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We study the dynamics of a spin ensemble strongly coupled to a single-mode resonator driven by external pulses.
When the mean frequency of the spin ensemble is in resonance with the cavity mode, damped Rabi oscillations are
found between the spin ensemble and the cavity mode which we describe very accurately, including the dephasing
effect of the inhomogeneous spin broadening. We demonstrate that a precise knowledge of this broadening is
crucial both for a qualitative and a quantitative understanding of the temporal spin-cavity dynamics. On this basis
we show that coherent oscillations between the spin ensemble and the cavity can be enhanced by a few orders
of magnitude, when driving the system with pulses that match special resonance conditions. Our theoretical
approach is tested successfully with an experiment based on an ensemble of negatively charged nitrogen-vacancy
centers in diamond strongly coupled to a superconducting coplanar single-mode waveguide resonator.
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I. INTRODUCTION

Over the past decade various setups in cavity quantum
electrodynamics (QED) have been studied in terms of their
potential for future technologies involving the storage and
processing of quantum information. Among different hybrid
quantum systems [1], the ones based on spin, atomic or even
molecular ensembles coupled to superconducting microwave
cavities have recently attracted much attention [2–10] (see
Fig. 1). In such systems the spin or atomic ensemble plays the
role of a quantum memory, to which the quantum information
is coherently stored and retrieved from at some later time.
The cavity, in turn, serves as a quantum bus for the in- and
output of information as well as for the coupling between
several constituents of such hybrid quantum systems (see,
e.g., [5]). One of the necessary conditions for the coherent
transfer of quantum information between an ensemble and
a cavity is the strong coupling between them. Fortunately,
various spin ensembles, as, for instance, negatively charged
nitrogen-vacancy (NV) defects in diamond [2–6], rare-earth
spin ensembles [7], clouds of ultracold atoms [9,11] or
magnons in yttrium iron garnet with or without doping [12,13],
may satisfy this requirement when being collectively coupled
to [14]. We also note that in recent proposals the direct coupling
of a qubit to such spin ensembles has been suggested without
any cavity being involved [15,16].

Here we study the dynamics of a superconducting cavity
strongly coupled to an ensemble of negatively charged NV
centers. Each individual NV center can possess a sufficiently
long coherence time [17] needed for the coherent transfer
of quantum information. However, since the local magnetic
dipole-dipole couplings of NV centers constituting the ensem-
ble to the bath of magnetic impurities (such as nitrogen atoms
not converted into NV centers) slightly differ from each other,
the NV electron spin resonance line of a large ensemble is
inhomogeneously broadened [18]. This line broadening acts
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as the main source of decoherence, and constitutes a significant
drawback of this solid-state spin ensemble leading to a drastic
decrease of its coherence time. Several approaches including
echo-type refocusing techniques [19,20] have meanwhile
been suggested to overcome this limitation. Recent stationary
transmission studies demonstrate that the decoherence can be
strongly suppressed altogether [21,22] when the spin density
has a spectral distribution with tails that decay sufficiently
fast [3,21,22]. In this paper we report on a detailed time-
dependent study for exactly such a case and demonstrate how
the corresponding dynamics can be efficiently captured using
a Volterra integral equation for the cavity amplitude [23].
The excellent correspondence between our theoretical model
and a corresponding experiment allows us to closely look
into the fascinating features following from a pulsed driv-
ing of this hybrid quantum system in the strong-coupling
regime.

Our paper is organized as follows. In Sec. II we present the
theoretical framework of our problem and summarize the most
important assumptions made. We sketch the general form of
the equations obtained, describing the two methods for solving
the Volterra equation in Appendices A and B. Furthermore, we
discuss the specific experimental realization of our theory. In
Sec. III, we consider the dynamics under the action of a long
rectangular microwave pulse which allows us to obtain the
precise form for the spin density and its parameters by detailed
comparison with the experimental results. We also present
analytical results for a Lorentzian spin density distribution and
demonstrate which features are captured by this approximation
and which are not. Section IV will then address the question of
how the decoherence in our system caused by inhomogeneous
broadening changes as a function of the coupling strength.
We show that a non-Lorentzian functional profile of the spin
distribution leads to a strong suppression of decoherence for
large values of the coupling strength—an effect known as
“cavity protection” [21,22]. Finally, in Sec. V, we propose a
scheme which allows us to induce giant coherent oscillations
between the cavity and our spin ensemble as well as to transfer
energy into the spin ensemble very efficiently.
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FIG. 1. (Color online) Sketch of the hybrid quantum system
studied in this paper: (a) a spin ensemble (yellow) coupled to a
transmission-line resonator (gray) confining the electromagnetic field
inside a small volume. (b) Scheme of the spin ensemble-cavity
coupled system. An incoming signal η(t) passes through the cavity
characterized by a frequency ωc which is coupled to a spin ensemble
with each individual spin of frequency ωj . The transmitted signal is
proportional to the cavity amplitude A(t). κ and γ stand for the cavity
and spin losses, respectively.

II. THEORETICAL MODEL

We study the temporal dynamics of a system consisting
of a large spin ensemble coupled with a single-mode cavity
via magnetic or electric dipole interaction. We assume that
the distance between spins is large enough such that the
dipole-dipole interactions between spins can be neglected.
Our starting point is the Tavis-Cummings Hamiltonian (� =
1) [24],

H = ωca
†a + 1

2

N∑
j

ωjσ
z
j + i

N∑
j

[gjσ
−
j a† − g∗

j σ
+
j a]

− i[η(t)a†e−iωpt − η(t)∗aeiωpt ], (1)

where a† and a are standard creation and annihilation operators
of the single cavity mode with frequency ωc and σ+

j , σ−
j , σ z

j

are the Pauli operators associated with each individual spin
of frequency ωj . An incoming signal is characterized by
the carrier frequency ωp and by the amplitude η(t) whose
time variation is much slower as compared to 1/ωp. The
interaction part of H is written in the dipole and rotating-wave
approximation (terms ∝aσ−

j , a†σ+
j are neglected), where gj

stands for the coupling strength of the j th spin.
Despite the fact that each individual spin is coupled weakly

to the cavity, one can nevertheless reach the strong-coupling
regime due to the large number of spins which are collectively
coupled to the cavity mode (see, e.g., [2,5,9] for NV spin
ensembles). The effect of collective coupling is particularly
evident when reducing the interaction term to a collective
term �(S−a† − S+a) [25], where the collective spin operators
are given by S± = N−1/2 ∑N

j σ±
j . The prefactor �2 = ∑N

j g2
j

stands for an effective coupling strength, which scales up a

single coupling strength gj , by a factor of
√

N , so that � can be
sufficiently enhanced for the realization of the strong-coupling
regime. In this formulation the effective spin waves that are
excited by the cavity mode can be identified as superradiant
collective Dicke states which are effectively damped by the
coupling to subradiant states in the ensemble [14,21,22].
Note that the rotating-wave approximation mentioned above
is applicable only if � � ωc.

Next, we derive the Heisenberg operator equations, for the
cavity and spin operators, ȧ = i[H,a] − κa, σ̇−

k = i[H,σ−
k ] −

γ σ−
k , respectively. Here κ and γ stand for the total dissipative

cavity and spin losses. Strictly speaking, the noise operators
should also be added to the right-hand side of these equations
in order to preserve the commutation relations. However, their
expectation values vanish as was shown already in earlier
works [21,22] on the example of an NV ensemble and therefore
these terms are not included here explicitly. These Heisenberg
equations describe the dynamics to a very high accuracy,
provided that the energy of photons of the external bath is
substantially smaller than that of cavity photons, kT � �ωc.
We then write a set of equations for the expectation values,
〈a(t)〉 and 〈σ−

k (t)〉 in the frame rotating with the probe
frequency ωp. In what follows the amplitude of the pumping
signal η(t) is taken to be rather small and therefore the number
of the excited spins is always small compared to the ensemble
size. This allows us to simplify these equations further by
setting 〈σ z

k 〉 ≈ −1 (Holstein-Primakoff-approximation [26]).
With all these simplifications the equations for the cavity and
spin amplitudes become

Ȧ(t) = −[κ + i(ωc − ωp)]A(t) +
∑

k

gkBk(t) − η(t), (2a)

Ḃk(t) = −[γ + i(ωk − ωp)]Bk(t) − gkA(t), (2b)

where A(t) ≡ 〈a(t)〉 and Bk(t) ≡ 〈σ−
k (t)〉.

A. Experimental realization

In the following, we will compare our theoretical model
with one specific experimental realization, namely a λ/2
superconducting microwave coplanar waveguide resonator
magnetically coupled with a spin ensemble of negatively
charged NV centers in diamond. The corresponding exper-
iment is carried out in a standard dilution refrigerator with
a synthetic diamond placed on top of a resonator cooled to
millikelvin temperatures (∼25 mK) (see [23] for more details).
The concentration of NV centers in diamond is sufficiently
low and the distance between spins is still large enough, so
that the dipole-dipole interactions between spins is negligibly
small justifying the assumption of our model. By applying an
external magnetic field, two degenerate subensembles, which
can effectively be considered as a single subensemble, are
brought into resonance with the cavity, whereas the other
subensembles make a slight dispersive contribution only and
their influence is neglected here (see, e.g., [2,3,23] for more
details). The individual spins are distributed around the mean
frequency ωs = 2π2.6915 GHz, with the width 
 � ωs ,
which is of the order of 10 MHz. The coupling strength of
each individual spin with a cavity mode is typically of the
order of gj/2π ∼ 10 Hz [9]. However, the effective coupling
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� is enhanced by a factor of
√

N with the ensemble size
N ∼ 1012, so that � can reach values as large as 10 MHz
which is sufficient to reach the strong-coupling regime. Note
that the energy of thermal photons is substantially smaller
than that of microwave photons, kT � �ωc, resulting in an
occupation probability of the ensemble in the ground state
which is larger than 0.99. In what follows, the cavity frequency
was taken to be always equal to the spin mean frequency,
ωc = ωs = 2π2.6915 GHz. Therefore the inequality � � ωc

always holds and the rotating-wave approximation is very well
fulfilled. Note also that the spin dissipation is much smaller
than the cavity dissipation, γ � κ , so that the former does
not contribute to the dynamics realized in the experiment.
We thus omitted γ everywhere, except when necessary for
the calculation of some integrals which would otherwise be
singular.

B. Setting up the Volterra integral equation

Owing to the large number of spins within the ensemble
(N ∼ 1012), there are a lot of spins in each frequency subin-
terval around ωs which make a non-negligible contribution to
the dynamics. We can thus introduce a continuous spectral
density as ρ(ω) = ∑

k g2
k δ(ω − ωk)/�2, where �2 = ∑N

j g2
j

is the collective coupling strength of the spin ensemble to the
cavity, satisfying the normalization condition

∫
dωρ(ω) = 1.

As we shall see below, one should take special care when
choosing the functional profile of the spectral distribution
for the spin density ρ(ω), which describes its inhomoge-
neous broadening and which plays a crucial role for the
dynamics.

To go to the continuous limit (in frequency) we carry
out the following formal replacement from the discrete
function F (ωk) to the continuous one, F (ω):

∑
k F (ωk) →

�2
∫

dωρ(ω)F (ω). By integrating Eq. (2b) in time, each
individual spin amplitude, Bk(t), can be expressed in terms
of the cavity amplitude, A(t), as

Bk(t) = Bk(0)e−i(ωk−ωp−iγ )t

− gk

∫ t

0
dτe−i(ωk−ωp−iγ )(t−τ ) · A(τ ), (3)

where Bk(0) is the initial spin amplitude. Substituting Eq. (3)
into Eq. (2a) we arrive at the Volterra equation for the cavity
amplitude A(t),

Ȧ(t) = −i(ωc − ωp − iκ)A(t) +
∑

k

gkBk(0)e−i(ωk−ωp−iγ )t

−�2
∫ ∞

0
dωρ(ω)

∫ t

0
dτe−i(ω−ωp−iγ )(t−τ )A(τ ) − η(t).

(4)

After integrating Eq. (4) in time, performing lengthy but
straightforward algebraic calculations and assuming that the
cavity is initially empty, A(0) = 0, and all spins are initially
in the ground state, Bk(0) = 0, we end up with the following
Volterra equation for the cavity amplitude,

A(t) =
∫ t

0
dτK(t − τ )A(τ ) + F(t), (5)

which contains the kernel function K(t − τ ),

K(t − τ ) = �2
∫ ∞

0
dω

ρ(ω)[e−i(ω−ωc+iκ)(t−τ ) − 1]

i(ω − ωc + iκ)

× e−i(ωc−ωp−iκ)(t−τ ), (6)

and the function F(t),

F(t) = −
∫ t

0
dτ η(τ )e−i(ωc−ωp−iκ)(t−τ ), (7)

where the amplitude η(t) represents an arbitrarily shaped
incoming pulse or a sequence of pulses. Note that the kernel
function K(t − τ ) accounts for memory effects and leads in
general to a non-Markovian feedback of the NV ensemble
on the cavity. In Appendices A and B we give a detailed
description of the two methods which allow us to solve the
Volterra equation in a very efficient way.

Having calculated the cavity amplitude A(t), we can find the
expectation values of the collective spin operator, Jx + iJy =∑

k gkBk(t)/[2(
∑

i g
2
i )1/2], which in the continuous limit and

for the initial conditions A(0) = 0 and Bk(0) = 0 introduced
above read as follows:

Jx + iJy = −�

2

∫ ∞

0
dωρ(ω)

∫ t

0
dτe−i(ω−ωc)(t−τ )A(τ ). (8)

The z component of the expectation value of the collective
spin operator, Jz = ∑

k〈σ z
k 〉/(2

√
N ), remains Jz ≈ −√

N , in
accordance with the approximations discussed above.

Note that Eqs. (2a) and (2b), as well as the resulting
Volterra equation (4) are linear equations with respect to
the cavity and spin amplitudes, A(t) and Bk(t), respectively.
We can thus always rescale our solution by multiplying the
amplitude of the driving signal η(t), by an arbitrary scaling
factor. In the following we take the amplitude of the incoming
signal equal to the cavity decay rate, η = κ . Note that such a
choice corresponds to the situation when the incoming signal,
being in a coherent state, gives rise to a single photon in the
empty cavity on average. The experimental curves will be
appropriately rescaled with a constant prefactor such as to
match the corresponding theoretical curves.

III. DYNAMICS UNDER THE ACTION OF A LONG PULSE

In order to choose an appropriate form for the spectral
density ρ(ω), we compare our numerical results with the
experiment performed within the strong-coupling regime.
Specifically, we apply a rectangular microwave pulse [η(t) = η

for 0 � t � τd and η(t) = 0 otherwise; see Eq. (7)], with the
resonance carrier frequency (ωp = ωc = ωs). This pulse has
a duration τd substantially longer than the resulting period of
damped Rabi oscillations and the inverse of the total decay
rate, so that the system sets into a steady state before the
signal is turned off [see Fig. 2(a)]. Note that the total decay
rate describes the overall decoherence in our system which
consists of two contributions: The first one is due to dissipative
cavity losses κ , while the second one originates from the
inhomogeneous broadening of the spin ensemble which leads
to the dephasing of spins during the time evolution. As we
shall see below, this dephasing mechanism gives the dominant
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FIG. 2. (Color online) Cavity probability amplitude |A(t)|2 ver-
sus time t under the action of an incident long rectangular pulse of
duration 800 ns with the carrier frequency matching the resonance
condition, ωp = ωc = 2π2.6915 GHz, where ωc stands for the cavity
resonance frequency. Gray (white) area indicates a time interval
during which the pumping signal is on (off). (a) (Taken from [23].)
Red (gray) curve shows numerical results for the cavity transmission
at a coupling strength �/2π = 8.56 MHz. In the calculations
the spectral density is modeled by a q-Gaussian distribution. The
frequency of Rabi oscillations, �R = 2π19.2 MHz. Black curve
shows experimental results for the cavity transmission. (b) Red (gray)
curve is the same as in (a). Orange (light gray) curve shows results
of numerical calculations assuming a Lorentzian distribution of the
spin density.

contribution to the decoherence (the spin dissipation γ is
negligible in our case).

In accordance with our previous study [3,23], we obtain a
very good agreement between theory and experiment, when
taking a q Gaussian [27] as the distribution function for the
spectral density defined as

ρ(ω) = C

[
1 − (1 − q)

(ω − ωs)2


2

] 1
1−q

. (9)

Here q is the dimensionless shape parameter, 1 < q < 3,

γq = 2

√

2q−2
2q−2 is the full width at half maximum (FWHM),

and C is the normalization constant. Note that for q → 1
and q = 2 we recover a Gaussian and Lorentzian distribution,
respectively. From the comparison with the experiment, we
extracted the following parameters used in our calculations:
q = 1.39, γq/2π = 9.4 MHz, and κ/2π = 0.8 MHz (FWHM
of the cavity decay). We have also tested other lineshapes for
describing the spectral spin density such as the stable alpha
distribution, but found them to be less suitable for describing
the experimentally observed data.

An interesting and, at first sight, surprising fact is that the
first Rabi peak of the cavity amplitude after switching off
the microwave signal is approximately twice as large as the
steady-state amplitude, as seen in Fig. 2(a). This overshoot
effect takes place after the incoming signal is turned off,
because the energy stored in the spin ensemble is released
back to the cavity and interferes constructively with the energy
stored there (see Appendix C for more details). It will be

shown in the next section that this overshoot appears only if
the coupling strength is larger than a certain critical value. In
addition to this condition, the overshoot effect also requires a
finite amount of energy being stored in the spin ensemble, but
does not show up if it is in the ground state and the field inside
the cavity is described by a Fock state, as, for instance, when
it is fed with a single photon (see Appendix B).

A. Dynamics for a Lorentzian spin density distribution

To illustrate the importance of the spectral spin distribution,
we have also tried to achieve an agreement with the experi-
ment when assuming a Lorentzian instead of a q-Gaussian
distribution for the spectral density,

ρ(ω) = 


π [(ω − ωs)2 + 
2]
. (10)

For this purpose, we adapt the parameters such that the period
of the resulting Rabi oscillations and the cavity amplitude at the
steady state agree with the measurements [see Fig. 2(b)]. As
seen there, the Lorentzian predicts a sufficiently larger decay
rate as compared to that observed in the experiment [compare
the values of the Rabi peaks during damped Rabi oscillations
for the q Gaussian and for the Lorentzian distributions shown
in Fig. 2(b)]. Such an inadequate overestimation of the total
decay rate becomes particularly pronounced in the case of
even higher values of the coupling strength as those used
in Fig. 2 (see Sec. IV for more details). Nevertheless, it
is very instructive to consider at first the simple picture
associated with a Lorentzian distribution, because in this case
the problem can be solved analytically giving intuitive insights
into the dynamical properties of our system. By plugging the
Lorentzian distribution (10) into Eq. (4) and assuming that the
cavity is initially empty, A(0) = 0, and spins are unexcited,
Bk(0) = 0, we obtain the following Volterra equation (in the
frame rotating with ωp) under the action of a rectangular
microwave pulse introduced above for t � τd :

Ȧ(t) = −κA(t) − �2
∫ t

0
dτe−
(t−τ )A(τ ) − η. (11)

By differentiating Eq. (11) with respect to time, and after
doing some algebra, the above equation reduces to the one for
a damped harmonic oscillator driven by a time-independent
external force,

Ä(t) + [
 + κ]Ȧ(t) + [�2 + 
κ]A(t) + η
 = 0. (12)

The solution of Eq. (11), which is also the one of Eq. (12), can
be represented as A(t) = αeλ1t + βeλ2t , so that the dynamics
is characterized by two exponents, namely,

λ1,2 = [−(
 + κ) ±
√

(
 − κ)2 − 4�2]/2. (13)

In the strong-coupling regime the dynamics is underdamped,
the expression under the square root is negative, and the system
exhibits damped oscillations with the Rabi frequency,

�R =
√

4�2 − (
 − κ)2, (14)

and the decay rate of |A(t)|2 is � = 
 + κ . It is worth noting
that for the case shown in Fig. 2(b), the expression (14) for the
Rabi frequency can be approximated as �R ≈ 2�. Finally, we
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obtain the following expression for the cavity amplitude for
t � τd ,

A(t) = − 
η

�2 + 
κ
+ ηe−(
+κ)t/2

2�R(�2 + 
κ)

× [
2�R
 cos(�Rt/2)

− [
�2

R − 
2 + κ2
]

sin(�Rt/2)
]
. (15)

The reason why A(t) ∈ R in Eq. (15) is due to the fact that
the Lorentzian distribution (10) is symmetric with respect to
ωs , and ωp = ωc = ωs . For the same reason the y component
of the collective spin Jy = 0, whereas Jx(t) can easily be
determined from Eq. (2a),

Jx(t) =
∑

k gkBk(t)

2�
= Ȧ(t) + κA(t) + η

2�
. (16)

Indeed, by inserting the solution (15) into this equation we get

Jx(t) = η�

2(�2 + 
κ)
− η�e−(
+κ)t/2

2�R(�2 + 
κ)

× [(
 + κ) sin(�Rt/2) + �R cos(�Rt/2)] . (17)

By differentiating Eq. (2a) with respect to time twice, making
use of Eq. (12), and performing straightforward algebraic
calculations, we find that Jx(t) obeys also the following
equation:

J̈x(t) + 
J̇x(t) + �2Jx(t) − κ�

2
A(t) − η�

2
= 0. (18)

Therefore in the case of a Lorentzian distribution the dynamics
can be modeled by two coupled damped harmonic oscillators
governed by Eqs. (12) and (18).

Thus, after switching on a rectangular microwave signal our
system exhibits damped Rabi oscillations and it tends finally
to a steady state,

Ast = − 
η

�2 + 
κ
, J st

x = η�

2(�2 + 
κ)
, J st

y = 0, (19)

provided that the pulse duration is long enough, i.e., τd �
1/(
 + κ). (Note that this condition is very well fulfilled in
Fig. 2.) Inserting the Lorentzian profile (10) into Eq. (C6) from
Appendix C yields the equation for the cavity amplitude A(t),
which governs the decay process from the steady state given
by Eq. (19):

Ȧ(t) = −κA(t) + η�2 · e−
t

�2 + κ

− �2

∫ t

0
dτe−
(t−τ )A(τ ),

(20)

where, for the sake of simplicity, the time is counted from
zero as the pulse is turned off. As discussed in detail before
and also in Appendix C, the second term in Eq. (20) stands
for the excitation stored in the spin ensemble, which is
coherently released back into the cavity, after switching
off the microwave pulse. Similarly as done above, we can
derive from Eq. (20) a damped harmonic oscillator equation,
Ä(t) + [
 + κ]Ȧ(t) + [�2 + 
κ]A(t) = 0, so that finally the
damped Rabi oscillations of the cavity amplitude and the x

component of the collective spin to the ground state for t � τd

0 250 500 750 10000

2×10-3

|A
(t)

|2

0 500 1000
t(ns)

0

2×10-3

(J
x(t)

)2

(Jx(t))
2

|A(t)|2

FIG. 3. (Color online) Cavity probability amplitude |A(t)|2 and
the corresponding x component of the collective spin J 2

x (t) versus
time t under the action of an incident long pulse assuming a Lorentzian
spin distribution, given by Eqs. (15) and (21), and (17) and (22),
respectively. |A(t)|2 coincides with the orange (light gray) curve from
Fig. 2(b). Symbols designate the maxima and minima of |A(t)|2 and
J 2

x (t) during the damped Rabi oscillations. The carrier frequency
matches the resonance condition, ωp = ωc = 2π2.6915 GHz, and
the frequency of Rabi oscillations, �R = 2π19.2 MHz. Gray (white)
area indicates the time interval during which the pumping signal is
on (off).

are solved by

A(t) = η · e−(
+κ)(t−τd )/2

2�R(�2 + 
κ)

[−2�R
 cos(�R(t − τd )/2)

+ (
�2

R − 
2 + κ2) sin(�R(t − τd )/2)
]
, (21)

Jx(t) = η�e−(
+κ)(t−τd )/2

2�R(�2 + 
κ)
[(
 + κ) sin (�R(t − τd ))

+�R cos(�R(t − τd )/2)]. (22)

In Fig. 3, |A(t)|2 and J 2
x (t), defined by Eqs. (15) and (21)

and by Eqs. (17) and (22), respectively, are plotted versus time
t . Note that this analytical solution for the cavity probability,
|A(t)|2, perfectly coincides with the one found numerically
which is depicted in Fig. 2(b). (For that reason the analytical
solution is not shown in this figure.) One sees that the cavity
and spin ensemble exchange their energies during the time
evolution, so that maxima of A2(t) correspond to minima
of J 2

x (t) or, in other words, the energy inside the cavity is
maximal at those moments of time, when the energy stored in
the ensemble is entirely emitted back into the cavity.

Let us summarize the collective spin dynamics under the
action of a long pulse governed by Eqs. (17) and (22) in
the ωp-rotating frame. Since Jz ≈ −√

N is always valid,
our dynamics is restricted to the vicinity of the pole of
the Bloch sphere. Additionally, Jy = 0 owing to symmetry
arguments. As a rectangular microwave signal is turned on, the
x component Jx(t) exhibits damped Rabi oscillations starting
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FIG. 4. (Color online) Damped Rabi oscillations from the sta-
tionary state which the system exhibits after the action of an incident
long pulse assuming a Lorentzian spin distribution. (a) Cavity
probability amplitude given by Eq. (21), versus time for three different
values of the coupling strengths, �/2π = 6,7.15 and 12 MHz [black,
red (gray), orange (light gray)]. The carrier frequency matches the
resonance condition, ωp = ωc = 2π2.6915 GHz. The lowest value
for the stationary state corresponds to the highest value of � in
accordance with Eq. (19). (b) The amplitude of the stationary state
|Ast|2 and the amplitude of the first maximum |A1|2, versus coupling
strength � during the damped Rabi oscillations [see Eqs. (19)
and (23)]. Black symbol designates the intersection between these
two curves at the value of coupling strength �/2π = 7.15 MHz,
below which the overshoot effect is absent.

from the ground state and tends towards a steady state J st
x .

After the signal is switched off, Jx(t) again undergoes damped
Rabi oscillations and returns to its initial state on the pole of
the Bloch sphere. These spin components in the ωp-rotating
frame are connected with those in the laboratory frame
as follows: J lab

x (t) = Jx(t) cos(ωpt), J lab
y (t) = Jx(t) sin(ωpt),

and J lab
z (t) = Jz(t) ≈ −√

N . From these expressions follows
that in the laboratory frame high frequency oscillations are
superimposed on the damped Rabi oscillations found in the ωp

frame. Moreover, the steady state in the ωp frame is represented
by a simple precession around the z axis in the laboratory
frame.

We show in Fig. 4 that the first Rabi peak of the cavity
amplitude after switching off the driving pulse may exceed
the corresponding steady-state value (overshoot effect), if the
value of the coupling strength is above a certain threshold.
As discussed earlier in this section, this effect is in principle
possible due to the fact that in the steady state at constant
driving nonzero energy is preliminarily stored in the spin
ensemble. However, the smaller the coupling strength � is,
the larger the value of the cavity amplitude |Ast|, and the
weaker the excitation of the spin ensemble |J st

x |; see Eq. (19).
In the limiting case of � → 0, there is no coupling to the spin
ensemble, and it remains unexcited, J st

x = 0, whereas |Ast|
acquires its maximal value, |Ast| = η/κ . The overshoot effect
can be easily quantified analytically by searching for the first
maximum of the decaying cavity amplitude (21), which is

found to be

A2
1 = A2

ste
− 2(
+κ)

�R
arccos[−(
−κ)/(2�)]

. (23)

We present A2
1 and A2

st versus coupling strength � in Fig. 4(b),
where one can see that the overshoot effect is realized for
�/2π > 7.15 MHz (for the Lorentzian distribution). Note that
the strong-coupling regime, the hallmark of which are Rabi
oscillations, terminates at �/2π = 2 MHz, where A1 = 0. At
lower values of the coupling strength the oscillations do not
occur and the dynamics becomes Markovian (see Sec. IV for
more details).

B. Dynamics for the q-Gaussian spin density distribution

After considering the case of a Lorentzian distribution for
the spin density, which allows us to capture some of the
important features of the dynamics, we return to the case of the
q-Gaussian density profile to describe the dynamics accurately
and to demonstrate a qualitatively new effect not existing in
the framework of the Lorentzian distribution, i.e., the so-called
cavity protection effect (see Sec. IV).

In Fig. 5 we present the coherent energy exchange between
cavity and spin ensemble under the action of the long pulse,
which looks rather similar to the one shown in Fig. 3 for the
Lorentzian distribution. For the latter, however, our analysis
predicts an overestimated decay rate with deviations that
grow to an unacceptable degree for higher values of the
coupling strengths as will be demonstrated in Sec. IV. Another
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FIG. 5. (Color online) Cavity probability amplitude, |A(t)|2, and
the corresponding x component of the collective spin J 2

x (t), versus
time t under the action of an incident long pulse for the q-Gaussian
spin distribution. |A(t)|2 coincides with the red (gray) curve from
Fig. 2(b). Symbols designate the maxima and minima of, respectively,
|A(t)|2 and J 2

x (t) during the damped Rabi oscillations. The carrier fre-
quency matches the resonance condition, ωp = ωc = 2π2.6915 GHz,
and the coupling strength 2� = 2π17.12 MHz. The frequency of the
resulting Rabi oscillations, �R = 2π19.2 MHz. Gray (white) area
indicates the time interval during which the pumping signal is on
(off).
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FIG. 6. (Color online) Cavity probability amplitude, |A(t)|2, ver-
sus time t under the action of an incident long pulse with the
carrier frequency matching the resonance condition, ωp = ωc =
2π2.6915 GHz. The coupling strength 2� is (a) 2π15.8 MHz; (b)
2π12.0 MHz; (c) 2π10.2 MHz; (d) 2π2.12 MHz. Gray (white) area
indicates the time interval during which a pumping signal is on (off).
[Red (gray) curves] results of numerical calculations; (black curves)
experimental results for the cavity transmission.

signature of the non-Lorentzian line shape of our spectral
spin distribution ρ(ω) is that the Rabi frequency �R deviates
significantly from twice the value of the coupling strength
2�. In other words, our hybrid cavity-spin system cannot be
modeled as two coupled damped harmonic oscillators as in the
case of a purely Lorentzian spin distribution.

In Fig. 6 we show the dynamics under the action of
a long pulse for the resonant case, ωp = ωc = ωs , but for
different values of the coupling strength � [29]. One can see in
Figs. 6(a)–6(d) that the steady-state value, |Ast|, increases as �

decreases, which is in line with Eq. (C5). One can also see that
the value of the first Rabi peak decreases with a decrease of the
coupling strength. As a result, the overshoot effect fades away
gradually; finally the Rabi oscillations disappear, implying that
we enter the regime of Markovian dynamics. As discussed in
Sec. III A these features are also qualitatively captured when
approximating the spin density by the Lorentzian distribution.

Next, we keep the value for the coupling strength constant
(staying in the strong-coupling regime) and vary the probe
frequency (see Fig. 7). The larger the mismatch from the
resonance condition, ωp = ωc = ωs , the less visible the Rabi
oscillations, so that finally they become completely blurred.
The reason for this behavior is the following: As the probe
frequency ωp gets increasingly detuned from the central spin
frequency ωs , the phase in the exponential function of Eq. (4)
increases at those frequencies where the contribution of ρ(ω)
is non-negligible. As a consequence, during subsequent time
integration the resulting integral becomes small due to the
fast oscillations of the exponential function, so that the effect
of strong coupling smears out. In this case the dynamics is
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FIG. 7. (Color online) Cavity probability amplitude, |A(t)|2, ver-
sus time t under the action of an incident long pulse for different values
of the carrier frequency: (a) ωp = ωc; (b) ωp = ωc ± �R/8; (c) ωp =
ωc ± �R/4; (d) ωp = ωc ± �R/2, where ωc = 2π2.6915 GHz and
�R = 2π19.2 MHz are, respectively, the cavity and Rabi frequencies.
Gray (white) area indicates the time interval during which the driving
signal is on (off). Red (gray) curves show results of numerical
calculations for the coupling strength 2� = 2π17.12 MHz. Black
curves show experimental results for the cavity transmission.

reminiscent of the Markovian regime which occurs right at the
resonance condition but for small values for � [see Fig. 6(d)].

We would like to emphasize that in our numerical calcu-
lations shown in Figs. 6 and 7, we vary only the values for
the coupling strength and probe frequency, whereas all other
parameters are kept the same as those in Fig. 2(a). Still, the
agreement between our theoretical model and the experiment
is found to be excellent.

IV. CLASSIFICATION OF THE DYNAMICS

To clarify the role played by the non-Lorentzian inhomo-
geneous broadening, we classify the dynamics by calculating
and measuring the total decay rate � of the cavity amplitude
squared, |A(t)|2, from its steady-state value for different
coupling strengths �. For the sake of simplicity, we focus on
the resonant case, ωp = ωc = ωs , only. It should be stressed
that the total decay rate � is independent of the initial
conditions (see also [23]), so that we can start from simpler
initial conditions corresponding to the case when only a single
photon is populating the cavity and the spin ensemble is
in the ground state, |1,G〉 = a†(t = 0)|0〉 (|0〉 corresponds
to the vacuum state). In this case it is possible to get a
relatively simple form for the Laplace transform of the Volterra
equation and to considerably speed up the calculations (see
Appendix B). One can prove that the Volterra equation (4) is
indeed the governing equation for A(t) also in this case with the
initial condition, A(t = 0) = 1 and Bk(t = 0) = 0, by virtue of
the following arguments. Acting with the Heisenberg operator
equations on the bra- and ket-vectors 〈0| and a†(t = 0)|0〉,
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FIG. 8. (Color online) Decay rate � of the the cavity mode
|A(t)|2 versus coupling strength �. (Red curve) Decay rates ex-
tracted from the full numerical calculations with the q-Gaussian
spin distribution. (Black symbols) Experimentally observed decay
rates. [Green curve (1)] Decay rate under the assumption of a
Lorentzian distribution of the spin density. The overdamped regime
(�/2π < 1.8 MHz) is characterised by two exponents given by
� = 
 + κ ±

√
(
 − κ)2 − 4�2. The regime of underdamped os-

cillations (�/2π > 1.8 MHz) with the Rabi frequency (14) has
the constant decay rate, � = 
 + κ . [Orange curve (2)] � derived
under Markovian approximation, � = 2[κ + π�2ρ(ωs)]. [Magenta
curve (3)] An estimate for � within the strong-coupling regime
with a well-resolved Rabi splitting in the limit of � → ∞, � =
κ + π�2ρ(ωc ± �). [Blue curve (4)] The decay rate in the absence
of dephasing. For �/2π < 0.2 MHz the overdamped regime is
characterized by two exponents � = κ ± √

κ2 − 4�2. In the opposite
case, �/2π > 0.2 MHz, the regime of underdamped Rabi oscillations
takes place with the Rabi frequency

√
4�2 − κ2 and the constant

decay rate � = κ . (White region) Markovian dynamics. (Gray region)
Non-Markovian dynamics.

respectively, it can be shown that the corresponding equations
for the expectation values coincide with Eqs. (2a) and (2b) from
Sec. II. The only formal difference now is that the amplitudes
A(t) and Bk(t) are given as A(t) ≡ 〈0|a(t)a†(t = 0)|0〉 and
Bk(t) ≡ 〈0|σ−

k (t)a†(t = 0)|0〉, respectively. Thus the variable
A(t) describes the probability amplitude for a photon to be
in the cavity at time t , if it was there initially, A(t = 0) ≡
〈0|a(t = 0)a†(t = 0)|0〉 = 〈1,G|1,G〉 = 1.

The results are presented in Fig. 8, where we show that the
decay rate varies surprisingly strongly and in a nonmonotonous
fashion with � covering a range of almost one order of
magnitude (see the red curve in this figure). Before going
to further details, let us analyze at first how the decay rate �

behaves as a function of the coupling strength under different
simplifying assumptions.

For the case of a Lorentzian distribution for the spin density,
the decay process is characterized by two exponents given
by Eq. (13). If 4�2 > (
 − κ)2, then the Rabi oscillations
are underdamped and the total decay rate reduces to � =

 + κ . In the opposite case, we are dealing with a pure
exponential decay without oscillations (overdamped regime)

with � = 
 + κ ±
√

(
 − κ)2 − 4�2. Thus, the Lorentzian
distribution gives rise to qualitatively different behavior for
the decay process as compared to the q-Gaussian one, since
� remains constant in the whole range of � within the
strong-coupling regime. However, as is unambiguously seen in
Fig. 8, the nonmonotonic behavior obtained in the framework
of the q-Gaussian spin density distribution is supported by our
experimental data thereby confirming our initial assumption
for the shape of this distribution.

In the absence of inhomogeneous broadening, when the
spin density function is written as ρ(ω) = δ(ω − ωs), the
expressions for the decay rate are obtained from those for
a Lorentzian distribution by setting its width to zero, 
 = 0.
Thus, in the regime of underdamped oscillations we get � = κ ,
whereas in the overdamped regime, � = κ ± √

κ2 − 4�2.
Correspondingly, the blue lines in Fig. 8 determine the lowest
border for possible decay rates reached in our system, because
the values for � in the presence of inhomogeneous broadening
should always be larger than the corresponding ones in the
case when it is absent. It is seen from Fig. 8 that this condition
is indeed always fulfilled.

Next, we apply the so-called Markov approximation in
Eq. (4) with respect to the cavity amplitude A(t) which implies
that the memory effects caused by a feedback from the NV
ensemble onto the cavity are disregarded. Specifically, we shift
the initial time of integration on the right-hand side of Eq. (4) to
−∞, put A(τ ) ≈ A(t), and make use of the Sokhotski-Plemelj
theorem (C5) in the limit of γ → 0, when performing the
integration with respect to ω. Under all these assumptions
the third term on the right-hand side of Eq. (4) reduces to
(ωp = ωs),

−�2
∫ ∞

0
dωρ(ω)

∫ t

0
dτe−i(ω−ωs−iγ )(t−τ )A(τ )

≈ i�2A(t)
∫ ∞

0

dωρ(ω)

ω − ωs − iγ
= −π�2ρ(ωs) · A(t). (24)

Note that the principal value does not appear in the above
equation because ρ(ω)/(ω − ωs), is an antisymmetric function
with respect to the singular point, ω = ωs . In the simplest
case when there is no driving and all spins are initially in
the ground state, the Volterra equation (4) reduces to Ȧ(t) =
−[κ + π�2ρ(ωs)]A(t). Therefore, the Markov approximation
leads to a pure exponential decay with the decay rate, � =
2[κ + π�2ρ(ωs)]. The spin ensemble density thus gives rise to
a significant enhancement of the cavity decay rate as compared
to the one for a bare cavity, � = 2κ . Remarkably, this effect has
a direct analogy to the Purcell enhancement of the spontaneous
emission rate of a single emitter inside a cavity [28] which
appears due to the increase of the local density of photonic
states at the emitter position as compared to the vacuum
case. The Markov approximation, however, loses its validity
at fairly low coupling strengths, starting to deviate from the
real values of � already at �/2π ≈ 1.5 MHz (see Fig. 8). The
hallmark of non-Markovianity of the resulting dynamics are
Rabi oscillations setting in at higher values of �.

In a next step we put forward an analytical estimate for
the decay rate in the limit of very strong coupling (� → ∞)
employing the Laplace transform of our Volterra equation
summarized in Appendix B. For that purpose we use recently

043852-8



NON-MARKOVIAN DYNAMICS OF A SINGLE-MODE . . . PHYSICAL REVIEW A 90, 043852 (2014)

developed concepts for another cavity QED problem dealing
with non-Markovian quantum dynamics of a single emitter
inside an open multimode cavity [30]. The key insight from that
study is that the dominant frequency components contributing
to the dynamics of A(t) are those which are resonant in
its Laplace transform, U (ω), given by Eq. (B7). For such
resonances to occur we find the following requirement on the
nonlinear Lamb shift (B8), ωr − ωc = �2δ(ωr ). In the limit of
sufficiently large values of the coupling strength the Laplace
transform, U (ω), has a well-resolved double-peak structure
with two resonance frequencies given approximately by ωr ≈
ωc ± �. Furthermore, A(t) essentially displays damped Rabi
oscillations of the form, A(t) ∼ cos(�t)e−[κ+π�2ρ(ωc±�)]t/2,
due to the Fourier transforms of the two curves in U (ω)
centered at these two resonance frequencies. One can see
in Fig. 8 that such an estimate for the decay rate, � =
κ + π�2ρ(ωc ± �), works rather well if �/2π � 25 MHz.
Thus, in contrast to the Markovian dynamics, the relevant
frequencies which contribute to the value of the decay
rate are those associated with two resonant peaks in U (ω).
Remarkably, a pair of poles in the complex plane occurring
for �/2π � 25 MHz do not spoil this asymptotic behavior
(see Appendix B). Note that our expression for the decay rate
in the limit of � → ∞ coincides with the one obtained in [22],
where the behavior of poles of the stationary transmission has
been analyzed.

Cavity protection effect

It follows from the above analysis that for spectral distribu-
tions ρ(ω) whose tails fall off faster than 1/ω2, an increasing
coupling strength inevitably leads to a reduction of the decay
rate �, so that the system will finally be protected against
decoherence, a phenomenon referred to as “cavity protection
effect” [21,22]. It is not hard to see that our q Gaussian satisfies
such a requirement, whereas a Lorentzian spin distribution
does not. As a consequence, the latter does not protect the
cavity against decoherence, featuring a constant decay rate
in the strong-coupling regime (see green line in Fig. 8). In
contrast, our numerical analysis for the q Gaussian shows
that for a collective coupling strength of �/2π ∼ 25 MHz,
the decay rate induced is already suppressed below 8% of its
maximal value at �/2π ∼ 2.25 MHz. It is interesting to note
that the minimal possible value for the decay rate reached in
the limit of large � is κ whereas the decay rate for a bare
cavity without diamond is 2κ . This can be explained by the
fact that due to the strong coupling between the spin ensemble
and the cavity, the excitation is trapped by 50% within the spin
ensemble which has a negligible direct decay rate during the
course of our experiment.

Physically, the “cavity protection effect” can be understood
as follows: In the presence of inhomogeneous spin broadening,
the polariton states, defined as superpositions of the cavity
mode with the superradiant (bright) spin-wave modes, become
coupled to the subradiant (dark) spin-wave modes [21]. This
coupling acts as the main source of decoherence, leading to a
strong damping of the polariton modes. However, for strong
enough coupling strength, the Rabi splitting of the polariton
peaks opens up a gap for the super-radiant polaritons. If
the spectral profile of the inhomogeneous spin distribution

decays sufficiently fast for increasing gap size, an energetic
decoupling of the super-radiant polaritons from the subradiant
spin-wave modes occurs, leading to a suppressed damping of
the polaritons and to a corresponding decrease of their peak
linewidth.

V. COHERENTLY DRIVEN SPIN ENSEMBLES

In a next step we address an important question arising
in the context of possible realizations of coherent-control
schemes, which is how to reach high excitation levels in the
spin ensemble with a driving signal that has only limited power
to avoid heating up the hybrid quantum device. We have seen
in Sec. III A that the assumption of a Lorentzian distribution
for the spin density leads to a simplified picture reducing
the dynamics to the one of two coupled damped harmonic
oscillators, where one of them stands for the cavity and the
other for the spin ensemble. Furthermore, the expectation value
of the collective spin operator can formally be excluded, so that
we end up with a single equation for the cavity amplitude which
has the same form as the equation for a damped and driven
harmonic oscillator. Therefore, if our system is subjected to a
periodic driving force, a resonance is expected to occur when
the driving frequency is equal to the characteristic frequency
of the system. Based on this reduced model, we conjecture
that coherent cavity oscillations, and as a consequence, spin
ensemble oscillations with a large amplitude can also be
achieved for the q-Gaussian spin distribution. Also in this
case the system needs to be driven periodically, so that the
period of η(t) matches the resonance condition given by the
Rabi period, TR = 2π/�R .

By pumping the cavity by a sequence of rectangular pulses
with a carrier frequency ωp = ωc = ωs , phase switched by
π , we indeed reveal a strongly resonant structure of |A(t)|2
as a function of pulse duration τ and time t (see Fig. 9).
The corresponding increase of |A(t)|2 can reach two orders of
magnitude as compared to the case when the system is driven
by a long rectangular pulse [see Fig. 2(a)], provided that the
resonance condition is met, τ = 2π/�R (see Fig. 10). Note
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FIG. 9. (Color online) Cavity probability amplitude |A(t)|2 un-
der the action of 11 successive rectangular microwave pulses with
carrier frequency ωp = ωc = ωs = 2π2.6915 GHz, phase switched
by π , as a function of time and pulse duration τ . The white line
indicates the corresponding moment of times, 11τ , at which the
driving signal is switched off. The coupling strength 2�/2π =
17.12 MHz.
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FIG. 10. (Color online) Resonant dynamics under the action of
11 successive rectangular microwave pulses (horizontal cut of Fig. 9
at τ = 2π/�R = 52 ns). This specific driving corresponds to the
largest enhancement of both the cavity amplitude |A(t)|2 and the x

component of the collective spin J 2
x (t) which coherently exchange

the energy during course of time. [Red (gray) curve] Results of
numerical calculations for |A(t)|2. (Black curve) |A(t)|2 measured
in the experiment. [Orange (light gray) curve] Results of numerical
calculations for J 2

x (t). The alternating gray and white vertical bars
designate the pulses sketched at the top of Fig. 9. The last white
area corresponds to the damped dynamics when the driving signal is
switched off.

that the net power injected into the cavity, when applying a long
rectangular pulse or a sequence of rectangular pulses phase
switched by π , is exactly the same as we are just periodically
changing the sign of the amplitude. Also in both cases the
cavity and spin ensemble coherently exchange their energy, so
that the cavity amplitude |A(t)|2 oscillates in antiphase with
respect to the spin ensemble component J 2

x (t).
In Fig. 11 we present results for such a resonant driving

both for a q Gaussian and for a Lorentzian profile of the
spectral distribution for the spin density. We take the value of
the coupling strength, �/2π = 25 MHz, for which the deco-
herence effect caused by the q-Gaussian form of the inhomoge-
neous broadening is strongly suppressed. Indeed, the resulting
total decay rate shown in Fig. 8 for this value of � is 3.7
times smaller than that for �/2π = 8.56 MHz used so far
in Figs. 9 and 10 and 5.4 times smaller than the total decay
rate predicted in the framework of the Lorentzian distribution.
For this situation we see that the giant oscillations of the cavity
probability amplitude, |A(t)|2, induced by the resonant driving
are a factor of 20 larger than what would be predicted for by
a Lorentzian functional profile. This clear signature of the
“cavity-protection effect” paves the way for the realization of
sophisticated coherent-control schemes in the strong-coupling
regime of QED.

In a further study we take the probe frequency out of
resonance with the cavity ωp �= ωc. (The condition ωc = ωs ,
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FIG. 11. (Color online) Resonant dynamics under the action of
70 successive rectangular microwave pulses (ωp = ωc = ωs) for a
pulse duration τ = 2π/�R = 19.5 ns. [Red (gray) curve] Numerical
results for the q-Gaussian spin distribution. The coupling strength
is chosen to be �/2π = 25 MHz. In this case the value for the
total decay rate � (see Fig. 8) is 3.7 times smaller than that for
�/2π = 8.56 MHz used so far in Figs. 9 and 10. [Orange (light
gray) curve] Corresponding numerical results for the Lorentzian spin
distribution.

however, always holds.) In Fig. 12 we present the maximal
value of the cavity amplitude, max[|A(t)|2], reached during
coherent oscillations to which the system sets in under the
action of incident rectangular pulses of duration τ that are
phase switched by π . We deduce from this figure that the cavity
amplitude experiences maximal growth at the resonance
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FIG. 12. (Color online) The maximal value of the cavity prob-
ability amplitude |A(t)|2, max[|A(t)|2], reached during coherent
oscillations to which the system sets in under the action of incident
rectangular pulses of duration τ that are phase switched by π . We
consider four different values for the carrier frequency of our periodic
driving signal: ωp = ωc; ωp = ωc ± �R/8; ωp = ωc ± �R/4; ωp =
ωc ± �R/2, where ωc = 2π2.6915 GHz and �R = 2π19.2 MHz are,
respectively, the cavity and Rabi frequencies.
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condition, ωp = ωc = ωs . It is worth noting that for the
off-resonant cases (ωp �= ωc) the right peak of max[|A(t)|2]
appears exactly at such values of π/τ which correspond to the
mismatching value of the probe frequency from the resonant
case (ωp = ωc). A similar tendency is also seen for the left peak
for not too high values of the mismatch from the resonance
condition.

VI. CONCLUSIONS

We have studied in detail the dynamics of an inhomoge-
neously broadened spin ensemble interacting with a single
cavity mode. For that purpose we numerically solved the
Volterra integral equation for the cavity amplitude which
explicitly contains the spin distribution function describing
the inhomogeneous broadening of the spin ensemble. By
assuming a Lorentzian functional profile for the spin density,
we solved the problem analytically. This analytical solution
provides an intuitive understanding of some important features
of the resulting spin-cavity dynamics, such as an overshoot
effect resulting from the constructive interference between
the energy stored in the spin ensemble and in the cavity.
Several features of the temporal dynamics in the strong-
coupling regime are, however, specifically due to the q-
Gaussian spectral spin density which we find to be realized
in our experiment. In particular, the non-Lorentzian functional
profile of the spin distribution allows us to observe as well
as to accurately describe a phenomenon known as “cavity
protection effect” [21,22] for large values of the coupling
strength. This effect results in a complete suppression of
the decoherence induced by inhomogeneous broadening in
the strong-coupling regime. To highlight the potential of this
effect for the implementation of coherent-control schemes,
we reveal how an appropriately chosen pulse sequence can
excite giant coherent oscillations between the cavity and the
spin ensemble. We classify the dynamics as a function of
the coupling strength and the probe frequency covering both
Markovian and non-Markovian regimes.
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APPENDIX A: DIRECT TIME INTEGRATION OF THE
VOLTERRA EQUATION

Although Eq. (5) has a relatively simple form, it is a
challenging task to solve it numerically. There are two reasons
for that: First, in order to calculate the cavity amplitude at
time t , one should know the amplitude A(τ ) at all previous
instants, τ < t (memory effect). Second, an integration with
respect to the frequency in the kernel function K(t − τ ) has to

be performed for each t and τ < t [see Eq. (6)]. The smallest
possible time scale in our problem is given by T = 2π/ωp ∼
0.4 ns. To achieve a very good accuracy of the calculations,
we solve the equation on a temporal mesh with uniform
spacing, choosing a time step dt ∼ 0.05 ns (see, e.g., [31]
for more details about the method). The direct discretization
of K(t − τ ) on the time interval of the order of μs (typical
time of measurements) leads to a high-dimensional matrix (of
a size typically exceeding 104 × 104), which, together with
the integration with respect to frequency, makes the problem
computationally intractable by way of a direct numerical
solution.

To overcome this problem and to speed up the calculations
drastically, we divide the whole time integration into many
successive subintervals, Tn � t � Tn+1, with n = 1,2,.... Such
a time division can, in principle, be implemented arbitrarily
but we choose it to be adapted to our experimental realization.
Specifically, for a sequence of rectangular pulses with phase
inversion, the driving amplitude is unchanged within each
subinterval, so that η(t) is written as ηn = (−1)n+1 · η, where
n = 1,2,3,.... Thus, in order to proceed with the integration
on the nth time interval, which starts from the initial value
An(Tn), we have to provide the result of integration obtained
in the previous step, A(n−1)(Tn). The recurrence relation (time
runs within Tn � t � Tn+1 for n = 1,2,3,...) then reads

A(n)(t) =
∫ t

Tn

dτK(t − τ )A(n)(τ ) + F (n)(t), (A1)

where the kernel function K(t − τ ) is defined by Eq. (6) and

F (n)(t) = e−i(ωc−ωp−iκ)(t−Tn)

{
A(n−1)(Tn)

+�2
∫ ∞

0
dω

ρ(ω)[e−i(ω−ωc+iκ)(t−Tn) − 1]

i(ω − ωc + iκ)
· In(ω)

}

− iηn

ωc − ωp − iκ
[1 − e−i(ωc−ωp−iκ)(t−Tn)]. (A2)

Note also that the memory on previous events enters not only
through the amplitude A(n−1)(Tn) but also through the function,

In(ω) = e−i(ω−ωp)(Tn−Tn−1)In−1(ω)

+
∫ Tn

Tn−1

dτe−i(ω−ωp)(Tn−τ )A(n−1)(τ ). (A3)

The initial conditions at t = T1 = 0 are defined as A(T1) = 0
and I1(ω) = 0 if the cavity is empty and spins are in the ground
state.

The above technique allows us to solve Eq. (5) accurately
while being very efficient in terms of computational time. We
have tested the accuracy of our numerical results by varying
the discretization both in time and frequency in a wide range
obtaining excellent agreement with the experimental results,
thereby confirming the accuracy of our method.

APPENDIX B: LAPLACE TRANSFORM OF THE
VOLTERRA EQUATION

In order to speed up the calculations of the decay rate for
different values of the coupling strengths �, and to derive an
analytical expression for it in the limit of � → ∞, we perform
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σ

2

1

iω

3

FIG. 13. Contour completion in the complex plane s = σ + iω

for the calculation of the inverse Laplace transform. Those contours
which give nonzero contribution are designated by numbers. (Open
circle) The pole which appears in the regime of weak coupling for
�/2π � 1.7 MHz (Markovian dynamics). (Two solid circles) Two
poles which show up in the strong-coupling regime for �/2π �
25 MHz. The zigzag line corresponds to the branch cut along the
negative part of the imaginary axis.

a Laplace transformation of the Volterra equation,

Ȧ(t) = −κA(t) − �2
∫ ∞

0
dωρ(ω)

∫ t

0
dτe−i(ω−ωp)(t−τ )A(τ ),

(B1)

assuming that the decay process starts from the most simple
initial condition, A(t = 0) = 1, when the cavity is fed with a
single photon and the spin ensemble is in the ground state.
For the sake of simplicity we consider the resonant case only,
ωp = ωc = ωs . To carry out the Laplace transformation we
multiply Eq. (B1) by e−st and integrate both sides of the
equation with respect to time from 0 to ∞ (see, e.g., [32]
for more details). Here s = σ + iω is the complex variable so
that we reformulate our problem by solving it in the complex
plane of s. After straightforward calculations, the algebraic
equation for the Laplace transform, Ã(s) = ∫ ∞

0 dt e−stA(t), is
derived which is solved by

Ã(s) = 1

s + κ + �2
∫ ∞

0

dωρ(ω)

s + i(ω − ωc)

. (B2)

By performing the inverse Laplace transformation, A(t) =
1

2πi

∫ σ+i∞
σ−i∞ ds estÃ(s), we obtain the following formal solu-

tion for the cavity amplitude A(t),

A(t) = eiωct

2πi

∫ σ+i∞

σ−i∞

estds

s + κ + iωc + �2
∫ ∞

0
dωρ(ω)
s+iω

, (B3)

where σ > 0 is chosen such that the real parts of all
singularities of Ã(s) are smaller than σ . It can be proved that
the integral in the denominator of Eq. (B3) has a jump when
passing across the negative part of the imaginary axis leading

to the branch cut in the complex plane of s (see Fig. 13 and
also [30]).

By setting the denominator of the integrand in Eq. (B3)
to zero, we derive the following equations for a simple pole,
sj = σj + iωj ,

σj = − κ

1 + �2
∫ ∞

0

dωρ(ω)

σ 2
j + (ωj + ω)2

, (B4)

ωj = −ωc + �2
∫ ∞

0

dωρ(ω)(ωj + ω)

σ 2
j + (ωj + ω)2

. (B5)

It turns out that a single solution to Eqs. (B4) and (B5) exists
within the weak-coupling regime in a rather narrow interval
of the coupling strengths, �/2π � 1.7 MHz. [It is seen that
in the limit of � → 0, Eqs. (B4) and (B5) are solved by
σj ∼ −κ and ωj = −ωc, respectively.) We also find a pair
of poles with σ1 = σ2 < 0, |σ1,2| � κ , and ω1,2 = −ωc ± ε

in the strong-coupling regime for large values of the coupling
strength starting from �/2π ≈ 25 MHz. Note that both |σ1,2|
and ε grow with increasing �.

Next, we apply Cauchy’s theorem to a closed contour to
evaluate the original integral Eq. (B3) taking into account
that only a few paths of those shown in Fig. 13 contribute.
Finally, we end up with the following expression for the cavity
amplitude A(t):

A(t) = eiωct

⎧⎨
⎩�2

∫ ∞

0
dωe−iωtU (ω) +

∑
j

Rj

⎫⎬
⎭ , (B6)

where

U (ω) = lim
σ→0+

,

×
{

ρ(ω)

(ω − ωc − �2δ(ω) + iκ)2 + (π�2ρ(ω) + σ )2

}

(B7)

is the kernel function and

δ(ω) = P
∫ ∞

0

dω̃ρ(ω̃)

ω − ω̃
(B8)

can be interpreted as the nonlinear Lamb shift of the cavity
frequency ωc. Here P stands for the Cauchy principal value
and Rj is the contribution of poles (if at all existing),

Rj = e(σj +iωj )t

1 − �2
∫ ∞

0

dωρ(ω)

[σj + i(ωj + ω)]2

. (B9)

APPENDIX C: DECAY PROCESS FROM
THE STEADY STATE

After applying a long rectangular pulse, both the cavity
amplitude and spin ensemble settle to a finite value in the
steady state (see Figs. 2, 3, and 5). Here we explore the
decay process from this steady-state solution in more detail.
To avoid cumbersome expressions we present, without loss
of generality, the results for the resonant case only, ωp =
ωc = ωs . To obtain a stationary solution, we set the time
derivatives in Eqs. (2a) and (2b) to zero, Ȧ(t) = Ḃk(t) =

043852-12
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0, go to the continuous limit (in frequency), and finally
derive the following expressions for the cavity amplitude and
for the expectation values of the following collective spin
operators,

Ast = η

−κ + i�2
∫ ∞

0 dω
ρ(ω)

ω − ωs − iγ

, (C1)

J st
x + iJ st

y =
∑

k gkB
st
k

2�
= iAst�

2

∫ ∞

0
dω

ρ(ω)

ω − ωs − iγ
.

(C2)

It can be easily proved, that the expressions above are real
because the q Gaussian is symmetric with respect to ωs , and
as a consequence, J st

y = 0 and Ast ∈ R. Note that the second
term in the Volterra equation (4) stands for the energy coming
back to the cavity from the initial (steady) state of a spin
ensemble, which in the continuous limit is found to be∑

k

gkB
st
k e−i(ωk−ωs−iγ )t

= iAst�
2
∫

dωρ(ω)
e−i(ω−ωs−iγ )t

ω − ωs − iγ
, (C3)

leading to the following Volterra equation,

Ȧ(t) = −κA(t) + iAst�
2
∫ ∞

0
dωρ(ω)

e−i(ω−ωs−iγ )t

ω − ωs − iγ

−�2
∫ ∞

0
dωρ(ω)

∫ t

0
dτe−i(ω−ωs−iγ )(t−τ )A(τ ).

(C4)

From this expression we can conclude that the energy which
is first stored and then released from the spin ensemble is

exactly the reason for the pronounced overshoot in the cavity
amplitude [see the example shown in Fig. 2(a)]. Note that if
initially the spin ensemble is in the ground state, Bk(0) = 0,
then the overshoot effect will never occur, as is the case for
initial conditions described in Appendix B (the cavity is fed
with a single photon and a spin ensemble is in the ground state).

Next, employing the Sokhotski-Plemelj theorem, in the
limit of γ → 0,

∫ ∞

0

dωF (ω)

ω − ωs − iγ
= P

∫ ∞

0

dωF (ω)

ω − ωs

+ iπF (ωs),

where P denotes the Cauchy principal value, Eqs. (C1)
and (C4) are finally reduced to (the resonance case, ωp =
ωc = ωs , is considered only)

Ast = − η

κ + π�2ρ(ωs)
, (C5)

and

Ȧ(t) = −κA(t)

+Ast�
2

{∫ ∞

0
dωρ(ω)

sin[(ω − ωs)t]

ω − ωs

− πρ(ωs)

}

−�2
∫ ∞

0
dωρ(ω)

∫ t

0
dτe−i(ω−ωs−iγ )(t−τ )A(τ ).

(C6)

This equation describes the damped Rabi oscillations from the
steady state after switching off a long pulse for a general form
of the spin density, including both Lorentzian and q-Gaussian
distributions [see results presented in Figs. 2(a) and 2(b)].
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