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I. VOLTERRA EQUATION FOR THE CAVITY AMPLITUDE

We start from the Hamiltonian of the main article and derive the Heisenberg operator

equations for the cavity and spin operators (h̄ = 1), ȧ = i[H, a]− κa, σ̇−
k = i[H, σ−

k ]− γσ−
k ,

respectively. Here κ and γ stand for the total cavity and spin losses, respectively. As

was shown already in earlier work1,2 the noise operators can be neglected when considering

only expectation values, to which they do not contribute. We also note explicitly that in

our calculations the influence of a finite temperature can be disregarded. At the minute

temperatures at which the experiment is carried out (∼ 25 mK) we have kBT � h̄ωs,

resulting in an occupation probability of the ensemble ground state of 99%. Since the

number of excited spins remains very small compared to the ensemble size, even with the

weak external driving that we use for all the results reported in the main article, we are

allowed to apply the commonly used Holstein-Primakoff-approximation, 〈σz
k〉 ≈ −1, when

writing down the following set of equations for the operator expectation values in the frame

rotating with the probe frequency ωp. Denoting A(t) ≡ 〈a(t)〉 and Bk(t) ≡ 〈σ−
k (t)〉, we end

up with the following set of first-order ODEs with respect to the cavity and spin amplitudes

Ȧ(t) = − [κ+ i(ωc − ωp)]A(t) +
∑
k

gkBk(t)− η(t), (1a)

Ḃk(t) = − [γ + i(ωk − ωp)]Bk(t)− gkA(t). (1b)

Note, that the size of our spin ensemble is very large (typically N ∼ 1012) and individual

spins are distributed around a certain mean frequency ωs. We can thus go to the continuum

limit by introducing the continuous spectral density as ρ(ω) =
∑

k g
2
kδ(ω − ωk)/Ω

2 (see,

e.g. 1), where Ω is the collective coupling strength of the spin ensemble to the cavity and
∫
dωρ(ω) = 1. In what follows we will replace any discrete function F (ωk) by its continuous

counterpart, F (ω): F (ωk) → Ω2
∫
dωρ(ω)F (ω). By integrating Eq. (1b) in time, each

individual spin amplitude, Bk(t), can formally be expressed in terms of the cavity amplitude,

A(t). By plugging the resulting equation into Eq. (1a) and assuming that initially all spins

are in the ground state, Bk(t = 0) = 0, we arrive at the following integro-differential Volterra

equation for the cavity amplitude (ωc = ωs)

Ȧ(t) = −κA(t)− Ω2

∫
dωρ(ω)

t∫

0

dτe−i(ω−ωc−iγ)(t−τ)A(τ)− η(t), (2)

2

Note that in the ωp-rotating frame the rapid oscillations presented in the original Hamilto-

nian (1) are absent, so that the time variation of η(t) in Eq. (2) is much slower as compared

to 1/ωp.

For a proper description of the resulting dynamics, it is essential to capture the form of

the spectral density ρ(ω) realized in the experiment as accurately as possible. Following 3,

we take the q-Gaussian function for that purpose

ρ(ω) = C ·
[
1− (1− q)

(ω − ωs)
2

∆2

] 1

1− q
, (3)

characterized by the dimensionless shape parameter 1 < q < 3 which yields the form of a

Lorentzian and Gaussian distribution, for q = 2 and for q → 1, respectively. Here C is a

normalization constant which is easily obtained numerically; the full-width at half-maximum

(FWHM) of ρ(ω) is given by γq = 2∆

√
2q − 2

2q − 2
.

In a next step we formally integrate Eq. (2) in time to get rid of the time derivative of

A(t). The resulting double integral with respect to time on the right-hand side is simplified

further by partial integration, so that we obtain again a single integral with respect to time.

Assuming that the cavity is initially empty, A(t = 0) = 0, we finally end up with the

following equation for the cavity amplitude

A(t) =

t∫

0

dτK(t− τ)A(τ) + F(t), (4)

which contains the kernel function K(t− τ),

K(t− τ) = Ω2

∫
dω

ρ(ω)
[
e−i(ω−ωc−i(γ−κ))(t−τ) − 1

]
i(ω − ωc − i(γ − κ))

· e−κ(t−τ), (5)

and the function F(t),

F(t) = −
t∫

0

dτ η(τ) · e−κ(t−τ). (6)

Despite its seemingly simple form, Eq. (4) is not trivial to solve in practice, even numerically.

The reasons are twofold: First, the result of the integration for A(t) at time t depends on

the amplitude A(τ) calculated at all earlier times, τ < t (memory effect). Second, the kernel

function K(t−τ) contains the integration with respect to frequency, which is costly in terms

3

2	 NATURE PHYSICS | www.nature.com/naturephysics

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS3050

© 2014 Macmillan Publishers Limited. All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nphys3050


I. VOLTERRA EQUATION FOR THE CAVITY AMPLITUDE

We start from the Hamiltonian of the main article and derive the Heisenberg operator

equations for the cavity and spin operators (h̄ = 1), ȧ = i[H, a]− κa, σ̇−
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of computational time. (Note that such an integration has to be performed for each t and

τ < t.) The smallest possible time scale in our problem is given by T = 2π/ωp ∼ 0.4 ns. To

achieve a very good accuracy of the calculations for the results presented in Figs. 2,4 from

the main article, we solve the equation on a mesh with uniform spacing, choosing a time

step dt ∼ 0.05 ns (see e.g. 4 for more details about the method). The direct discretization

of K(t− τ) on the time interval of the order of µs (typical time of measurements) leads to a

high-dimensional matrix (of a size typically exceeding 104 × 104), which, together with the

integration with respect to frequency, makes the problem computationally intractable by way

of a direct numerical solution. To overcome this problem and to speed up the calculations

drastically, we divide the whole time integration into many successive subintervals, Tn ≤ t ≤

Tn+1, with n = 1, 2, .... Such a time division might, in principle, be implemented arbitrarily

but we choose it to be adapted to our experimental realization. Specifically, the driving

amplitude is unchanged within each subinterval, so that in our case it is given by

ηn =



η n = 1, 3, 5, ...

−η n = 2, 4, 6, ...
. (7)

In this way the result of integration at the n-th time interval, A(n)(Tn+1), enters as

an initial condition for the integration during the (n + 1)-th time interval, A(n+1)(Tn+1).

Finally, we end up with the following recurrence relation (time runs within Tn ≤ t ≤ Tn+1

for n = 1, 2, 3, ...)

A(n)(t) =

t∫

Tn

dτK(t− τ)A(n)(τ) + F (n)(t), (8)

where the kernel function K(t− τ) is defined by Eq. (5) and

F (n)(t) = A(n−1)(Tn)e
−κ(t−Tn) + Ω2e−κ(t−Tn)

∫
dω

ρ(ω)
[
e−i(ω−ωc−i(γ−κ))(t−Tn) − 1

]
i(ω − ωc − i(γ − κ))

· In(ω)−

ηn
κ

·
[
1− e−κ(t−Tn)

]
(9)

Remarkably, the memory about previous events enters both through the amplitude

A(n−1)(Tn) and through the function

In(ω) = e−i(ω−ωp−iγ)(Tn−Tn−1)In−1(ω) +

Tn∫

Tn−1

dτe−i(ω−ωp−iγ)(Tn−τ)A(n−1)(τ). (10)

4

In accordance with the above initial conditions (t = T1 = 0), A(T1) = 0 and I1(ω) = 0.

The above technique allows us to solve Eq. (4) accurately while being very efficient in

terms of computational time. We have tested the accuracy of our numerical results by

varying the discretization both in time and frequency in a wide range obtaining excellent

agreement with the experimental results shown in Figs. 2,4 of the main paper and thereby

confirming the accuracy of our method.
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FIG. 1: a) Red curve: calculated cavity probability amplitude |A(t)|2 versus time t under the action

of an incident long multi-photon pulse of duration 1.65µs with the carrier frequency matching the

resonance condition, ωp = ωc = 2π · 2.6915GHz, and the coupling strength 2Ω = 17.2 MHz

(analogous to Fig. 2b from the main article). Gray (white) area indicates a time interval during

which a pumping signal is on (off). Black curve: Decay from the initial state |1, G〉, for which a

single photon with frequency ωc is in the cavity and all spins are in the ground state. For the sake

of visualisation, the initial probability is rescaled such as to coincide with the steady state value

of the multi-photon signal. b) Same figure as a) with a zoom on the decaying part and with the

ordinate plotted on a logarithmic scale. The asymptotic decay is well described, for both the red

and the black curve, by the exponential function, C e−Γt, with Γ/2π = 3.0MHz taken from Fig. 3

of the main article (see orange dashed curves). This agreement illustrates the applicability of the

cavity-protection effect also for single-photon processes.
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II. CAVITY PROTECTION EFFECT ON THE SINGLE PHOTON LEVEL

In the experiment presented in the main article the number of microwave photons in

the cavity is typically of the order of 106. Here we demonstrate that our main findings on

the cavity protection effect also remain valid when only a single photon is populating the

cavity. For this purpose we start from the Heisenberg equations for the cavity and spin

operators, a(t) and σ−
k (t), which have the same form as those described in Sec. I. We now

assume that the cavity is fed with a single photon and all spins are in the ground state,

|1, G〉 = a†(t = 0)|0〉, where |0〉 stands for the vacuum state. We then let these operator

equations act on the bra- and ket-vectors 〈0| and a†(t = 0)|0〉, respectively, and derive

the corresponding equations for the expectation values. These equations perfectly coincide

with Eqs. (1a,1b) from Sec. I where, however, the amplitudes A(t), B(t) are now given as

A(t) ≡ 〈0|a(t)a†(t = 0)|0〉 and Bk(t) ≡ 〈0|σ−
k (t)a

†(t = 0)|0〉. Note that the variable A(t)

stands here for the probability amplitude for a photon to be in the cavity at time t, if it was

there initially, A(t = 0) ≡ 〈0|a(t = 0)a†(t = 0)|0〉 = 〈1, G|1, G〉 = 1.

We thus find for the single-photon regime the same Volterra equation for the cavity

amplitude, A(t), as we did before for the multi-photon decay process from the steady-

state as considered in the main article (see Fig. 3 there). The only difference lies in the

initial condition, which, in the single-photon case, takes on the simple form A(t = 0) = 1.

However, the asymptotic decay rate Γ is independent of the initial conditions and the cavity

protection effect remains unaffected. To demonstrate this explicitly also numerically, we

compare in Fig. 1 the multi-photon dynamics from the main text with the single-photon

case considered here. At first sight, the decay dynamics look very different in these two

cases, see Fig. 1a), even when the probability |A(t)|2 is rescaled for both cases to coincide

at t = 0. When plotting the decay logarithmically, see Fig. 1b), it becomes clear, however,

that the asympotitic decay constants which are relevant for the cavity protection effect are,

indeed, exactly the same. To conclude, the key insight on the reduction of the decay rate

for increasing collective coupling strength Ω (as following from Fig. 3 of the main article),

remains valid also on the single-photon level.
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