V�x���0 � 0,
the Hamiltonian is invariant under an antiunitary transforma-

tion �“time reversal”�, T̂= i�y � 0C, where C denotes com-
plex conjugation.26 The wave functions at K and K� are re-
lated by time-reversal symmetry. This symplectic symmetry
�T2=−1� is broken in the presence of a magnetic field

T̂H�A� �T̂−1 = H�− A� � , �9�

lifting the twofold Kramers-type degeneracy. �Note that
physical spin is not included in the present analysis.�

We now consider a finite-size system of linear dimension
d, where V�x� takes on the role of a confinement potential.
With this additional length scale present, the Landau-level
solution �Eq. �2�� is only valid in the strong magnetic-field
regime with lB	d while in the weak-field regime, lB�d, the
spectrum will be determined by V�x�. For zero magnetic
field, eigenstates ��K	 and ��K�	 localized at the K and K�
points are degenerate. Turning on a magnetic field lifts this
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degeneracy without �to lowest order� introducing couplings
between K and K�. Following first-order degenerate
Rayleigh-Schrödinger perturbation theory, the perturbation
matrix W describing the lowest-order correction to the field-
free spectrum of Eq. �6� takes the form �for the gauge
A= �−By ,0 ,0��

W = �HB	�x � z, �10�

where �HB	KKªBq��B�y��A	 /c is real and linear in B. The
perturbation preserves the valley symmetry. The absence of
K-K� coupling and the linear magnetic-field dependence of
�HB	KK for each decoupled Dirac cone implies that energy
eigenvalues linearly cross the line B=0 in pairs of two, form-
ing an X-shaped intersection �see Fig. 2�. This is in contrast
to the nonrelativistic diamagnetic response 
B2 in the per-
turbative limit. It rather resembles the paramagnetic level
splitting in conventional quantum dots when the magnetic
field lifts a degeneracy. Examples of the latter are lifting of
Kramers’ degeneracy48 or a symmetry-induced degeneracy
as in circular quantum dots.49

In order to quantitatively simulate the diamagnetic re-
sponse of a finite-size graphene quantum dot we first con-
sider a smooth confinement potential that is slowly varying
on a length scale of the lattice constant such as to appro-
ximately conserve the valley-pseudospin projection z �or
valley symmetry�. Moreover, it conserves particle-hole
�anti�symmetry �Eq. �8�� in order to prevent Klein tun-

neling. Such a potential was first proposed by Berry and
Mondragon19 in the context of neutrino billiards,

V�x� = V0�e�r�x�/�d − 1��z, �11�

where �r�x� is the outward distance from the quantum dot
boundary and �d introduces an additional length scale con-
trolling the preservation of valley symmetry. We choose
�d=24 Å �see Fig. 1�a�� much larger than the lattice spacing
��d�a�1.42 Å�. Consequently, Eq. �11� varies slowly
on the scale of the lattice constant, conserves valley symme-
try �to order �a /�d�2�, and provides a realization of the
�approximately� K-K� decoupled diamagnetic perturbation
�Eq. �10��. We note that realizations of potentials of the form
of Eq. �11� are, to our knowledge, currently experimentally
not available. We employ a third-nearest-neighbor40,45,46

tight-binding approximation �to correctly describe triangular
warping� and simulate a 50�50 nm2 graphene QD contain-
ing 100 000 carbon atoms. The magnetic field is included
by a Peierls phase factor. We use a Lanczos diagonalization
in conjunction with an LU factorization to efficiently calcu-
late the 500 eigenvalues closest to the Fermi edge50,51 �see
Fig. 2�.

In the limit of weak magnetic fields, we find that our
numerical results, indeed, follow the linear B-field depen-
dence of the energy eigenvalues as predicted by perturbation
theory �Eq. �10�� �see Fig. 2�b��. Residual deviations from
the perfect lattice symmetry �due to the finite width �d of the
confinement� and, thus, weak nonconservation of z appear
as minute energy splittings between near-degenerate levels in
the B→0 limit. The resulting level splitting at B=0 is, how-
ever, very small �120 �eV�, i.e., two orders of magnitude
below the mean level spacing �10 meV�.

Turning now to the high-field limit, lB	d, the influence
of confinement effects should be diminished and the forma-
tion of Landau levels following the Dirac picture �Eq. �1�� is
expected. The transition from low to high magnetic fields
drastically changes the density of states �DOS�. The deple-
tion of the DOS near E=0 at low fields,

��E� =
d2

2��vF�2 �E� , �12�

is replaced, for increasing B, by an increasing number of
eigenstates moving toward the Landau level at E0

D, which is
located at the Dirac point �see Fig. 2�a��. More specifically,
all graphene levels with energies in between the two first
Landau levels, E−1

D �E�E1
D, adiabatically converge to the

level at E0
D=0. As we have shown recently,39 this unique

feature can be used to pin down the energetic position of the
Dirac point in the experiment and thus of the electron-hole
crossover region in real graphene quantum dot devices.

While, at low fields, the valley symmetry is approxi-
mately preserved by the potential in Eq. �11�, a large number
of sizeable avoided crossings appear at higher magnetic
fields as the magnetic length is reduced to lB	d. Edge states
that couple to bulk states or to other edge states become
prevalent. The complicated pattern in Figs. 2�a� and 2�c�
of many avoided crossings near the first Landau energy
E=E�1

D reflects this interplay between magnetic bulk and

FIG. 2. �Color online� �a� Magnetic-field dependence of the
eigenenergies of a graphene quantum dot with smooth confinement
which approximately preserves valley symmetry �Eq. �11�, see Fig.
1�a��. Landau levels for n= �1, �2 �dashed lines, see Eq. �2�� are
inserted as guide to the eye. The four symbols ��, �, �, and ��
mark parameter values for which eigenstates are shown in Fig. 3.
�b� Close-up of the avoided crossing of two eigenstates in �a�. Dots
represent numerical data, the continuous line is a fit to Eq. �10�. �c�
Closeup of avoided crossings around the diabatic ridge formed by
the first Landau level �see text�.
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edge states. Levels with eigenenergies that follow the pre-
dicted values for the Landau levels, En

D, are localized in the
interior of the quantum dot and well separated from the
edges. Conversely, the states with energies in between the
values En

D should be strongly influenced by the spatial con-
finement in the quantum dot. Wave functions corresponding
to energy levels close to n=0 and n=1 Landau levels �Figs.
3�a� and 3�c�� as well as those in between n=0 and n= �1
�Fig. 3�b�� and between n=1 and n=2 �Fig. 3�d�� confirm
these expectations.

Apparently, the typical level splittings at the avoided
crossings �Figs. 2�b� and 2�c�� are dramatically enhanced in
the high-field regime. This is due to the fact that, as com-
pared to the low-field case, the amplitudes of wave functions
are enhanced at the dot boundary �see Fig. 3�b��. Since, in
addition, the lattice symmetry is broken at the boundary,
these edge states do have an increased coupling strength to
all other states in the sample. Following the Wigner-von
Neumann noncrossing rule52 this increased coupling strength
leads to increased level splittings at the crossing point.

III. REALISTIC GRAPHENE QUANTUM DOTS

A. Clean dots with sharp edges

We turn now to realistic graphene quantum dots where the
nanostructures are terminated by atomically sharp edges, ei-
ther of armchair or zigzag shape �Fig. 1�b��. Following re-
cent estimates for passivation of the dangling carbon bonds
at the edges of graphene samples �e.g., by attached
hydrogen�,53 we set the potential of the outmost carbon at-
oms to 1.7 eV. Although in this case many of the surface
states present in a perfect zigzag boundary remain sup-
pressed, such a confining potential leads to substantial

changes in the energy-level spectrum �see Fig. 4�a�� as com-
pared to the model potential �Eq. �11��. Most importantly, in
the low-field regime �see Fig. 4�b�� the linear B-field depen-
dence is replaced by a quadratic dependence �
B2� of the
level splitting resembling the nonrelativistic diamagnetic re-
sponse. This is due to the presence of sizable avoided cross-
ings near B=0 as a result of broken valley symmetry caused
by the edges. The valley symmetry is, thus, broken upon
reflection at atomically sharp ‘‘clean’’ zigzag edges and z is
no longer conserved. In terms of perturbation theory, the
confining potential V now includes off-diagonal components
in the pseudospin degree of freedom

W = �x � �HB	KKz + Re�V	KK�x + Im�V	KK�y �13�

with coupling matrix elements between the valleys �V	KK�
=�0 � ���AV��	A�+�x � ���AV��	B� and eigenvalues

� = � ��HB	KK
2 + ���/2�2, �� = 2��VKK�	� . �14�

The coupling between K and K� cones thus leads, according
to the Wigner-von Neumann noncrossing rule,52 to avoided
crossing with level splittings �� �see Fig. 4�b�� proportional
to the coupling strength VKK� between the two Dirac cones.
Conversely, a fit to Eq. �14� yields a sensitive indicator for
the amount of K-K� scattering in the quantum dot.

For high magnetic fields �see Fig. 4�c��, the presence of
VKK� coupling lead to a large number of correlated avoided
crossings when the edge states move toward the zeroth bulk
Landau level. In other words avoided crossings appear when
the energy of eigenstates evolving toward the E0

D level “pass”

FIG. 3. �Color online� Typical eigenstates �plotted is the abso-
lute square of the wave function� of a graphene quantum dot with
smooth confinement �see Fig. 1�a� and Eq. �11�� at high magnetic
field �B=25 T�, corresponding to the zeroth ��a� and �b�� and first
��c� and �d�� Landau levels. Symbols ��, �, �, and �� correspond
to those marking the position of these states in the energy level
diagram �Fig. 2�a��.

FIG. 4. �Color online� Same as Fig. 2 but for a quantum dot with
atomically sharp zigzag and armchair boundaries. The solid line in
�b� is a fit to Eq. �14�, the dashed line �corresponding to VKK�=0� is
inserted as guide to the eye. The evolution of one eigenenergy with
magnetic field is drawn with a thick solid line as guide to the eye in
�a� and �c�. The arrow in �c� marks a kink in the magnetic-field
dependence of this state �see text�.
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through the energy E1
D�B� of the first Landau level �Fig.

4�c��. Due to a large number of avoided crossings, there are
no states continuously following the first Landau level. We
rather observe a bundle of states sequentially moving along
the characteristic energy of the first Landau level, much like
in a relay �see Fig. 4�c��. Such an interrelated sequence of
avoided crossings is well known from atomic physics as “di-
abatic ridge”—riding states localized on potential barriers.54

A direct consequence is that the evolution of eigenstates for
an increasing magnetic field �see highlighted line in Fig.
4�a�� features sharp “kinks” when crossing the ridge follow-
ing the first Landau level �see arrow in Fig. 4�c��. As the state
is transiently trapped by the ridge, it moves away from the
Dirac point and continues again monotonically toward the
Dirac point once clear of the ridge. These kinks due to the
ridge riding mechanism have been observed in the
experiment39 serving as an additional indicator for the posi-
tion of the lowest Landau level and the electron-hole cross-
over.

The present results show that the atomically sharp edges
destroy the linear B dependence of the energy levels at weak
fields but they do preserve the square-root B dependence at
very high fields. The linear B dependence results from the
fragile suppression of K-K� scattering �
�V	KK�� between the
Dirac cones while the square-root dependence results from
the much more robust dispersion relation of the individual
cone. Therefore, Landau levels survive the introduction of
sharp boundaries much better than the energy levels at weak
fields. In turn, even when in the experiment a Dirac-type
Landau-level spectrum is recorded, many other features of
the same graphene sample may very well show large devia-
tions from predictions based on Dirac theory.

B. Dots with bulk disorder

To further elucidate the role of lattice symmetry breaking
in graphene quantum dots, we now consider isolated lattice
defects in the bulk. The preceding results suggest that disor-
der realizations that break the K-K� symmetry are of crucial
importance. We therefore consider first single-lattice vacan-
cies �see inset in Fig. 5�a�� with defect densities of ni
=10−5–10−3 impurities per carbon atom. To isolate the effect
of such bulk defects from the K-K� scattering of the edges,
we first use the smooth symmetry preserving boundary po-
tential �see Eq. �11��. Overall, the diamagnetic spectrum
closely resembles that of clean samples with atomically
sharp edges �see Fig. 5�. In particular, avoided crossings near
B=0 with a quadratic field dependence as well as the forma-
tion of sequences of avoided crossings along the ridges of
bulk Landau levels are found. Wave functions of eigenstates
at these energies display patterns which are very similar to
those for the clean system �compare Figs. 3�b� and 6�a��.
Likewise, the kink pattern at the crossing of the ridges ap-
pears robust against disorder �see, e.g., Fig. 5�c��. We do,
however, observe new ridges between the Landau-level en-
ergies which were absent for edge scattering �see dotted lines
in Figs. 5�a� and 5�c��. The corresponding eigenstates near
these new ridges �see Fig. 6�b�, marked by � in Fig. 5�a��
are pinned to a single defect, where the lattice periodicity

and the A-B sublattice symmetry are broken, and the parti-
tioning of the wave function in four components according to
the Hamiltonian in Eq. �6� fails. Such localized states can
therefore be expected to behave differently from the bulk
Landau levels. The resulting ridges feature a very weak qua-
silinear magnetic-field dependence. We therefore conjecture
that these structures are due to avoided crossings with such
localized defect states. Recent analysis55,56 has shown that
K-K� scattering at impurities in graphene, i.e., the strength of

FIG. 5. �Color online� Same as Fig. 2 for a quantum dot featur-
ing 30 single-lattice vacancies �see inset� out of a total number of
100.000 carbon atoms. Dotted lines mark the evolution of two states
localized at one defect. Symbols mark the states for which the cor-
responding wave function is shown in Fig. 6.

FIG. 6. �Color online� Eigenstates of a graphene quantum dot
with disorder: �� and �� 30 single vacancies �one single vacancy
shown as inset in Fig. 5�a�� or �� and �� edge roughness of
�2 nm. Positions in the energy level diagram are marked by cor-
responding symbols in Figs. 5�a� and 8�a�.
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VKK�, tends to be strongly energy dependent. Bound states
due to adsorbates �leading to an enhanced local density of
states at the adsorption site� frequently have energies close to
the Dirac point.56,57 Since the localized defect states with
energy En feature a very weak explicit linear magnetic-field
dependence,

En�VKK�,B� � En�VKK�� + ��B�, ��� � 1 meV/T,

�15�

the implicit magnetic-field dependence of VKK��En�B�� may
be neglected. While the detailed energy dependence of
VKK� may be connected to the specific defect present �e.g.,
Stone-Wales defects or attached nitrogen molecules�, we still
qualitatively expect an analogous linear B-field dependence.
Such localized states with weak magnetic-field dependence
were also observed experimentally in Coulomb-blockade
measurements.39,58

In the low-field regime, we observe a significant change
in the B evolution of eigenenergies: avoided crossings be-
come asymmetric �see Fig. 5�b��. The reason is that the K-K�
splitting introduced by the lattice vacancies is strong enough
to yield different matrix elements for �H	KK and �H	K�K�:
consequently, the slope of both eigenvalues of Eq. �13� is
different �see Fig. 5�b��. To illustrate that the diamagnetic
spectrum, in particular the avoided crossing distribution, is
due to the breaking of the A-B sublattice and, in turn, to the
breaking of valley pseudospin symmetry induced by the de-
fects, we present as counter example the spectrum for double
vacancies. We introduce such a vacancy in accordance to our
soft-wall potential, Eq. �11�. As such double vacancies act on
an entire unit cell in the hexagonal lattice, they approxi-
mately conserve the electron-hole and K-K� symmetry. We
find, indeed, that for the same number of defects as of single
vacancies �Fig. 5�, only avoided crossings with compara-

tively small energy splittings appear in the energy-level dia-
gram �Fig. 7�, resembling much more closely Fig. 3. This
clearly indicates that it is the breaking of the A-B symmetry
and not the presence of defects per se which is responsible
for the breakdown of the Dirac picture for graphene quantum
dots.

C. Dots with edge disorder

We consider now a clean graphene quantum dot with
atomically sharp but disordered edges. We connect short
straight edge segments �with a random length between 0.5
and 3 nm� to obtain a polygon-shaped boundary �see Fig.
1�c�� with a disorder amplitude of ��d��2 nm. �d is thus �at
energies close to the Dirac point� smaller than the wave-
length �F of the confined particles as well as the magnetic
length but larger than the lattice constant. Since rough
boundaries, just like bulk defects, localize states,23,24 we ex-
pect similar signatures of these two types of disorder. Indeed,
in the low-field regime, dots with rough edges feature a simi-
lar pattern of fluctuating energy levels as dots with single-
lattice defects �compare Figs. 5 and 8�. The spectra are so
similar that it is difficult to distinguish between bulk and
edge disorder breaking the K-K� symmetry. Also in the high-
field regime, the evolution toward the Landau levels features
the correlated sequence of avoided crossings reflecting the
diabatic ridges �see Fig. 8�c��. Wave functions of eigenstates
at these energies display patterns which are very similar to
those for the clean system �compare Figs. 3�a� and 6�d��. In
particular, states near Landau levels localize in the interior of
the dot and thus are not influenced by edge disorder. Like-
wise, the kink pattern at the crossing of the ridges is robust
against edge disorder. While the inclusion of edge disorder

FIG. 7. �Color online� Same as Fig. 2 for a quantum dot featur-
ing 30 double lattice vacancies �see inset� in 100.000 carbon atoms.

FIG. 8. �Color online� Same as Fig. 4 for a quantum dot featur-
ing rough edges �with a roughness amplitude �d= �2 nm�. Sym-
bols mark the states for which the corresponding wave function is
shown in Fig. 6.
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does not give rise to qualitatively new effects on the eigenen-
ergy spectrum in the high-field regime, differentiating be-
tween edge and bulk disorder might become possible by
probing the different scaling behavior for bulk and edge dis-
order with the size of the graphene quantum dot.

It is instructive to directly contrast the level splitting ��
of an avoided crossing �Eq. �14�� due to finite K-K� coupling
for different scenarios: �i� valley-symmetry preserving con-
finement �Fig. 9�a��, �ii� clean graphene quantum dots with
atomically sharp edges �Fig. 9�b��, and �iii� disordered
graphene quantum dots �Figs. 9�c� and 9�d��. We observe an
increase in the size of the average level splitting ���	 due to
K-K� coupling at the edges and impurities. In scenario �i�
���	 is at least one order of magnitude smaller than the mean
level spacing ���	, ���		 ���	. In �ii� where ���	� ���	 a
first-order perturbative treatment of K-K� coupling correctly
describes the level repulsion. For localization at defects �iii�
where ���	� ���	 level pairs at K and K� feature different
quadratic dependences on B, and can no longer be param-
etrized by Eqs. �13� and �14�.

IV. COMPARISON WITH EXPERIMENT:
LEVEL SPACING FLUCTUATIONS

For a comparison with the experimental data for the mag-
netic response of graphene quantum dots we pursue two
strategies: in a direct approach we compare our models with
the observed parametric B-field evolution of individual
Coulomb-blockade peaks. Alternatively, we identify the
B-field dependence of the level spacing fluctuations �vari-
ance� as a robust measure for the degree of disorder in a
graphene quantum dot. Specifically, we determine the res-
caled �or unfolded� variance �� of the distribution of neigh-
boring energy-level spacings ��

�� ª
1

���	
������2 − ���	2	 . �16�

Since switching on a magnetic field B leaves the number of
states unchanged, ���	 is �approximately� independent of B,

while higher moments of the level distribution are drastically
affected. At B=0, pairs of energy levels are split by the char-
acteristic energy �� of the avoided level crossings. However,
as long as the mean width of the avoided crossing ���	 �Eq.
�14�� is small compared to the mean level spacing ���	, the
level sequence fluctuates between small and large spacings
while spacings on the order of �� are unlikely. We thus ex-
pect for magnetic field B=0 a comparatively large variance
��. For increasing �B� the levels become more equi-spaced,
leading to a decrease in ��. Correspondingly, the variance ��

of the level spacings should feature a peak at B=0. The
numerical results for the dependence of �� on B for different
disorder strength �i.e., different �VKK��� are shown in Fig. 10.
Our data display a pronounced peak of �� for the clean flake
slowly decreasing for increasing number of single-vacancy
defects �i.e., for increasing K-K� scattering� �see Fig. 10�a��.
Note that both the peak height at B=0 and the overall value
of �� decrease with increasing disorder. The latter can be
explained by the emerging localized states that feature a
regular spacing �and hence a suppressed variance ���. Con-
sequently, if a given spectral region is more prone to feature
localized states due to adsorbates than others,56,57 we expect
an energy dependence on � depending on the specific type of
adsorbate. Such an energy dependence could be exploited to
directly measure the energy dependence of K-K� scattering
by determining the statistics of Coulomb-blockade reso-
nances at different back-gate voltages. For comparison we
also show �� for double vacancies preserving A-B symmetry.
�See Fig. 10�b�, note the different scales.� Accordingly, �� is,
indeed, strongly dependent on the amount of K-K� scatterers,
not on the overall number of defects.

The decrease in peak height with increasing K-K� scatter-
ing should thus provide a robust and sensitive measure for
K-K� scattering present in the experiment. To test this con-
jecture, we have measured the evolution of 42 Coulomb-
blockade peaks for varying magnetic field.59 We follow the
parametric motion of the peak positions, and hence the
eigenstate energies, as a function of magnetic field B� �
−2,2� T. To compare with our numerical results, we take
into account a charging energy of 13 meV �determined
independently59� as well as spin �by Zeeman splitting�. We
observe, indeed, a quadratic B-field dependence rather than
the linear dependence predicted for conserved K-K� symme-
try of the Dirac equation. Our experimental data can be well

FIG. 9. �Color online� �Avoided� crossings for �a� soft edges,
�b� hard edges, �c� rough edges, and �d� rough edges plus bulk
disorder. The level splitting is �a� 0.1 meV, �b� 2 meV, �c� 3 meV,
and �d� 2.5 meV.

FIG. 10. �Color online� Variance �� of the mean level spacing
�see Eq. �16�� as a function of magnetic field for �a� single-vacancy
defects and �b� double-vacancy defects �note the expanded y scale�
for three values of disorder concentrations: from top to bottom
ni=3�10−5, 6�10−5, and 2�10−4.
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described by Eq. �14� �see Fig. 11�a��. For pairs of consecu-
tive Coulomb-blockade resonances belonging to the same
avoided crossing, we find a mismatch in slopes, in agreement
with our numerical findings for the rough-edged quantum dot
�compare Figs. 9�c�, 9�d�, and 11�a��. This has important
consequences for the interpretation of experimental data: the
roughness present in the experimental dot does not allow to
disentangle K and K� states. To be more quantitative, we
compare our simulations for the level variance with experi-
mental data. We indeed find good agreement as confirmed by
a noticeable peak also in the experimental data for ���B� �see
Fig. 11�b��. The offset between the two data sets in Fig. 11�b�
is attributed to a possible energy dependence of K-K� scat-
tering as well as statistical fluctuations in charging energy
and in the number of localized states for different values of
the back-gate voltage. By using the edge roughness �d as the
only adjustable parameter, we can match the measured ���B�
very well with our numerical simulation �see lines in Fig.
11�b��. Good agreement is found for an edge roughness of
about �d�0.5�0.2 nm, or, equivalently, a K-K� scatterer
concentration in the bulk ni��3.5�1��10−4, both of which
are well within expectation. We emphasize that, although we
can quantify the resulting overall strength of K-K� coupling
in our experimental quantum dot, we cannot disentangle
whether the observed K-K� scattering comes from edge
roughness, lattice defects, or disorder through flake-substrate
interactions with a length scale comparable to the lattice con-
stant.

V. CONCLUSIONS

We have investigated the evolution of eigenstates in
graphene quantum dots with increasing magnetic field. Con-
centrating on the energy regime around the Dirac point, we
observe a smooth transition from a linear density of states to
the emergence of Landau levels. At high-field strength, we
find that Landau levels follow the square-root dependence of
the Dirac equation, manifested in the energy-level diagram
by sequences of correlated avoided crossings along diabatic
ridges. These ridges lead to characteristic kinks in the evo-
lution of energy states that cross a Landau level. Appearing
also in Coulomb-blockade measurements, these kinks can be
used to experimentally pin down the electron-hole crossover
point.39 In the perturbative regime of small magnetic fields,
we find that the linear dependence on B predicted by the
model of massless Dirac fermions disappears when the val-
ley symmetry is broken. Even perfect armchair and zigzag
edges are sufficient to break the sublattice symmetry giving
rise to avoided crossings with a quadratic dependence on B
instead. A similar effect is observed for lattice defects:
single-lattice vacancies break the K-K� symmetry and thus
result in avoided crossings with substantial level splittings
�even for defect concentrations as low as 1 in 20.000�. By
comparison with double vacancies which conserve the sub-
lattice symmetry we show that it is not the presence of dis-
order per se which leads to deviations from predictions by
the Dirac equation but the breaking of valley symmetry.

We compare our theoretical predictions with experimental
results on the parametric B-field evolution of Coulomb-
blockade peaks. As a quantitative indicator for the strength
of K-K� scattering, we identify the variance �� of the level
spacing distribution. We observe a peak in the variance at
B=0 due to level correlations near avoided crossings. We
find quantitative agreement between the measured and the
calculated data for �� which enables us to pinpoint the
amount of K-K� scattering present in our experimental flake.
The present results provide a sensitive indicator for the qual-
ity of the graphene dot and demonstrate the limits of the
Dirac picture in describing the experiment.
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FIG. 11. �Color online� �a� Coulomb-blockade peaks measured
as a function of applied plunger gate electrode potential �VG� and
magnetic field applied perpendicular to the sample �see Ref. 59 for
details about the measurement�. Lines: fit to Eq. �14� for two mea-
sured Coulomb-blockade peak pairs with a level splitting at B=0 of
�0.3 V. �b� Normalized variance of the level spacing �� �see Eq.
�16�� as a function of magnetic field. Dots denote an average over
20 consecutive experimental Coulomb-blockade peaks for two val-
ues of back-gate voltage VBG �corresponding to the upper �VBG

=20 V� and lower �VBG=38 V� data points�. Solid lines represent
simulations for different edge roughness amplitude �d �Fig. 1�d�� as
only fit parameter: �d�0.5 �0.6� nm, for the upper �lower� curve.
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