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PUMP PROFILE BASIS

To first specify and then optimize the pump profile for directional emission we expand

the two-dimensional pump profile F (x) on the disk-shaped random laser of radius R using

a Bessel function basis of the form Jm(jm,n|x|/R) exp[−imϕ]. Here the jm,n are the Bessel

function roots, ϕ the polar angle, and R the radius of the disk within which the scatterers

are randomly distributed. This basis has the suitable property of vanishing at the disk

boundary outside of which no pump is applied. Inside the disk we expand the real and

strictly positive pump function F (x) as follows,

F (x; βm,n)=

∣∣∣∣∣∑
m,n

βm,nJm(jm,n
|x|
R

) exp[−imϕ]

∣∣∣∣∣
2

, (1)

where βm,n are complex expansion coefficients. In our numerical calculations we restrict the

summation in Eq. (1) to the limits m ∈ [−mmax,mmax] and n ∈ [0, nmax], corresponding to

a finite resolution of the pump beam in radial and azimuthal direction, respectively. The

choice which we make for the (2mmax+1)×(nmax+1) complex coefficients βm,n will determine

the threshold laser mode Ψ̄1(x). In the calculations presented in the main part of the article

(see Fig. 3), we choose nmax = 8 and mmax = 8. Note that, although not explicitly shown

here, one can reduce the complex parameters βm,n to purely real ones since only the absolute

square of the superposition of states is considered.

EMISSION FREQUENCY BEHAVIOR

In the course of optimizing the directionality of the first TLM the changes in the pump

profile also lead to slight variations of the laser frequency around the peak gain frequency of
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FIG. S1. Variation of the emission frequency k̄1 of the first threshold laser mode in the course of

the optimization procedure (the same parameters were used here as for Fig. 3d in the main text).
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30µm−1. For the specific case displayed in Fig. 3d of the main text this frequency variation

takes on the form shown in Fig. S1. Note that for the first few iteration steps this variation

is larger since the pump profile is modified more strongly here as compared to later steps of

the optimization procedure.

DERIVATION OF THE GRADIENT OF THE DIRECTIONALITY

In order to efficiently calculate the gradient of the directionality D with respect to the

complex coefficients {βm,n} we approximate this gradient with the help of the TCF states

which are defined as follows

{
∇2 + k̄2

1 [εc(x) + ηn(k̄1)F (x, k̄1)]
}
un(x) = 0 , (2)

and which satisfy the self-orthogonality relation

∫
r<R

ui(x)F (x)uj(x)dx = δi,j. (3)

The basis itself is calculated at the frequency k̄1 of the first threshold laser mode Ψ̄1, for which

we optimize the angular emission pattern to match the targeted emission pattern G(ϕ). In

order to reduce the terminology in the following we rewrite, without loss of generality, the

set of complex coefficients {βm,n} as a set of twice as many real coefficients αi, where the

imaginary part of the coefficients {βm,n} is moved into the corresponding basis function

fi(x), such that,

F (x; βm,n) =

∣∣∣∣∣∑
m,n

βm,nJm(jm,n
|x|
R

) exp[−imϕ]

∣∣∣∣∣
2

(4)

=:

∣∣∣∣∣∑
i

αifi(x)

∣∣∣∣∣
2

. (5)

We will now derive the gradient of the directionality D with respect to these coefficients

αi. The first part of this derivation follows directy from differentiation of D with respect to
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αj,

∂

∂αj
D[{αi}] = ∂αj

∫
G̃(ϕ)

FFP({αi}, ϕ)√∫
FFP2({αi}, ϕ′)dϕ′

dϕ (6)

=

∫
G̃(ϕ)

[
∂αj

FFP({αi}, ϕ)√∫
FFP2({αi}, ϕ′)dϕ′

− (7)

−
FFP({αi}, ϕ)

∫
FFP({αi}, ϕ′)∂αj

FFP({αi}, ϕ′)dϕ′(∫
FFP2({αi}, ϕ′)dϕ′

) 3
2

]
dϕ, (8)

where G̃(ϕ) = G(ϕ)/
√∫

G(ϕ′)2dϕ′ is the normalized reference emission profile and FFP is

the angular far-field emission profile of the first TLM. The latter is determined as the real

part of the complex Poynting vector at r →∞ which can be simplified to

FFP(ϕ) := lim
r→∞

r

2k̄1

Im[Ψ̄∗1(r, ϕ)∂rΨ̄1(r, ϕ)] . (9)

The partial derivative of FFP with respect to the coefficients αj is given by

∂αj
FFP({αi}, ϕ) = lim

r→∞

r

2k̄1

Im
[
(∂αj

Ψ̄∗1)∂rΨ̄1 + Ψ̄∗1∂r(∂αj
Ψ̄1)
]
. (10)

For reasons of improved efficiency we express the gradient of the TLM ∂αj
Ψ̄1 in terms of

the TCF states un. Note, that the first TLM Ψ̄1 is equivalent to a TCF state un̄ evaluated

at the threshold laser frequency k̄1, i.e., Ψ̄1(x) = un̄(x, k̄1). With the help of this equivalence

the gradient of Ψ̄1 is formally defined as

∂αj
un̄ = lim

h→0

un̄({αi + hδi,j})− un̄({αi})
h

. (11)

We can now proceed and use perturbation theory in order to derive an expression for ∂αj
un̄

explicitly. With the operator L̂ = −∇2− k̄2
1εc we can rewrite the original eigenvalue problem

Eq. (2) as

L̂un = ηnk̄
2
1F ({αi})un (12)

and the “perturbed” eigenvalue problem as

L̂ũn = η̃nk̄
2
1F ({αi + hδi,j})ũn, (13)

where the perturbed state ũn = un({αi+hδi,j}) and the perturbed eigenvalue η̃n = ηn({αi+
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hδi,j}). The perturbed pump profile can be approximated by

F ({αi + hδi,j}) =

∣∣∣∣∣∑
i

αifi(x) + hfj(x)

∣∣∣∣∣
2

(14)

= F ({αi}) + h
∑
i

2αiRe(fif
∗
j )︸ ︷︷ ︸

F ′({αi})

+O(h2). (15)

In a next step we insert this approximation, together with the following ansatz for the

perturbed eigenstate,

ũn̄ ≈ un̄ + h

N∑
i=1
i 6=n̄

ci,n̄ui, (16)

and for the eigenvalue, η̃n = ηn + hη′n, into Eq. (13) (N denotes here the size of the TCF

basis). By discarding terms of O(h2) and making use of the self-orthogonality of the TCF-

states [Eq. (3)] we obtain the expansion coefficients of the perturbed TCF state,

ci,n̄ =
ηn̄

ηi − ηn̄

∫
r<R

ui(x)F ′({αi})un̄(x)dx, (17)

where R is the radius of our random laser disk. This expression can then be inserted back

into Eq. (16), which yields

∂αj
un̄ =

N∑
i=1
i 6=n̄

ci,n̄ui. (18)

With this expression and Eq. (10), the desired approximate gradient of the directionality

measure D with respect to the coefficients αi, Eq. (8), is now easily evaluated.
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