
Generating Particlelike Scattering States in Wave Transport

Stefan Rotter,* Philipp Ambichl, and Florian Libisch

Institute for Theoretical Physics, Vienna University of Technology, A-1040 Vienna, Austria, EU
(Received 18 August 2010; published 25 March 2011)

We introduce a procedure to generate scattering states which display trajectorylike wave function

patterns in wave transport through complex scatterers. These deterministic scattering states feature the

dual property of being eigenstates to the Wigner-Smith time-delay matrix Q and to the transmission

matrix tyt with classical (noiseless) transmission eigenvalues close to 0 or 1. Our procedure to create such

beamlike states is based solely on the scattering matrix and successfully tested numerically for regular,

chaotic, and disordered cavities. These results pave the way for the experimental realization of highly

collimated wave fronts in transport through complex media with possible applications such as secure and

low-power communication.
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The scattering of waves through complex systems is a
central subject in physics occurring on a variety of length
and time scales. Coherent electron transport through meso-
scopic systems, light transmission through optical devices
as well as all matters related to room acoustics are just a
few examples of this kind. Recently, enormous experimen-
tal progress has been made in the ability to determine the
system-specific scattering matrix of such complex systems
either explicitly [1] or implicitly by methods like adaptive
wave-front shaping [2] and optical phase conjugation [3].
These advances have led to spectacular results for complex
scatterers which could be made transparent [2,3] or put to
use for focusing an incident wave on a spot size below the
diffraction limit [4].

Common to all such applications is the aim to employ the
information stored in the scattering matrix to create scat-
tering states with specific properties. A very fundamental
property a scattering state can have is to follow the particle-
like bouncing pattern of a classical trajectory throughout
the entire scattering process [5]. Such ‘‘classical’’ scattering
states play a key role for the wave-to-particle crossover,
for the emergence of geometrical optics out of wave optics,
and for the breakdown of universality in coherent transport
[6–10]. However interesting these classical states may be,
in complex scattering geometries they turn out to be as
elusive as the proverbial needle in a haystack.

In this Letter we propose an operational procedure to
generate such states explicitly. Our approach is illustrated
with the example of a two-dimensional rectangular cavity
through which waves can be scattered by two leads at-
tached to the left and right (see Fig. 1). With each lead
carrying N open modes the (2N � 2N)-dimensional uni-
tary scattering matrix of this device has the form,

S ¼ r t0
t r0

� �
; (1)

where each of the four blocks contains N � N complex
elements for the energy dependent transmission (t) and

reflection (r) amplitudes [unprimed (primed) amplitudes
designate injection from the left (right) lead]. The total
transmission T through this resonant cavity is given as
T ¼ TrðtytÞ ¼ P

N
n¼1 �n, where the �n 2 ½0; 1� are the

real transmission eigenvalues of the Hermitian matrix tyt.
Among the associated eigenstates j�i those with eigenval-
ues close to � ¼ 0 or � ¼ 1 are termed ‘‘noiseless states’’
as they feature a vanishing contribution to electronic shot
noise [6–10]. Since all of the desired classical states with a
trajectorylike bouncing pattern must have such determinis-
tic values of transmission they are all part of a highly
degenerate noiseless subspace associated with � ¼ 0; 1.
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FIG. 1 (color online). Scattering through a rectangular cavity
(flux injected through the left lead of width d): (a),(b) Wave
function densities of transmission eigenstates j�i of tyt with
similar transmission eigenvalues � > 0:99 but different wave
numbers: (a) k ¼ 5:5�=d, (b) k ¼ 75:5�=d. (c) Classical sur-
face of section, recorded for trajectories which enter at the left
lead mouth with vertical position y and transverse momentum
py. The largest of the transmission (reflection) bands [black

(white)] are labeled by T1, T2 (R1, R2) (bands which are
equivalent in an extended zone scheme are given the same label).
(d) Husimi distributions of the states shown in (a) (upper panel)
and in (b) (lower panel). The size (area) of the Planck cell h is
indicated by dashed black frames and the underlying classical
phase space is shown in gray.
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Consider in Figs. 1(a) and 1(b) two randomly chosen states
with � > 0:99 from this subspace, calculated with the
modular recursive Green’s function method [11].

The first such state [see Fig. 1(a)] was calculated at a low
wave number where only N ¼ 5 lead modes are open. To
understand the composition of classical trajectories con-
tributing to this state we evaluate the Poincaré surface of
section (PSS) at the entrance lead junction [see Fig. 1(c)].
With transmitted (reflected) trajectories being shown in
black (white) the PSS features a banded pattern with the
individual bands being made up of bundles of trajectories
which all have equivalent bouncing patterns [12]. The
contributions of different phase space bands to the state
j�i in Fig. 1(a) are revealed by comparing its quantum
phase space distribution (Husimi function) Hðy; pyÞ ¼
jh�jy; pyij2 with the PSS, where jy; pyi is a minimum

uncertainty state at y, py. The corresponding plot in

Fig. 1(d) (upper panel) shows that the banded structure of
the PSS is not resolved by this state—in line with the fact
that the individual areas of the largest phase space bands
are all smaller than the Planck constant h, i.e., the lower
resolution limit in wave scattering. Rather, this state is
composed of many interfering contributions from both
transmitting and reflecting bands.

The situation is different when, for smaller wave
lengths, the size of the Planck cell is well below the
size of the largest phase space bands [6–10]. Consider,
e.g., the noiseless transmission eigenstate j�i with
N ¼ 75 shown in Fig. 1(b). We find that the Husimi
distribution of this state [see Fig. 1(d) (lower panel)]
is entirely located on transmission bands, indicating
that full transmission is reached here by resolving the
classical phase space. Since, however, more than one
transmission band contribute (mostly T1 and T2) clear
signatures of classical bouncing patterns are still absent
in the corresponding scattering wave function [Fig. 1(b)].
This is a result of the indiscriminate mixing of states in
the degenerate noiseless subspace. This problem may be
circumvented by explicitly constructing scattering states
which lie on individual phase space bands [9]. In a real
experiment such a protocol, however, meets the problem
that the classical phase space structure is typically un-
known for a complex scatterer. A viable measurement
protocol which is based solely on experimentally acces-
sible quantities like the scattering matrix [1] would thus
be highly desirable.

To resolve the contributions of individual phase space
bands we present an approach based on the observation
that all trajectories in the same band have a character-
istic and very similar cavity dwell time. In analogy to
eikonal theory we may thus ‘‘label’’ contributions from
different bands by their respective dwell times (or path
lengths). In wave scattering the closest analogues to
classical dwell times are the ‘‘proper delay times,’’
i.e., the eigenvalues of the Wigner-Smith time-delay
matrix [13],

Q ¼ i@
@Sy

@E
S ¼ i@

_ryrþ _tyt _ryt0 þ _tyr0
_t0yrþ _r0yt _r0yr0 þ _t0yt0

� �
; (2)

where the dots stand for the energy derivative @E. Using
the eigenvalues qi of Q to lift the unwanted degeneracy
in the noiseless subspace is, however, nontrivial since
Q has a different dimension (2N � 2N) than the trans-
mission matrix tyt (N � N). Accordingly, the eigen-
states of Q, in general, are scattering states injected
from both leads, whereas the eigenstates of tyt are
injected from the left lead alone. As shown below,
this mismatch is conveniently resolved in the noiseless
subspace where a basis of common eigenstates to both
Q and tyt can be found.
Because of the Hermiticity of Q its eigenstates jqii form

an orthogonal and complete set of states, to each of which a
real ‘‘proper delay time’’ qi can be assigned. In the corre-
sponding matrix representation of this eigenproblem,
Q~qini ¼ qi ~q

in
i , the 2N-dimensional time-delay eigenvectors

~qini � ð ~qini;L; ~qini;RÞ contain the complex coefficients of the

eigenstates jqii in the flux-normalized basis of incoming
modes in the left (jni) and in the right lead (jn0i): ð ~qini;LÞn �
hnjqii and ð ~qini;RÞn0 � hn0jqii. Correspondingly, the outgoing
coefficient vectors ~qouti � ð ~qouti;L; ~q

out
i;RÞ contain the coeffi-

cients in the basis of outgoing modes: ð ~qouti;LÞn � hT njqii
and ð ~qouti;RÞn0 � hT n0jqii, where T is the time-reversal

operator of complex conjugation (T 2 ¼ 1 for spinless
scattering). With ~qouti ¼ S ~qini and S ¼ ST for systems with
time-reversal symmetry we define an antiunitarity operator
� ¼ T S ¼ SyT which maps the incoming coefficients
of a time-delay eigenstate onto the incoming coefficients
of the corresponding time-reversed state, ð ~qouti Þ� ¼ � ~qini . As
this operator � commutes with the time-delay operator,
½�; Q� ¼ 0 (see [14] A), any nondegenerate time-delay
eigenstate is time-reversal invariant (up to a global phase
ei�, � 2 R):� ~qini ¼ ei� ~qini . For nondegenerate time-delay
eigenstateswhose incoming flux fromone lead exits through
both of the leads this time-reversal invariance implies that
these states must also have incoming flux contributions from
both leads. Such 2N-dimensional time-delay eigenvectors
~qini can thus not be reduced to anN-dimensional vector with
incoming flux from the left lead alone.
This restriction is lifted in the noiseless subspace, where

the incoming flux from one lead also exits through just
one of the leads. Consider a noiseless time-delay eigenstate
with fully transmitted incoming flux from the left lead,
tyt ~qini;L ¼ ~qini;L, but no incoming flux from the right lead,

~qini;R ¼ ~0. For this state, ~qini ¼ ½ ~qini;L; ~0�, the commutator

½�; Q� ¼ 0 implies that the time-reversed state, � ~qini ¼
½~0; ðt ~qini;LÞ��, is also a time-delay eigenstate with the same

eigenvalue qi as ~qini . Being a noiseless eigenstate of t0yt0
with incoming flux only from the right lead,� ~qini is clearly
orthogonal to ~qini . We thus find that such ‘‘noiseless time-
delay eigenstates’’ (NOTEs) come in pairs of two which
together form the basis of a doubly degenerate subspace
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associated with the time-delay eigenvalue qi. We empha-
size that, in contrast to the common eigenbasis of� and Q

in this subspace, ½ ~qini;L;�ðt ~qini;LÞ��=
ffiffiffi
2

p
, NOTEs are not time-

reversal invariant. Rather, two NOTEs forming a degener-
ate pair are the time-reversed of each other like a classical
trajectory and its time-reversed partner. Focussing now
only on NOTEs injected from the left lead, we can deter-
mine their expansion coefficients ~qini;L with Q from Eq. (2),

Q11 Q12

Q21 Q22

� �
~qini;L
~0

 !
¼ Q11 ~q

in
i;L

Q21 ~q
in
i;L

 !
¼ qi

~qini;L
~0

 !
: (3)

For the last equality to hold, the following two condi-
tions need to be fulfilled: (i) Q11 ~q

in
i;L ¼ qi ~q

in
i;L and

(ii) Q21 ~q
in
i;L ¼ ~0. This central result of our Letter implies

the following operational procedure to determine the ex-
pansion coefficients of NOTEs: In the first step (i) the
eigenstates of the Hermitian matrix Q11 of dimension
N � N are calculated. Out of this orthogonal and complete
set of vectors the subset which, according to (ii), lies in
the null-space (kernel) ofQ21, constitutes the desired set of
common eigenstates ofQ and tyt. In practice, condition (ii)
can be conveniently verified by a null-space norm �i ¼
kQ21 ~q

in
i;Lk which determines the degree to which the

normalized vector ~qini;L lies in the null-space of Q21.

The quality of a NOTE should be the better the closer
this measure � 2 ½0;1� is to zero. As the limiting value
� ! 0 is only reached for exact NOTEs with wavelength
� ! 0, we need to test whether our approach works also
for the realistic situation where � has a finite value.

Consider, as a starting point for such a test, our previous
argument that NOTEs can only exist in the noiseless sub-
space with � ¼ 0, 1. We emphasize that this requirement,
which can similarly not be fulfilled exactly for any finite
value of �, does not explicitly enter conditions (i),(ii) from
above. A good indicator for the validity of our approach is
thus the degree to which NOTEs with finite values of � are,
indeed, noiseless. For this purpose we calculate the eigen-
vectors ~qini;L of Q11 [see condition (i)] and verify how the

transmission of these states correlates with the correspond-
ing null-space norm �i [see condition (ii)]. We find that all
eigenstates of Q11 which closely fulfill the NOTEs
condition (ii) of low � values are, indeed, either almost
fully transmitted, � � 1, or fully reflected, � � 0. This
behavior is entirely absent in random matrix theory
(RMT) where no phase space bands exist (a comparison
of the data for the rectangular cavity with RMT is shown in
Fig. 2(a) and in [14] B for other scattering geometries).
After these consistency checks we test whether NOTEs
with very low null-space norms [� & 30, see Fig. 2(a)]
display in their wave functions the anticipated pronounced
enhancements around individual bundles of classical tra-
jectories. Our results based on the same scattering matrix
data as for Fig. 1(b) confirm that states with such low null-
space norms � all feature highly collimated beamlike wave
functions [see Figs. 2(b)–2(d) and [14] E). Quite different
from arbitrary noiseless states [Figs. 1(a) and 1(b)], NOTEs

feature Husimi distributions that do not mix contributions
from different phase space bands, thereby corroborating
the successful operation of our procedure. Without excep-
tion we find that in cases where NOTEs seem to feature
contributions from more than one band [as in Fig. 2(d)]
all these bands belong to a single connected band in an
extended zone scheme [like T1/T2/R2 in Fig. 1(c)] [12].
Our numerical results indicate furthermore that the

proper delay times of NOTEs do not only lift the degener-
acy of noiseless states located on different bands, but that
also the small dwell-time differences between trajectories
of the same band do get increasingly well resolved in
the limit � ! 0. Correspondingly, we find that the proper
delay times qi of NOTEs on the same band are character-
istically different from each other (rather than degenerate).
NOTEs thus fill individual phase space bands in a well-
controlled fashion. Consider, e.g., the band T1: starting
from the state in Fig. 2(c) the proper delay times and the
transverse quantization of states on this band increase [see,
e.g., Fig. 2(d)] until, when the band is filled, the null-space
norm of states increases substantially (see [14] E), indicat-
ing a substantial overlap with phase space outside of
the band. Such an increase in � values is often found to
be accompanied by signatures of diffractive scattering at
the sharp lead mouths (see [14] E).
Since the operational procedure presented here does

not rely on any specific assumptions concerning the type
of scattering in a given system, we also applied it to
more complex scattering geometries. Consider first the

FIG. 2 (color online). (a) Transmission T vs null-space norm �
for eigenstates of the matrix Q11 in a rectangular cavity with
different lead orientations (green dots). NOTEs with � ! 0 are
noiseless and strongly deviate from RMT (red diamonds, see
[14] B for details). (b)–(d) Wave function densities for NOTEs
calculated with the same scattering matrix data as used for
Fig. 1(b). As demonstrated by the Husimi plots in the bottom
panels, each state is located on a single classical phase space
band. Null-space projections � are (b) 4.7, (c) 6.3, (d) 6.9. The
insets in (c) illustrate the possibility to use NOTEs for trans-
ferring information between a sender (A) and a receiver (B)
which bypasses a potential eavesdropper (E).
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Sinai-type billiard structure in Figs. 3(a) and 3(b) which
features chaotic classical dynamics due to scattering at the
circular part of the hard wall potential. We find that NOTEs
which do not have any overlap with the curved part of the
boundary [see Fig. 3(a)] have wave functions and proper
delay times as in the rectangular cavity. For comparison,
we also show in Fig. 3(b) a state which bounces off the
circular boundary. As reflected in its increased null-space
norm (� ¼ 24:8) the high instability of this state’s bounc-
ing pattern makes it much harder to resolve the (small) area
of its phase space band. Consider next rectangular cavities
containing a static disorder potential with correlation
length rc and an average amplitude V0. By studying such
disordered cavities we find that our approach is restricted
to the limit of weak and long-range disorder, V0=E � 1
and krc 	 1 (in agreement with the validity criterion for
the WKB/eikonal approximation [15] and previous work
[10]). Correspondingly, for the same fixed disorder ampli-
tude (V0=E ¼ 0:1) the z-shaped scattering state from
Fig. 2(b) survives in the presence of long-range disorder
[see Fig. 3(c)], whereas no such state exists for short-range
correlations [see Fig. 3(d) for the state with the closest
time-delay value and [14] B, E for more details).

We have performed additional tests (see [14] C) to verify
that all NOTEs which we find within the above limits are
associated with individual classical trajectory bundles.
This feature allows for a WKB/eikonal-type ansatz for

the transmission matrix of NOTEs, t � ~qouti;Re
iSbðEÞ=@ ~qinyi;L ,

in which the only part with a significant energy dependence

is the action phase, SbðEÞ ¼
R
b
~kd~l, accumulated along

bundle b. We show in [14] D that this ansatz fulfills the
defining conditions for NOTEs (i),(ii) from above.

We believe that our results open up many interesting
possibilities for the experiment, where the cavities consid-
ered here could, e.g., be an acoustic resonator (like a room)
or an electromagnetic scatterer (like closely spaced build-
ings). In both these cases the collimated wave functions

associated with NOTEs could be used to transfer informa-
tion between a sender (A) and a receiver (B) such that the
power to generate the signal is minimized and the trans-
mitted signal is kept out of reach of an eavesdropper (E)
[see illustration in Fig. 2(c)]. In this sense NOTEs offer
clear advantages over arbitrary noiseless scattering states
that do not display such beamlike wave functions in
general [see, e.g., Figs. 1(a) and 1(b)]. NOTEs may also
have interesting connections to phenomena in closed or
decaying systems [16–18].
In summary, we present an operational procedure for

constructing scattering states which follow classical
bouncing patterns in coherent transport through cavities
or complex scattering landscapes. In analogy to WKB/
eikonal theory we find that such ray-optical or beamlike
scattering states are determined by the condition of a
fixed scattering time delay. Our procedure is generally
applicable to different types of wave scattering (acoustic,
electromagnetic, quantum, etc.) and relies solely on the
knowledge of the scattering matrix.
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