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Route from spontaneous decay to complex multimode dynamics in cavity QED
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Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA

(Received 17 June 2013; published 11 March 2014)

We study the non-Markovian quantum dynamics of an emitter inside an open multimode cavity, focusing on
the case where the emitter is resonant with high-frequency cavity modes. Based on a Green’s-function technique
suited for open photonic structures, we study the crossovers between three distinct regimes as the coupling
strength is gradually increased: (i) overdamped decay with a time scale given by the Purcell modified decay rate,
(ii) underdamped oscillations with a time scale given by the effective vacuum Rabi frequency, and (iii) pulsed
revivals. The final multimode strong-coupling regime (iii) gives rise to quantum revivals of the atomic inversion
on a time scale associated with the cavity round-trip time. We show that the crucial parameter to capture the
crossovers between these regimes is the nonlinear Lamb shift, accounted for exactly in our formalism.
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I. INTRODUCTION

Controlling the emission properties of quantum systems is
at the heart of a number of fields ranging from quantum infor-
mation processing to single-molecule spectroscopy. In solid-
state cavity QED a substantial amount of experimental effort
aims at designing highly structured photonic environments in
the vicinity of the emitter to achieve a high level of control
over its quantum dynamics [1–4]. Much of the earlier work
focuses on the resonant coupling to a single confined mode of
the photonic structure that has favorable emission properties,
while coupling to the rest of the modes of the photonic environ-
ment is regarded as a parasitic influence and is either discarded
or bulked into a total background spontaneous emission rate
in the spirit of Ref. [5]. Recent trends in experimental work,
however, point towards spatially highly complex and open
photonic structures, where the delineation between a cavity and
the radiative environment becomes highly blurred (see, e.g.,
[6–8]). Such situations are more effectively described through
the local density of photonic states (LDOPS) [9–15]. This
more powerful and potent theoretical approach has meanwhile
fueled a great deal of research on light-matter interaction in
fields ranging from cavity QED to photovoltaics [16], giving
rise to what may be referred to as LDOPS engineering.

While recent theoretical works have recognized the poten-
tial of this method [11–13,17], including those dealing with
dispersing and absorbing media [9,18], the lack of a suitable
method that allows tackling the often complex non-Markovian
dynamics of a two-level-like emitter in a leaky photonic struc-
ture was a significant hurdle in revealing novel phenomena
that may be at play in a host of modern-day light-confining
structures such as periodic [2], deterministic aperiodic [19],
and disordered photonic media [6], as well as nanoplasmonic
systems [20]. Here we present a formalism for computing
the full quantum dynamics of emitters in arbitrarily complex
photonic structures based on a single Volterra equation with
a spectral function proportional to the LDOPS. We then
illustrate the possibility of calculating the LDOPS of open
and complex photonic structures employing the non-Hermitian
set of constant-flux (CF) states that have been introduced

in Ref. [21] to describe steady-state lasing characteristics of
lasers. Based on this powerful tool, we explore the dynamics
of a quantum emitter in the multimode regime, i.e., when the
emitter couples to several modes of the cavity. This regime
is notoriously difficult because it leads to highly complex
non-Markovian dynamics, but it best illustrates the potency
of the method outlined here to provide insight into the various
possible time scales of the emitter dynamics. In particular,
we discuss a series of crossovers between three dynamical
regimes as the coupling strength of the emitter is increased.
Some of the aspects of these regimes have been discussed
before in the literature within the limited scope of a variety
of methods [9,22–27]. The beauty of our approach that we
present here is that it provides a unified description, a thorough
understanding, and a classification for all of these regimes,
with a key parameter being the nonlinear Lamb shift.

II. THEORETICAL MODEL

The system we study is a typical cavity QED setup consist-
ing of a two-level system (TLS) with transition frequency ωa

placed inside a cavity. The method we present here is valid for
an arbitrarily complex open cavity geometry, but for the sake
of transparency we discuss here a Fabry-Pérot cavity formed
by two highly reflecting mirrors (see Fig. 1). To describe the
excitation dynamics of the TLS we start with the familiar
Hamiltonian written in terms of the modes-of-the-universe
approach [28], which makes no distinction between the cavity
and its environment, H = (�ωa/2)σz + ∫

dω�ωa†(ω)a(ω) +
�
√

γ /π
∫

dω[g(ω,r)a(ω)σ+ + g�(ω,r)a†(ω)σ−]. Here a†(ω)
and a(ω) are standard creation and annihilation operators of
a photon and σ+,σ−,σz are the Pauli operators associated
with the TLS. The interaction part of H is written in the
electric dipole and rotating-wave approximation, where g(ω,r)
are the coupling amplitudes, and γ stands for the coupling
strength proportional to the dipole moment squared. Due to the
rotating-wave approximation, nonresonant terms (proportional
to aλσ

− and a
†
λσ

+) are absent in this Hamiltonian such that
the number of excitations is conserved. We can thus make the
following ansatz for the time evolution of the system: |�(t)〉 =
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ωa

FIG. 1. (Color online) Two-level system with transition fre-
quency ωa inside an open cavity.

c(t)e−iωat/2|u〉|0〉 + ∫
dω cω(t)|l〉|1ω〉e−i(ω−ωa/2)t , where the

ket vectors |u〉 and |l〉 stand for the atom in the upper and
lower states, respectively, and the ket vectors |0〉 and |1ω〉
represent the vacuum state and a single photon with the
frequency ω. Solving the Schrödinger equation with this ansatz
H|�(t)〉 = i�∂t |�(t)〉, we arrive at the Volterra equation for
the excited-state amplitude of the TLS c(t),

ċ(t) = −γ

π

∫ t

0
dt ′

∫ ∞

0
dω F (ω)e−i(ω−ωa )(t−t ′)c(t ′), (1)

where F (ω) = ρ(ra,ω)|g(ω)|2 is the spectral function, featur-
ing the LDOPS ρ(ra,ω), evaluated at the emitter position r =
ra , and g(ω) is the frequency-dependent coupling amplitude.

Note that Volterra equations as above have already been
used (i) for describing a single discrete energy level coupled
to a featureless continuum of states [29] as well as (ii) for the
case of a TLS coupled to dispersing dielectrics [9,30]. In the
former case (i) a very intuitive graphical analysis was presented
including, however, a spurious integral extension towards
negative frequencies. In the second case (ii) the solutions were
calculated explicitly without, in turn, the insight provided by
the modes of the corresponding open cavity geometry. In the
following we introduce a method that is general enough to
overcome the limitations of both approaches.

To make contact with the physics of an open cavity, we
first evaluate the LDOPS for a one-dimensional cavity of
length L bounded at x = 0,L by two thin semitransparent
mirrors modeled by dielectric slabs of width d � L with
refractivity index n (see Fig. 1). In what follows we use
units where the speed of light c = 1. We also normalize
x to L and measure time t in units of half the cavity
round-trip time and frequency ω in units of it’s inverse. In

the limit of n → ∞ and d → 0 the mirror’s transparency is
characterized by a factor η = n2d, which is related to the
frequency-dependent mirror reflection amplitude as r(ω) =
iωη/(2 − iωη) [31]. For such an open system the LDOPS is
given exactly by the imaginary part of the Green’s function
[32] ρ(xa,ω) = −2ω Im G+(xa,xa,ω)/π , where the retarded
Green’s function (labeled by +) satisfies the Helmholtz
equation (∂2

x + n2ω2)G+(x,xa,ω) = −δ(x − xa) for all x ∈
R. Note that, due to the openness of the cavity, the LDOPS
is a continuous function, corresponding to a continuum of
extended modes that are notably different from the discrete
set of cavity modes. An exact discrete spectral representation
for the Green’s function can, however, be obtained for the
finite but open cavity geometry at the expense of introducing a
non-Hermitian set of modes referred to as CF states, recently
introduced to laser physics [21,33]. To compute the response
to a monochromatic source at frequency ω, CF states φm(x)
have to be determined that satisfy [∂2

x + n2ωm(ω)2]φm(x) = 0
with the outgoing boundary conditions ∂xφm(x) = ±iωφm(x)
at the right (with +) and left cavity boundary (with −).
These states can be understood to carry a constant flux to
infinity [21]. The resulting non-Hermitian eigenvalue problem
features complex eigenvalues ωm and a complete set of right
(φm) and left (φ̄m) eigenvectors that parametrically depend
on ω and are biorthogonal to each other,

∫ L

0 dx n2φ̄∗
mφn =

δmn. The spectral representation of the Green’s func-
tion can then be constructed through G+(x,x ′,ω) =
−∑

m φm(x,ω)φ̄∗
m(x ′,ω)/[ω2 − ω2

m(ω)], resulting in a LDOPS
in the middle of the cavity that consists of a series of peaks,
one for each m. In this picture it becomes intuitively clear
that the peaks in the LDOPS, which the TLS couples to, arise
when (i) the frequency ω is close to one of the CF frequen-
cies ωm (see the denominator in the Green’s function) and
(ii) the CF eigenfunction φm has a sizable value at the position
xa of the TLS (see the numerator). The function g(ω) that
determines the coupling strength to the emitter is given by
|g(ω)|2 = (π/2)ωe−(ω−ωa )2/(2ω2

c ), where we have introduced
a Gaussian cutoff at ωc. In our simulations we varied the
cutoff frequency ωc in a relatively large frequency interval
observing qualitatively similar behavior. In what follows we
present results for ωc = 2ωa . Putting all terms together, the
spectral function in our example is given by

F (ω) = 2n2ωe−(ω−ωa )2

(n2 + 1)2 − (n2 − 1)2 cos(2ωnd) + 2(n4 − 1) cos(ωL) sin2(ωnd) + 2n(n2 − 1) sin(ωL) sin(2ωnd)
. (2)

III. DYNAMICAL SCENARIOS

We now proceed to solve Eq. (1) for a single excitation,
initially stored in the TLS c(0) = 1. Applying a Laplace
transform (see the Appendix), we derive the expression for
the amplitude c(t),

c(t) = γ

π
eiωat

∫ ∞

0
dω U (ω)e−iωt , (3)

with the kernel function

U (ω) = lim
ε→0+

F (ω)

[ω − ωa − γ δ(ω)]2 + [γF (ω) + ε]2
(4)

and the nonlinear Lamb shift

δ(ω) = 1

π
P

∫ ∞

0
dω̃

F (ω̃)

ω − ω̃
, (5)

where P denotes the Cauchy principal value. The dominant
frequency components entering the dynamics of c(t) are those
that are resonant in the kernel function U (ω). A necessary
condition for such resonances to occur is that the first term in
the denominator of U (ω) vanishes,

ωr − ωa

γ
= δ(ωr ). (6)
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FIG. 2. (Color online) Route from the single-mode to the multi-
mode coupling regime for different coupling strengths γ . The top row
shows the dimensionless kernel function U (ω) [Eq. (4)]. The bottom
row shows the dimensionless nonlinear Lamb shift δ(ω) [Eq. (5)]
for the same ω interval as above (note the different zooms for the
three columns). The left column shows the weak-coupling regime
for γ = 4 × 10−6 with a single peak in U (ω) (Purcell modified
spontaneous decay). The middle column shows the strong-coupling
regime for γ = 2.5 × 10−3 with a well-resolved Rabi splitting in
U (ω) (regime of damped Rabi oscillations). The right column shows
the multimode strong-coupling regime for γ = 1.44 with a multipeak
structure in U (ω) consisting of almost equidistant peaks (regime of
revivals). Closed circles label resonance values ωr of the kernel U (ω)
occurring at the intersections between the Lamb shift δ(ω) and the
dashed line (ω − ωa)/γ . At open circles (not shown in right column)
such intersections are nonresonant and do not lead to a corresponding
peak in U (ω) (see the text). The transition frequency ωa ≈ 19π of
the TLS coincides with the tenth resonance of the spectral function
F (ω) [Eq. (2)]. The reflectivity parameter η = 0.1 is such that the
mirror reflectivity |r(ωa)|2 = 0.9. Frequency ω is measured here in
units of the inverse half the cavity round-trip time.

This resonance condition is satisfied at the frequencies ωr ,
determined by the intersection of the nonlinear Lamb shift
δ(ω) and a straight line (ω − ωa)/γ (see a corresponding
graphical analysis in [29] for a simple form of a continuum).
Since, according to Eq. (5), every resonance in F (ω) produces
a dip followed by a peak in the Lamb shift, there may be
several such intersections, corresponding to multiple solutions
of Eq. (6). The corresponding resonances in the kernel U (ω)
can, however, be suppressed, whenever the spectral function
F (ω) has a maximum at the same resonance frequency. This
is the case if the kernel U (ω) = 1/γ 2F (ω) goes through a
minimum at ω = ωr .

Based on these observations, we will now investigate the
crossover from weak to strong coupling upon variation of the
coupling strength γ ; all other parameters, such as the spectral
function F (ω) and the mirror’s reflectivity factor η, will be
left unchanged. At very weak coupling γ = 10−4 (left panel
of Fig. 2), the straight line in Eq. (6) is very steep and thus
leads just to a single intersection, corresponding to a single
resonance at ωr ≈ ωa . All quantities in Eq. (4) can thus be
evaluated at ωa to very good accuracy and the kernel function
reduces to a Lorentzian centered around the slightly shifted
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FIG. 3. (Color online) Temporal evolution of the excited-state
probability |c(t)|2 of the TLS for the three cases shown in Fig. 2.
Time t is measured here in units of half the cavity round-trip time.
The left panel shows the weak-coupling regime (γ = 4 × 10−6)
featuring spontaneous decay (also shown on a log-lin scale in
the inset). The middle panel shows the strong-coupling regime
(γ = 2.5 × 10−3) with damped Rabi oscillations. The right panel
shows the multimode strong-coupling regime (γ = 1.44) featuring
pulsed revivals at multiple integers of half the cavity round-trip time.

frequency ωa + γ δ(ωa) with the width γF (ωa). By extending
the integration limit in Eq. (3) to −∞, we reproduce the Purcell
modified exponential decay of the TLS inversion [23], in good
agreement with a numerical solution of the Volterra equation
(1) (left panel in Fig. 3). This is the overdamped dynamics of
the TLS in the weak-coupling limit of cavity QED.

As γ increases to γ = 2.5 × 10−3 we enter the strong-
coupling regime, as indicated by the straight line now being
flat enough to intersect the nonlinear Lamb shift at three points
(middle panel of Fig. 2). Note that these three intersections give
rise to only two resonances ωr in the kernel U (ω) since the
middle frequency is very close to the resonance of F (ω) (see
the discussion above). As a consequence, the kernel function
U (ω) has a double-peak structure that is characteristic of the
single-mode vacuum Rabi splitting [24]. This energy splitting
introduces a new frequency scale, the Rabi frequency, which
is easily estimated from the resonance condition (6) to be√

2ωaγ . The inverse of the peak width provides the time
scale at which the Rabi oscillations decay, as confirmed by
independent numerical solutions of Eq. (1) (middle panel of
Fig. 3).

With a further increase of the coupling strength to γ = 1.44,
the straight line starts to intersect neighboring resonances
of δ(ω), involving an increasing number of cavity modes.
Thus, within the multimode strong-coupling regime it is
possible to couple to many cavity modes, including those
that reside far away from the transition frequency ωa (right
panel of Fig. 2). Note that, similar to the situation above,
only every second intersection with the Lamb shift produces
a resonance in the kernel U (ω) that correspondingly takes
on a multipeaked profile. If, as in our case, these peaks also
have an equidistant spacing to each other, then the interference
between these resonant modes produces a train of pulses in
the probability of the excited state |c(t)|2, corresponding to
pulsed revivals of the TLS inversion (right panel of Fig. 3).
With the revival time being equal to half the cavity round-trip
time, the straightforward explanation of this phenomenon is the
repetitive emission and subsequent reabsorption of radiation
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FIG. 4. (Color online) Destruction of the multimode strong-
coupling regime by broadening of the peaks in the spectral function
(2). The left column shows the mirror reflectivity parameter η = 0.9
(as in right panel of Fig. 2). The middle column shows η = 0.3. The
right column shows η = 0.015. The top row shows the dimensionless
kernel function U (ω). The bottom row shows the corresponding
excited-state probability |c(t)|2 of the TLS versus normalized time
t . The transition frequency ωa ≈ 19π and the coupling strength
γ = 1.44 are the same as in the right panels of Figs. 2 and 3.

by the TLS, when it is back-reflected by the cavity boundaries.
As such, this effect relies on the fact that the phases acquired
from all possible paths starting from and returning to the
position of the TLS differ only by integer multiples of 2π ,
a condition that strongly depends on the position of the TLS in
the cavity. Indeed, if we move the TLS away from the cavity
center, a much more irregular type of dynamics emerges (not
shown). We also checked explicitly on the limitations that the
revival effect is subject to in terms of the cavity opening.
For that purpose we performed numerical simulations for
cavities with smaller values of the mirror’s reflectivity factor
η = 0.3,0.015 (Fig. 4). We observe that for decreasing values
of η the overlap between neighboring resonant peaks in U (ω)
increases until they merge into a single wide resonance. As a
result, the revivals in the inversion of the TLS die out when all
resonances merge to a single peak, at which point the decay
will be just a simple exponential decay, no matter how large
the coupling strength γ is.

IV. COMPARISON WITH A SYSTEM-AND-BATH
FORMALISM

To verify the validity of the above results, we recalculated
the temporal decay in all of the three regimes from above using
a recently developed system-and-bath approach [34]. Under
the rotating-wave and Born approximations this approach can,
in principle, also be reduced to a single Volterra equation as in
Eq. (1). We have, however, been able to go beyond the Born
approximation by solving a coupled set of Volterra equations
for the TLS and damped cavity modes explicitly numerically.
These equations very well illustrate how costly it becomes
numerically to obtain the solutions for the temporal decay
without the Laplace transform employed above and how little

insight one gets into these solutions when they have to be ex-
plicitly integrated in time. The fact that we obtain very similar
results (for all the scenarios obtained above) with this more
complex approach confirms in turn the validity of the simple
and insightful strategy presented in the previous sections.

A. Total Hamiltonian

Our starting point is a Hamiltonian that includes altogether
five contributions from the resonator, the external region, the
TLS and the interaction of the resonator with the external
region and of the TLS with the resonator [see Eq. (81) in [34]],

H =
∑

λ

�ωλa
†
λaλ +

∫
dω �ω b†(ω)b(ω) + �ωa

2
σz

+ �

∑
λ

∫
dω[Wλ(ω)a†

λb(ω) + W�
λ(ω)aλb

†(ω)]

+
∑

λ

[gλaλσ
+ + g�

λa
†
λσ

−]. (7)

Note that the form of this Hamiltonian is a bit simpler as
compared to the one presented in [34] as we do not consider
multiple scattering channels outside the cavity.

The Hermitian resonator modes are described by a discrete
set of operators aλ and corresponding eigenfrequencies ωλ,
whereas the external radiation field corresponds to a contin-
uous set of operators b(ω) and frequencies ω. The operators
obey the usual canonical commutation relations (see Sec. II D
in [34] for more details). The resonator and external region
communicate with each other via the coupling matrix elements
Wλ(ω) defined as the expectation value of the operator LPQ

sandwiched between the resonator and external modes [see
Eq. (52a) in [34]]. This coupling operator is determined
through the Feshbach projection formalism, which consists
of separating space in two regions, the resonator Q and
the external region P . Finally, the action of the operator L
onto an arbitrary function φ is written as the decomposition
Lφ = LQQμ + LQP ν + LPQμ + LPP ν, where the functions
μ and ν reside inside the resonator and the external regions,
respectively. Correspondingly, the operators LQP and LPQ act
in the vicinity of the boundaries between the resonator and
external region (see Secs. II B and III C for more details). The
key point is that the total operator L, the cavity operator LQQ,
and external region operator LPP are Hermitian operators in
their regions of definition. The operators σz, σ+, and σ− are
the standard Pauli operators that describe the TLS and ωa

stands for its transition frequency. The coupling amplitude gλ is
given by

gλ = −i

(
�ωλ

2

)1/2

μμμ · uλ(ra), (8)

where μμμ is the dipole strength of the transition, uλ(r) stands
for the eigenfunctions of LQQ, and ra is the location of
the TLS.

It should be noted that in the Hamiltonian (7) the rotating-
wave approximation has already been applied in the following
ways. (i) The nonresonant terms in the system-and-bath part of
Hamiltonian [i.e., terms proportional to a

†
λb

†(ω) and aλb(ω)]
are neglected. This approximation is valid if the damping rates
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of the cavity resonances are substantially smaller than the
frequencies of interest. For our purpose this approximation is
indeed well fulfilled since the revival regime that we aim to
describe occurs exactly in this limit. (ii) Also the nonresonant
terms in the atom-field interaction (i.e., terms proportional to
a
†
λσ

+ and aλσ
−) are neglected, which is a commonly used

approximation.

B. Volterra equations

Since the Hamiltonian (7) conserves the total number of
atom and field excitations (due to the above rotating-wave
approximation) we can set up the following ansatz for our
solution to the Schrödinger equation:

|�(t)〉 = c(t)e−iωat/2|u〉|0〉
+

∑
λ

cλ(t)|l〉|1λ〉e−i(ωλ−ωa/2)t

+
∫

dωc(ω,t)e−i(ω−ωa/2)t |l〉|1(ω)〉, (9)

where the ket vectors |u〉 and |l〉 stand for the atom in
the upper and lower states, respectively. In Eq. (9) the ket
vectors |0〉, |1λ〉, and |1(ω)〉 represent the vacuum state of
the electromagnetic field, a single photon in cavity mode λ,
and a single photon in the external region with frequency
ω, respectively. We assume that the system at time t = 0 is
in the initial state |u〉|0〉. After straightforward algebra we
derive the following set of coupled differential equations for
the probability amplitudes c(t), cλ(t), and c(ω,t) introduced in
Eq. (9):

ċ(t) = − i

�

∑
λ

gλe
−i(ωλ−ωa )t cλ(t), (10a)

ċλ(t) = − i

�
g�

λe
i(ωλ−ωa )t c(t)

− i

∫
dωWλ(ω)e−i(ω−ωλ)t c(ω,t), (10b)

ċ(ω,t) = −i
∑

λ

W�
λ(ω)e−i(ωλ−ω)t cλ(t). (10c)

The initial conditions are c(0) = 1 and cλ(0) = c(ω,0) = 0.
Next, we formally integrate Eq. (10c) and plug the result

into Eq. (10b), which allows us to exclude the external region
from the consideration such that we finally obtain the set of
equations

ċ(t) = − i

�

∑
λ

gλe
−i(ωλ−ωa )t cλ(t), (11a)

ċλ(t) = − i

�
g�

λe
i(ωλ−ωa )t c(t) −

∫
dω

∑
λ′

Wλ(ω)W�
λ′(ω)

× e−i(ω−ωλ)t
∫ t

0
dτ e−i(ω′

λ−ω)τ cλ′(τ ). (11b)

C. Markov approximation

To simplify matters, we apply the so-called Markov
approximation in Eq. (11b) with respect to the cavity am-
plitudes cλ(t) such that memory effects with regard to the

outcoupling to the external radiation field are disregarded.
(Note that, most importantly, the memory effects within the
cavity are still carried along.) Specifically, we shift the initial
time of integration to −∞, let cλ(t ′) ≈ cλ(t), and, assuming
subsequent integration with respect to ω, make use of the
relation

e−i(ω−ωλ)t lim
σ→0

ei(ω−ωλ′ −iσ )τ

ω − ωλ′ − iσ

∣∣∣∣
τ=t

τ=−∞

→ e−i(ωλ′ −ωλ)t

[
P

(
1

ω − ωλ′

)
+ iπδ(ω − ωλ′)

]
. (12)

The differential equations for c(t) and cλ(t) are then

ċ(t) = − i

�

∑
λ

gλe
−i(ωλ−ωa )t cλ(t), (13a)

ċλ(t) = − i

�
g�

λe
i(ωλ−ωa )t c(t)

+
∑
λ′

�λλ′(ωλ′)e−i(ωλ′ −ωλ)t cλ′ (t), (13b)

where the matrix elements of the damping matrix �λλ′ are
given by

�λλ′(ωλ′) = −πWλ(ωλ′)W�
λ′(ωλ′)

+ iP
∫

dω
Wλ(ω)W�

λ′(ω)

ω − ωλ′
, (14)

which should be calculated in a discrete set of eigenfrequencies
ωλ only. The second term in Eq. (14) is similar to a Lamb shift
in that it accounts for a shift of the cavity resonances in an
open system with respect to the positions in the corresponding
closed system. Next we formally integrate Eqs. (13a) and (13b)
and end up with a set of coupled integral Volterra equations

c(t) = 1 − i

�2

∑
λ

gλg
�
λ

ωλ − ωa

∫ t

0
dτ [e−i(ωλ−ωa )(t−τ ) − 1]c(τ )

+ 1

�

∑
λλ′

gλ�λλ′(ω′
λ)

ωλ − ωa

∫ t

0
dτ [e−i(ωλ−ωa )(t−τ ) − 1]

× e−i(ω′
λ−ωa )τ c′

λ(τ ), (15)

cλ(t) = − ig�
λ

�

∫ t

0
dτ ei(ωλ−ωa )τ c(τ )

+
∑
λ′

�λλ′(ω′
λ)

∫ t

0
dτe−i(ωλ′ −ωλ)τ cλ′(τ ). (16)

D. One-dimensional dielectric cavity

We solve Eqs. (15) and (16) numerically for the geometry
shown in Fig. 1. Specifically, we consider the one-dimensional
cavity of length L now bounded at x = −L,0 by two thin semi-
transparent mirrors modeled by dielectric slabs of width d �
L with refractivity index n. Using the fact that the TLS couples
only to those modes that are symmetric with respect to the
center of the cavity (where the TLS is located), we replace our
original geometry by a more simple one. This new cavity runs
within [−L/2,0−] with Neumann boundary conditions at the
position of the TLS ∂xuλ(x = −L/2) = 0. On the right cavity
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edge we impose (for the closed system Q) a Dirichlet boundary
condition uλ(x = 0−) = 0 to remove a singular contribution
of the operator LQQ at this point [see, e.g., Eq. (52a) in [31]].
The corresponding cavity eigenvalue problem

d2

dx2
uλ(x) + ω2

λuλ(x) = 0 (17)

is finally solved with the eigenvalues ωλ = π (2λ − 1)/L
(λ = 1,2, . . .) and with the eigenvectors (inside the cavity)

uλ =
√

2

L
cos

[
ωλ

(
x + L

2

)]
. (18)

The coupling amplitudes between the TLS and the cavity
modes (8) reduce to

gλ = iμ

√
�ωλ

L
fc(ωλ). (19)

In the limit of n → ∞ and d → 0, keeping the mirror’s
transparency factor η = n2d finite, the channel modes (outside
the resonator) coincide with those calculated in [31] [see Eqs.
(55)– (58) therein],

ν(ω,x) = 1√
2π

(
e−iωx + i − ηω

i + ηω
eiωx

)
. (20)

To couple these cavity modes in the bounded domain Q to
the unbounded domain P we require the coupling elements
Wλ(ω) that enter the damping matrix �λλ′ ,

Wλ(ω) = (−1)λ

1 − iηω

√
ωλ

πωL
fc(ωλ). (21)

Here and in Eq. (19) we introduce the cutoff function
fc(ωλ) = e−(ωλ−ωa )2/(4ω2

c ) to eliminate the interaction with
high-frequency modes in the same way as was done in Sec. II.
To ensure the convergence of the integral in Eq. (14) also in
the low-frequency limit, we integrate from a frequency above
zero but below the first cavity resonance. Finally, we plug
the obtained expressions into Eqs. (14)–(16) and solve them
numerically with the initial conditions c(0) = 1 and cλ(0) = 0.

The results of our calculations are shown in Fig. 5 for two
typical values of the coupling strength within both the regime
of Rabi oscillations and the regime of revivals. We normalize
time to half the cavity round-trip time L/c and find again the
revivals occurring at integer multiples of these values. Note in
particular the very good correspondence that we find between
the results obtained from the model based on the CF state
representation of the LDOPS within a single Volterra equation
(1) and the system-and-bath formalism given by Eqs. (15) and
(16) above. This close correspondence confirms the validity
of our calculations and the difference in complexity between
the two calculations demonstrates the usefulness of the simple
and accessible approach presented in Sec. III.

V. CONCLUSION AND OUTLOOK

To summarize, we have shown how the emission process
of a two-level atom changes as a function of its coupling
strength to the electromagnetic field of an open multimode
resonator. Solving the Volterra equation for the temporal decay
through Laplace transform allowed us to obtain the decay

0 5 10 15 20
t

0

0.5

1

|c(
t)|
2

0 1 2 3 4 5
t

FIG. 5. (Color online) Comparison between the results obtained
from a single Volterra equation [dark gray (red) curves] and from the
system-and-bath formalism [gray (orange) curves]. The calculations
are performed for the 1D geometry presented in Fig. 1 with the
mirror reflectivity parameter set to η = 0.18. The left panel shows
γ = 2.5 × 10−3 (regime of Rabi oscillations) and the right panel
γ = 1.44 (multimode strong-coupling regime). Time t is measured
in units of half the cavity round-trip time.

dynamics together with a corresponding graphical analysis that
provides an intuitive understanding of the different regimes
observed. On top of the familiar exponential decay and
damped Rabi oscillations in the weak- and strong-coupling
regimes, respectively, we identify, for very strong coupling, a
regime where the emitter couples to multiple modes, leading
to pulsed revivals of its initial excitation. We expect that
these predictions can be explicitly verified in various physical
systems dealing with a two-level-like emitter inside an open
multimode cavity. In particular, we have circuit QED setups in
mind (e.g., [6,35–37]), for which the coupling strength can be
tuned by engineering the two-level system appropriately.
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APPENDIX: LAPLACE TRANSFORM OF
THE VOLTERRA EQUATION

We solve the Volterra equation (1) by means of the standard
Laplace transform method (see [38,39], where different modal
weight functions have been considered), multiplying it by e−st

and integrating both sides of the equation with respect to time
from 0 to ∞. Here s = σ + iω is the complex variable so that
we reformulate our problem by solving it in the complex plane
of s. After straightforward calculations, the algebraic equation
for the Laplace transform c̃(s) = ∫ ∞

0 dt e−st c(t) is derived,
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σ

2

1

iω

3

FIG. 6. Contour completion in the complex plane s = σ + iω for
the calculation of the inverse Laplace transform (A2). Those contours
that give nonzero contribution are designated by numbers.

which is solved by

c̃(s) = 1

s + γ

π

∫ ∞
0 dω F (ω)

s+i(ω−ωa )

. (A1)

Next we perform the inverse Laplace transformation c(t) =
1

2πi

∫ σ+i∞
σ−i∞ ds est c̃(s) and obtain the formal solution for the

amplitude c(t),

c(t) = eiωat

2πi

∫ σ+i∞

σ−i∞

estds

s + iωa + G(s)
, (A2)

with

G(s) = γ

π

∫ ∞

0

dω F (ω)

s + iω
, (A3)

where σ > 0 should be chosen such that the real parts of all
singularities of c̃(s) are smaller than σ . It can be shown that
the function

J (ω) = lim
σ→0+

[G(σ + iω) − G(−σ + iω)] (A4)

is nonzero for −∞ < ω � 0. Therefore, the function G(s)
and, as a consequence, the whole integrand in Eq. (A2) exhibit
a jump along the negative part of the imaginary axis, which
is a branch cut. By equating the denominator of Eq. (A2) to
zero s + iωa + G(s) = 0, the poles sj are shown to satisfy the
equation

ωj + ωa = γ

π

∫ ∞

0
dω

F (ω)

ω + ωj

, σj = 0. (A5)

Thus, the poles (if at all existing) can be located on the
imaginary axis only. Moreover, we strictly prove, using a
graphical analysis and the fact that F (ω) � 0, that only a single
simple pole can reside in the positive imaginary axis that leads
to undamped oscillations at infinite time. For values of the
coupling strength γ larger than considered in this paper, such
a scenario emerges in the equations but is not considered here.
Thus, to evaluate the original integral (A2), we apply Cauchy’s
theorem to a closed contour shown in Fig. 6. We prove similarly
to Jordan’s lemma that the arc contribution is negligible and
the contribution of the small semi-circle around s = 0 is also
zero. Therefore, the only paths that remain are those around the
branch cut and the one we are looking for (see Fig. 6). Thus,
we derive the following expression for the amplitude c(t):

c(t) = eiωat

2πi

∫ ∞

0
dω e−iωt [�−(ω) − �+(ω)], (A6)

where

�±(ω)= lim
σ→0+

{
1

ω − ωa+i
[

γ

π

∫ ∞
0

dω̃F (ω̃)
±σ+i(ω̃−ω)±σ

]
}

.

(A7)

Employing the Sokhotski-Plemelj theorem, the integral in the
denominator of Eq. (A7) is rewritten in the limit of σ → 0 as

∫ ∞

0

dω̃ F (ω̃)

±σ + i(ω̃ − ω)
= −i

{
P

∫ ∞

0

dω̃ F (ω̃)

ω̃ − ω
± iπF (ω)

}
,

We finally end up with Eqs. (3)–(5) for the amplitude c(t) (see
Sec. III).

[1] G. Khitrova et al., Nat. Phys. 2, 81 (2006).
[2] S. Noda, M. Fujita, and T. Asano, Nat. Photon. 1, 449 (2007).
[3] A. Wallraff et al., Nature (London) 431, 162 (2004).
[4] M. Agio, Nanoscale 4, 692 (2012).
[5] H. J. Carmichael, R. J. Brecha, M. G. Raizen, H. J. Kimble, and

P. R. Rice, Phys. Rev. A 40, 5516 (1989).
[6] L. Sapienza et al., Science 327, 1352 (2010).
[7] P. V. Ruijgrok et al., Opt. Express 18, 6360 (2010).
[8] X.-W. Chen, M. Agio, and V. Sandoghdar, Phys. Rev. Lett. 108,

233001 (2012).
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