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Topological insulator in the presence of spatially correlated disorder
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We investigate the effect of spatially correlated disorder on two-dimensional topological insulators and on
the quantum spin Hall effect which the helical edge states in these systems give rise to. Our work expands the
scope of previous investigations which found that uncorrelated disorder can induce a nontrivial phase called
the topological Anderson insulator (TAI). In extension of these studies, we find that spatial correlations in the
disorder can entirely suppress the emergence of the TAI phase. We show that this phenomenon is associated with
a quantum percolation transition and quantify it by generalizing an existing effective medium theory to the case
of correlated disorder potentials. The predictions of this theory are in good agreement with our numerics and
may be crucial for future experiments.

DOI: 10.1103/PhysRevB.88.014201 PACS number(s): 03.65.Vf, 73.43.Nq, 72.15.Rn, 72.25.−b

I. INTRODUCTION

A two-dimensional topological insulator1 features edge
states similar to those of the quantum Hall effect with
the difference that electrons of different spins move in the
same direction at opposite edges. Accordingly, this so-called
“quantum spin Hall” (QSH) effect2 can be understood as two
noninteracting copies of a quantum Hall system, one for each
spin. The stability of the edge states is guaranteed by time-
reversal symmetry which forbids scattering into the counter-
propagating edge state with opposite spin.3,4 These properties,
which have recently attracted considerable attention,5–10 make
topological insulators promising candidates for key compo-
nents in future spintronic devices.11,12 In 2006 HgTe/CdTe
quantum wells were proposed as suitable systems for a first
experimental realization of the QSH effect13 which was,
indeed, achieved shortly thereafter.14,15 Numerically it was
found that the edge states in a topological insulator not only
show great robustness against disorder but also that strong
disorder itself can induce a phase featuring pure edge transport
even if the system is an ordinary insulator in the clean limit.16

This disorder-induced and topologically nontrivial phase was
named topological Anderson insulator (TAI). In 2009 a theory
was put forward17 that lead to a detailed understanding of the
TAI, showing that disorder causes a negative correction to the
topological mass which pushes the system into the TAI phase.
This interesting phenomenon has meanwhile been investigated
numerically in a variety of different systems18–22 including the
case of a three-dimensional topological insulator.23 However,
due to the challenges involved in controlling the disorder
in a HgTe/CdTe quantum well, the TAI has not yet been
realized experimentally. This problem might be overcome by
employing ultracold atomic gases in optical lattices for the
realization of a topological insulator.24 In such a highly tunable
model system the disorder could be introduced by an optical
laser speckle potential25,26 which has the advantage of being
under external control.

An important point to emphasize in this context is that both
the speckle pattern for cold atomic gases as well as the disorder
which naturally occurs in a quantum well are characterized
by a finite spatial correlation length ξ . Since this correlation
has been disregarded in all previous numerical studies of

the TAI which we are aware of,16,17,22,27,28 the question was
posed28 how a finite correlation length ξ would influence the
predictions for the appearance and for the stability of the TAI.
In view of the fact that spatial correlations in the disorder have
already been shown to play an important role in the context
of various other scattering scenarios,29–44 one may expect
such correlations to be a relevant factor also for topological
insulators. We address this topic by studying explicitly how a
static and spatially correlated disorder influences the transport
characteristics of topological insulators (Fig. 1). As we will
specify in detail below, our numerical results show marked
deviations from conventional simulations with uncorrelated
disorder.

II. METHOD

We proceed along the lines of previous studies, where an ap-
propriate description of the two dimensional HgTe/CdTe quan-
tum well was proposed in terms of an effective Hamiltonian.13

This Hamiltonian, which was derived based on the k · p
perturbation theory and the six-band Kane-model, takes the
following form:
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(
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)
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and σ i labeling the Pauli matrices. The basis of this effective
Hamiltonian consists of the s-like E1 and the p-like heavy-hole
H1 quantum well sub-bands for spin up (+) and down (−).
The ordering is chosen to be |E1+〉,|H1+〉,|E1−〉,|H1−〉.
Since the spin-up and spin-down parts in the Hamiltonian are
decoupled as a consequence of time reversal symmetry45 it is
sufficient for our calculations to only use the spin-up block
h(�k). The solution for the spin-down block follows from a
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FIG. 1. (Color online) Illustration of the scattering setup for the
considered topological insulator: A rectangular disordered middle
part of height Ly and width Lx is attached to two semi-infinite
leads on the left and right. Random potentials with and without
correlations between neighboring grid points in the underlying lattice
discretization are shown in the bottom and top panel, respectively.

time-reversal operation. The material-dependent constants A,
B, and D in all our calculations are set to realistic values A =
364.5 meV nm, B = −686 meV nm2, D = −512 meV nm2,
and C = 0 meV taken from Ref. 46. The sign of the topological
mass m has a strong impact on the system’s transport behavior:
For positive m the system behaves like an ordinary insulator
with a band gap of 2|m|, whereas if m is set to a negative value
the system turns into a topological insulator featuring perfectly
transmitting edge states for the Fermi energy EF lying inside
the bulk band gap |EF | < |m|. To simulate such a system we
use the experimentally determined value46 of m = −10 meV.

The scattering geometry which we consider consists of
a rectangular disordered region of width Lx and height Ly

attached to two clean, semi-infinite leads (see illustration in
Fig. 1). We discretize the scattering region on a square lattice
with grid constant a using the tight-binding approximation in
the continuum limit for the implementation of the effective
Hamiltonian. If not stated otherwise, the grid constant a is
set to 5 nm, in agreement with the value used in previous
studies.16,17,27,47,48 For simplicity, we consider the limit of van-
ishing temperature T → 0 and infinitely small bias voltages
V → 0 applied between the two semi-infinite leads. According
to the Landauer-Büttiker formalism the conductance G in this
limit is proportional to the transmission probability T at the
Fermi energy EF ,

G = e2

h
T = e2

h

N∑
n,m

|tnm|2. (3)

The indices n and m extend over all N lead modes and
tnm labels the transmission amplitude from mode n in the
incoming lead to mode m in the outgoing lead. Since we
consider both spins separately, every mode only contributes
a single conductance quantum e2/h. For the calculation of
the transmission we employ the advanced modular recursive
Green’s function method49–51 which incorporates the disorder
by way of a static on-site energy value V (�x) imposed at every
grid point �x = (xi,yj ). In previous calculations the random
on-site energies V (�x) were chosen to be uniformly distributed
within a given energy interval [−U/2,U/2], and each random
sample from this distribution was drawn independently for

each grid point. Since in this case the disorder value on each
grid point has no correlation with the values on neighboring
grid points we will refer to this type of disorder as “uncor-
related.” To go beyond this limitation and to account for the
spatial correlations which naturally occur in realistic situations
we choose our disorder potential such as to obey the Gaussian
correlation function

C(�r) = 〈V (�x) · V (�x + �r)〉 ∝ exp

(
− r2

2ξ 2

)
, (4)

where the brackets 〈...〉 stand for an average over all the
grid points �x and many disorder realizations. The standard
deviation of this Gaussian defines the correlation length ξ ,
which measures the spatial range of the correlations. The value
of the disorder strength U is established by demanding

〈Vij 〉 = 0,
〈
V 2

ij

〉 = U 2

12
. (5)

These values are chosen such as to agree with those
of the uncorrelated disorder potential distributed within
the interval [−U/2,U/2]. See Fig. 1 for an illustration
of the disorder potentials with and without spatial correlations
in the employed tight-binding grid.

III. RESULTS

We first consider the conductance through a disordered
rectangular bar of width Lx = 2000 nm and height Ly =
500 nm for a negative and a positive value of the topological
mass m (m = −10 meV and m = +1 meV), respectively.
In the clean limit the system with m < 0 [see U = 0 in
Fig. 2(a)] features quantized edge transport (green area)
within the bulk band gap |EF | < |m|, whereas conductance
is entirely suppressed in the energy range |EF | < |m| for
m > 0 [see U = 0 in Fig. 2(c)].16 Adding now an uncorrelated
disorder to the clean systems with m < 0 and m > 0 gives
rise to an unconventional conductance plateau [see U > 0 in
Figs. 2(a) and 2(c) as well as Ref. 16]. This so-called TAI
phase of quantized transport emerges in the presence of strong
uncorrelated disorder at energies at which no edge transport
is present in the clean limit U = 0.16 In the case of m < 0
[Fig. 2(a)] this TAI phase extends the original QSH phase
beyond the disorder-free limits, given by |EF | = |m|. Note
that our results from Figs. 2(a) and 2(c) agree very well
with the literature,16,17 thereby confirming the validity of our
simulations.

In a next step we repeat this calculation for a correlated
disorder potential. We choose the value of the correlation
length ξ = 23.45 nm considerably larger than the grid constant
a = 5 nm but still much smaller than the height Ly = 500 nm
of the sample. Our results for such a finite correlation length
[see Figs. 2(b) and 2(d)] differ dramatically from the uncor-
related case [see Figs. 2(a) and 2(c)]: Apparently the chosen
spatial correlations in the disorder lead to a total breakdown
of the TAI conductance plateau. In the case of m < 0 we also
observe an increased disorder sensitivity as well as a narrowing
of the conductance plateau corresponding to the original QSH
phase in the clean limit. These results demonstrate that spatial
correlations in the disorder add an important new component
to the physics of topological insulators. Especially in view of
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FIG. 2. (Color online) Average conductance 〈G〉 as a function of disorder strength U and Fermi energy EF for systems with negative
m = −10 meV (left column) and with positive m = 1 meV (right column). The system length Lx = 2000 nm and the height Ly = 500 nm.
The average is taken over 200 in (a) and 1000 disorder realizations in (b), (c), and (d). The green area shows where the average conductance
〈G〉 reaches a plateau at a single conductance quantum e2/h originating from edge transport through the disordered system. Top row: For
uncorrelated disorder the TAI phase appears in this green area for strong disorder at energies where no edge states exist for U = 0. The blue lines
in (a) show the phase boundaries of the TAI predicted by the effective medium theory which is based on the self-consistent Born approximation
(SCBA) shown in Eq. (6). Bottom row: Spatial correlations in the disorder with correlation length ξ = 23.45 nm destroy the TAI conductance
plateau and for m < 0 also narrow the QSH plateau to an interval within the original bulk band gap. For positive topological mass (right
column) the leads have been doped resulting in an energy offset of � = 20 meV since otherwise no lead states would exist in the band gap.

the envisioned experiments that probe the physics of strongly
disordered topological insulators, our results can apparently
be expected to impose rather strict limits on the observability
of the TAI phase. For such an experimental realization of the
TAI we can certainly conclude that it is equally important to
be able to control the correlation length ξ as it is to control the
strength U of a disorder potential.

To check the influence of spatial correlations also for
larger samples than the ones considered above we performed
additional calculations. This is particularly important as
finite-size effects in small samples due to a coupling of
counter-propagating edge states can considerably distort the
phase diagram of the TAI.27,28,45 To determine these phase
boundaries in extended samples we performed a scaling
analysis following previous work in this direction.19,47 For this
purpose a quadratic geometry of size L = Lx = Ly is rolled
up to a cylinder17,27,47 using periodic boundary conditions in
the y direction which eliminate the edge states in the sample.
The disorder-averaged logarithmic conductance 〈ln G〉 of the
remaining bulk states is then calculated for three different
sizes L1 < L2 < L3 of the quadratic system as a function of
the disorder strength U . This analysis allows us to estimate
whether the bulk system in the limit of infinite size becomes
conducting or insulating. For those values of U where 〈ln G〉

increases with increasing system size L, bulk states also
conduct in an infinite system and thus suppress any kind of
TAI phase due to the coupling of the edge states via bulk
states. In contrast, in those regions where 〈ln G〉 decreases with
increasing system size L the bulk is insulating in an infinitely
large sample and clean edge transport can occur. The borders of
these transitions between conducting and insulating bulk states
can be estimated from the crossing points of 〈ln G〉.47,48 We
calculated these phase transition points for an uncorrelated and
for correlated potentials with different correlation length ξ in
systems of three different sizes L1 = 500 nm, L2 = 700 nm,
and L3 = 1050 nm. Due to the high numerical effort involved,
we restrict ourselves to a single energy of EF = 16 meV at
which the TAI conductance plateau in the uncorrelated case is
wide and well established [see Fig. 2(a)].

The results of our scaling analysis are shown in Fig. 3, where
the uncorrelated case and two different correlation lengths ξ

are considered. For each of these three cases the dependence
of 〈ln G〉 on the disorder amplitude U is shown. The phase
transition points occurring at the crossing points of curves
for different system sizes are marked by arrows. The top left
inset of Fig. 3 shows a closeup of the crossing points. As found
previously, the crossing points move slightly to lower values of
U for increasing system size as a result of finite size effects.48
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FIG. 3. (Color online) Average logarithmic conductance 〈ln G〉
through a rolled up quadratic topological insulator (m = −10 meV)
of size Li × Li as a function of disorder strength U . We consider
three different system sizes L1 = 500 nm, L2 = 700 nm, and
L3 = 1050 nm for uncorrelated disorder (black) and for correlated
disorder with correlation length ξ = 9.0 nm (red) and ξ = 35.0 nm
(blue) at an energy of EF = 16 meV (disorder average taken over
2000 configurations). The transitions into and out of the TAI phase
occur at the crossing points of curves with equal color (their positions
are marked by small arrows.) The TAI bulk band gap, present in the
uncorrelated case in between the first and second crossing point, dis-
appears for correlated potentials and the delocalization-localization
region between second and third crossing point is broadened. The
top right inset shows the behavior of 〈ln G〉 as a function of the
system length L with fixed system width W = 500 nm for ξ = 9 nm
and for three values of disorder strength U = 70, 100, and 130 meV
(see red vertical bars in the main panel). The localization length
Lloc is calculated from the slope of the best linear fit of 〈ln G〉:
Lloc(U = 70 meV) = 518 nm, Lloc(U = 100 meV) = 350 nm, and
Lloc(U = 130 meV) = 379 nm. The top left inset shows a closeup
of some crossing points shown in the main panel.

We can thus expect the real phase transition point to be to
the left of our best estimate that we gain from the crossing
points between the curves for L2 and L3 which are marked by
the arrows in Fig. 3. Considering first the uncorrelated case
studied already earlier (see black curves and arrows) we find
that the lowest crossing point occurs at a value of the disorder
strength U ≈ 65 meV which fits well with the onset of the
aforementioned TAI conductance plateau in Fig. 2(a) (see also
Ref. 47). This onset coincides here with the opening of a
bulk band gap which is reflected in the scaling plots of Fig. 3
through a dramatic reduction of the conductance by more than
ten orders of magnitude. The second and third crossing points,
in turn, can be associated with the breakdown of the TAI
phase observed in Fig. 2(a). The corresponding transition is,
however, not induced by a band edge but rather by a mobility

edge associated with those bulk states that fill the band gap
when increasing the disorder strength beyond the first crossing
point. These bulk states undergo a delocalization-localization
transition at the second and third crossing point which destroys
the conductance plateau as soon as the delocalized bulk states
start coupling the edge states at opposite edges in the sample.
Note that for this to happen it is already sufficient for individual
rather than for all bulk states to delocalize such that finite size
effects do play a role at this strong-disorder boundary of the
TAI.47,48

When extending the above scaling analysis now to the case
of correlated disorder with successively increasing correlation
length ξ we find a behavior different from the uncorrelated
case: Already for the case of very short-range correlations
with ξ = 9.0 nm (red curves in Fig. 3) significant differences
appear. We still find three crossing points as before, but the
conductance no longer displays the very strong suppression
associated with a bulk band gap. Instead, we find that the
delocalization-localization region of bulk states, which was
previously associated with the strong-disorder boundary of the
TAI, widens for increasing correlation length ξ . Correspond-
ingly, in the disorder interval between the first and the second
crossing points (which are now also much closer together) the
conductance is much less suppressed than in the uncorrelated
case. This indicates that in the correlated case the bulk band
gap disappeared and was filled with localized bulk states.

To prove this statement we investigate more closely the
behavior of 〈ln G〉 in the disordered cylinder with surface area
W × L. Keeping the circumference of the cylinder and the
correlation length of the potential fixed at W = 500 nm, ξ =
9.0 nm, we vary the system length L and consider three
different values of U within the region between the first and
second crossing point where the bulk system is insulating in
an infinitely large system. The results are shown in the top
right inset of Fig. 3. The bulk states are indeed localized as
the averaged logarithmic conductance 〈ln G〉 drops linearly
with increasing length L. From the slope kl of the fitted
lines we determine the localization length Lloc = −2/kl of
the bulk states which ranges from 518 nm right after the first
phase transition point (U = 70 meV) down to 349 nm in the
middle of the “insulating” region (U = 100 meV). With the
localization length ξ thus falling below the linear dimension
W = L of the quadratic disorder region considered in Fig. 3,
we can understand that the reduced bulk conductance is here
produced by the localization of bulk states, rather than by a
band edge as in the uncorrelated case. We emphasize, however,
that both a band gap as well as localized bulk states can give
rise to a TAI, as was explicitly pointed out in a recent study:48

In what was termed a TAI-I phase the coupling between edge
states is prevented by a bulk band gap which eliminates all
bulk states that would mediate such a coupling. In a system
with negative topological mass m < 0 the TAI-I conductance
plateau is joined with the original QSH plateau existing within
the original bulk band gap EF < |m|. A second TAI-II phase
was characterized by a coexistence of localized bulk states
and extended edge states. As long as the localization length
of these bulk states remains smaller than the width of the
sample, the coupling of edge states remains suppressed and
the TAI persists. Following these arguments, the transition
into the TAI phase can either occur at a band edge (for TAI-I)
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FIG. 4. (Color online) Scattering wave functions |ψ |2 in a
cylindrical system of length L = W = 1050 nm, Fermi energy EF =
16 meV in a random potential of correlation length ξ = 35 nm. The
flux is incoming from the left and periodic boundary conditions are
implemented on the top and bottom of the images. The disorder
strength U for each of the pictures shown is indicated right below
each panel. Note how the wave function turns into a percolating
state when the localization-delocalization transition is approached for
increasing disorder strength U (compare with blue curves in Fig. 3
and with experimental data from quantum Hall measurements as in
Fig. 2 of Ref. 53).

or at a mobility edge (for TAI-II). From this we conclude
that the original band edge at the weak-disorder boundary
of the TAI-I phase in the uncorrelated case gets replaced
by a mobility edge as the new weak-disorder boundary of
a TAI-II phase in the correlated case. The corresponding
suppression of the TAI-I phase already at a rather small
correlation length of ξ = 9.0 nm suggests that the TAI-II
phase is more robust to spatial disorder correlation than the
TAI-I phase. The TAI-II phase is, in turn, more sensitive
to finite size effects due to individual localized bulk states
which can couple counter-propagating edge states to each
other. Correspondingly we can understand the absence of a
TAI conductance plateau in Fig. 2(b) and Fig. 5 in between the
first and second crossing points of our scaling analysis in Fig. 3
as a finite-size effect which may disappear for much larger
samples than studied here. Further explicit calculations will
be necessary to better understand the infinite-size limit for TIs
with long-range correlations in the disorder. Our own results
for the case of ξ = 35 nm (see the blue curves in Fig. 3) show
that the widening of the delocalization-localization transition
continues for increasing correlation length ξ . However, since
the transition region for ξ = 35 nm is here already very wide,
detailed statements on the phase boundaries in the infinite size
limit are difficult to deduce from our finite-size calculations.

We may, however, get important insights into the nature
of the localization-delocalization transition for correlated
disorder potentials by explicitly studying the scattering wave
functions close to this transition. In Fig. 4 we plot several
such wave functions for increasing disorder strength U in our
cylindrical system of size L = W = 1050 nm and correlation
length ξ = 35 nm (compare with blue curves in Fig. 3). These

plots indicate that the observed localization-delocalization
transition is, in fact, a percolation transition similar to the
one in the quantum Hall effect.52 At the percolation threshold
which is realized at critical values of the system parameters
(like the disorder strength U ) localized bulk states turn into
extended states which circumnavigate the hills and valleys
of the disorder potential rather than being trapped by them.
The wave functions shown in Fig. 4 indicate exactly such a
behavior by displaying bulk states that propagate along the
slopes of pronounced potential variations [see Fig. 4(d)] as
observed in quantum Hall measurements (see Fig. 2 in Ref. 53).
This percolation explains the suppression of unidirectional
edge transport quite intuitively since close to the percolation
threshold the bulk states which are otherwise localized may
percolate from one edge to the opposite one and thereby
couple the counter-propagating edge states. Note that our
observation of the percolation transition fits well with earlier
work17 that found the critical exponent for this transition in the
uncorrelated case to be consistent with the exponent from the
quantum Hall universality class. The most closely related work
to this paper which we could identify is by Shen et al.54 who
recently demonstrated that bound states in a quantum spin Hall
anti-dot lattice feature a percolation transition in the bulk band
gap. Since in the present system we observe the percolation
transition at EF = 16 meV, which is well outside the bulk band
gap at |EF | < 10 meV, a different mechanism seems to be at
work here which we intend to discuss in a separate paper.55

In the following we will present additional evidence to
corroborate our arguments from above with respect to the
suppression of the TAI-I phase due to correlations in the
disorder. If these arguments are correct, the QSH phase
(characterized by a negative topological mass and a chemical
potential in the band gap, |μ| < |m|) should border, in the
correlated disorder case, directly on the surviving TAI-II
phase (characterized by a negative topological mass and a
chemical potential outside of the band gap, |μ| > |m|). In
the corresponding plot in Fig. 2(b) we see that the QSH
conductance plateau (existing in the energy-range −10 meV <

μ < 10 meV in the disorder-free sample) extends only to much
smaller values of disorder strength U than in the uncorrelated
case [compare with Fig. 2(a)]. Since for the above arguments
the borders of this reduced QSH conductance plateau with the
neighboring TAI-II phase are characterized by a band edge
crossing, these borders should be describable in terms of a
similar effective medium theory as has been developed for the
uncorrelated case.17 This theory maps the disordered system
onto a disorder-free sample with a renormalized topological
mass m̄ = m + δm and chemical potential μ̄ = μ + δμ. This
renormalization was carried out in terms of the self-consistent
Born approximation (SCBA) using an integral equation for the
self-energy �:

� = U 2

12

(
a

2π

)2

lim
κ→0

∫ π
a

− π
a

dkxdky(EF + iκ − H0(�k) − �)−1.

(6)

Whenever the renormalized chemical potential reaches the
edge of the band gap (|μ̄| = |m̄|) the border of the QSH
(or TAI-I) phase has been reached. Since this indicator, as
calculated through the above SCBA, is independent of the
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system size, the effective medium theory offers an insightful
and practical tool to determine the boundaries of the QSH or
possible TAI-I phases in the infinite-size limit.

In order to generalize the effective medium theory from
above to the case of spatially correlated potentials we resort to
recent theoretical work in which an extension of the coherent
potential approximation to correlated disorder was proposed.56

Following this line of work, one can conveniently include the
disorder correlations through an additional term in Eq. (6)
which is given by the normalized Fourier transform of the
disorder correlation function,57 C̃(�k),

� = U 2

12
lim
κ→0

∫ π
a

− π
a

dkxdkyC̃(�k)(EF + iκ − H0(�k) − �)−1.

(7)

Since in the present case of Gaussian disorder correlations [see
Eq. (4)] the expression for C̃(�k) is a Gaussian itself (centered
around k = 0), the effect of the disorder correlations is to
smoothly cut off the above integral. The more long range the
correlations are (in real space), the sharper this cutoff is (in
Fourier space).

To extract the corrections δm and δμ from the self energy in
Eq. (7), we proceed along the lines of the uncorrelated case17

and decompose the self energy into the Pauli matrices σi

� = �0σ0 + �xσx + �yσy + �zσz (8)

with the help of

δm = Re �z, δμ = −Re �0. (9)

With the values extracted for the renormalized topological
mass m̄ = m + δm and chemical potential μ̄ = EF + δμ, we
can now estimate the boundaries of the QSH or TAI-I phase
in the case of correlated disorder by determining the values
of EF and U for which the renormalized chemical potential
μ̄ drops into the effective band gap at μ̄ = ±m̄. We start
by first testing our approach for the uncorrelated case, for
which the weak disorder boundary of the TAI phase was
estimated before. In this case the discrete Fourier transform
of the correlation function C̃(�k) is constant. By normalizing
this function in k space to the volume V = (2π )2/a2 of the
Brillouin zone, we exactly reobtain the expression for the self
energy in the uncorrelated case, Eq. (6). If we determine with
this approach the phase boundaries of the QSH and TAI-I
phases in the uncorrelated case we obtain the blue curves in
Fig. 2(a) which fit nicely to the conductance plateau of the
QSH and TAI-I phases and to previous calculations.16,17,47

Extending our calculations to the case of correlated disorder,
the borders which we calculate through Eqs. (7) and (9)
(see blue curves in Fig. 5) describe the boundaries of the
QSH conductance plateau very well (without any adjustable
parameters). The good agreement which we find for different
correlation lengths ξ [see Figs. 5(a) and 5(b)] corroborates
the validity of our approach. Note that, in contrast to the
uncorrelated case, no TAI-I conductance plateau is observed
for |μ| > |m| (i.e., outside of the energy region where the QSH
phase is present in the clean sample). An increasing disorder
strength rather leads to a narrowing of the bulk band gap within
which pure QSH edge transport can occur. This reduced band
gap corresponds to positive corrections δm and δμ in the case

(b)

(a)

FIG. 5. (Color online) The average conductance 〈G〉 as a func-
tion of Fermi energy EF and disorder strength U is shown for
the system considered in Fig. 2(b), here with correlation length
(a) ξ = 9 nm and (b) ξ = 23.45 nm. The system is Lx = 2000 nm
long and Ly = 500 nm high while the grid spacing a = 5 nm. The
blue curves delineate the borders of the quantized conductance plateau
as estimated by the effective medium theory for correlated potentials,
Eq. (7). Note the very good agreement which we find with our
numerical results.

of a correlated potential whereas in the uncorrelated case these
corrections were shown to be negative.17 It is exactly these
positive corrections which lead to the breakdown of the TAI-I
phase that occurs in the uncorrelated case for |μ| > |m|.

IV. CONCLUSION

In this work we investigate the effect of spatially correlated
disorder on a two-dimensional topological insulator. We
thereby extend previous studies in which only uncorrelated
disorder potentials were considered.16,17,47,48 Our calculations
show that a finite correlation of the disorder potential enhances
finite-size effects and may entirely suppress a regime of
quantized conductance known as the topological Anderson
insulator phase. We link this phenomenon with a quantum
percolation transition that we find to occur in the limit of
correlated strong disorder (a detailed study on this will be
published separately).55 To describe the observed boundaries
of quantized conductance theoretically, we perform a scaling
analysis and adapt an existing effective medium theory
to the case of spatially correlated potentials which yields
quantitative agreement with our numerics. Our results suggest
that for observing the topological Anderson insulator phase
experimentally, it will be necessary to work with comparatively
large samples (to suppress finite size effects) and with very
short-ranged disorder potentials as any long-range correlations

014201-6



TOPOLOGICAL INSULATOR IN THE PRESENCE OF . . . PHYSICAL REVIEW B 88, 014201 (2013)

may strongly suppress this topologically nontrivial phase. We
speculate that spatial correlations might also be an important
impediment to eliminate the bulk conductance in three-
dimensional topological insulators.58 This would certainly
constitute an interesting topic for further investigations.
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