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Percolating states in the topological Anderson insulator
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We investigate the presence of percolating states in disordered two-dimensional topological insulators. In
particular, we uncover a close connection between these states and the so-called topological Anderson insulator,
which is a topologically nontrivial phase induced by the presence of disorder. The decay of this phase could
previously be connected to a delocalization of bulk states with increasing disorder strength. We identify this
delocalization to be the result of a percolation transition of states that circumnavigate the hills of the bulk disorder
potential.
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I. INTRODUCTION

Topological insulators are recently discovered materials
with promising electronic properties [1–3]. The first physical
system that was identified as a topological insulator was the
HgTe/CdTe quantum well [4] featuring one-dimensional edge
states that are protected from backscattering by time-reversal
symmetry, strongly stabilizing them against nonmagnetic
disorder. The existence of such conducting edge states is
hallmarked by a quantized conductance plateau that has
meanwhile been verified experimentally [5]. As discovered
in a successive numerical study [6], such edge states are not
only immune from backscattering but can even be elicited
by disorder in systems that have no topologically distinct
properties in the clean limit. This disorder-induced topological
phase was first believed to be caused by Anderson localization,
and was thus named a “topological Anderson insulator” (TAI).
A later study found, however, that the phase boundaries at
the transition from an ordinary insulator to the TAI can
be explained by an effective medium theory in which the
presence of disorder leads to a renormalization of the medium
parameters [7]. In this sense, the TAI appears due to a change
of topology in the effective medium.

While the transition from an ordinary insulator to the
TAI could be explained by the aforementioned effective
description [7], the transition from the TAI phase back to
an ordinary insulating phase at very strong disorder values
proves more involved: The bulk states localize at intermediate
disorder strength, allowing for unimpeded edge transport in
the TAI phase, yet delocalize when disorder becomes even
stronger [7–9]. So far, the resulting breakdown of the TAI
phase could be attributed to the coupling of counterpropagating
edge states on opposing edges through these delocalized bulk
states, resulting in a suppression of the edge states’ immunity
from backscattering [10,11]. This mechanism is responsible
for an increased sensitivity to finite size effects [12,13], making
the transition hard to explore numerically and leaving the true
nature of this counterintuitive delocalization unclear. While
first studies [9,13,14] interpreted the bulk delocalization as
an intermediate metallic phase, a later study [11] considering
larger systems pointed out that only a single bulk state is
probably responsible for the delocalization and an intermediate
metallic phase is not present. In addition, a spatially correlated
potential and the associated pronounced bulk delocalization
turn out to destroy the TAI phase entirely [15]. In this paper, we

resolve the puzzle associated with these different observations
by identifying the emergence of percolating states as the origin
of the delocalization and by clarifying the general connection
between such states and the TAI phase.

II. MODEL AND METHODS

As a starting point, we choose the well-studied disordered
HgTe/CdTe quantum well as described by the Bernevig-
Hughes-Zhang (BHZ) model [4] in terms of an effective
four-band Hamiltonian

Heff(kx,ky) =
(

h(�k) 0
0 h∗(−�k)

)
, (1)

with

h(�k)=1ε(�k) + di(�k)σ i, ε(�k) = C − D
(
k2
x + k2

y

)
,

(2)
di = [Akx, − Aky,M(�k)]T , M(�k) = m − B

(
k2
x + k2

y

)
,

and σ i representing the Pauli matrices. Following Ref. [16],
we choose the following set of realistic quantum well pa-
rameters in all our computations: A = 364.5 nm meV, B =
−686.0 nm2 meV, and D = −512.0 nm2 meV. The topology
of the system is determined by the sign of the topological
mass m: For m < 0, the bulk band gap of size 2|m| is
topologically nontrivial and thus filled with gapless edge states
characterizing a two-dimensional topological insulator. On the
other hand, for m > 0, the bulk band gap is topologically trivial
and does not contain any states, leaving us with a system that
is an ordinary insulator.

Using the advanced modular recursive Green’s function
method [17–19] we calculate the conductance G through
two-dimensional rectangular ribbons of HgTe/CdTe quantum
wells discretized on a square grid with discretization constants
�x and �y, width W = (ny + 1)�y, and length L = nx�x.
In accordance with previous studies [6,7,9–13,15,20], the
discretization constants are set to �x = �y = a = 5 nm. Two
clean semi-infinite leads are attached to the left and right ends
of the ribbon. Following the Landauer-Büttiker formalism,
the conductance G in the limit of vanishing temperature is
given by the total transmission T at the Fermi energy EF .
Our method also allows for a calculation of the scattering
wave functions ψ(x,y) as well as the density of states ρ(E) =
−Tr[Im Gr (�x,�x,E)]/π , where Gr is the retarded Green’s
function. Disorder is modeled by static on-site energy values
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FIG. 1. (Color online) Sketch of an uncorrelated disorder poten-
tial (left panel) in a system of width and length W = L = 1000 nm
and a correlated potential (right panel) with correlation length ξ =
35 nm. The color code ranges from blue (strong negative potential)
to red (strong positive potential).

V (xi,yi) at each grid point (xi,yi) randomly chosen from
the interval [−U/2,U/2], with U the disorder strength. In
most studies [6,7,9–13,20], the values of V (xi,yi) are chosen
without any spatial correlations between neighboring grid
points [see Fig. 1 (left panel)]. Here, we also consider spatial
correlations in V (x,y) [see Fig. 1 (right panel)], characterized
by a finite correlation length ξ , which can significantly affect
the conduction properties [15].

III. RESULTS

In our simulations we first consider a quadratic region
of width W = L = 1000 nm and an uncorrelated disorder
potential (i.e., ξ → 0). Two geometries will be studied that
only differ in their boundary conditions: a ribbon for which
hard wall boundary conditions along the edges are applied
and a cylinder with periodic boundary conditions in the
y direction. A comparison between the disorder-averaged
conductance 〈G〉 through these two geometries has been used
previously to distinguish between bulk and edge phenomena
as the periodicity of the cylinder eliminates the edges of
the geometry [10]. The results for 〈G〉 in a topological
insulator with m = −10 meV at Fermi energy EF = 16 meV
are shown in Fig. 2(a) as a function of the disorder strength
U for both geometries. The value of EF is chosen such
that for uncorrelated disorder the TAI conductance plateau
with 〈G〉 = 1 e2/h clearly appears in the ribbon [8,10–12]
for disorder strength 80 meV � U � 280 meV [see the red
curve in Fig. 2(a)]. In the cylinder this plateau is clearly
absent, since no edge states can exist in this edgeless geometry.
While for disorder values beyond this plateau the conductance
drops monotonically in the ribbon, the conductance through
the cylinder geometry [blue dashed curve in Fig. 2(a)] shows
a renewed increase at the same disorder strength. This is
the signature of the aforementioned bulk delocalization that
has already been observed in uncorrelated potentials [7–9]. A
physical intuition for this transition is, however, still lacking,
but will become clear by considering disorder potentials that
are spatially correlated (illustrations for uncorrelated and
correlated disorder potentials are shown in Fig. 1).

In a previous work [15] we demonstrated that spatial
correlation in the disorder potential can destroy the TAI phase

(a)

(b)

(c)

FIG. 2. (Color online) Average conductance 〈G〉 as a function of
disorder strength U through different HgTe/CdTe quantum wells. All
systems are of width and length W = L = 1000 nm and the Fermi
energy is set to EF = 16 meV. The ribbon geometries are shown
by red solid curves while the cylinder geometries are shown by
the blue dashed lines. (a) Average conductance through a system
of topological mass m = −10 meV (topological insulator) in an
uncorrelated potential. The disorder average is taken over 1000
configurations. The ribbon geometry features the TAI conductance
plateau of 〈G〉 = 1e2/h for 80 meV � U � 280 meV. In this region
the conductance through the cylinder is almost entirely suppressed,
followed by a delocalization transition of the bulk states starting
at U ≈ 280 meV. (b) Average conductance through systems with
the same parameters as in (a) but in a correlated potential with
correlation length ξ = 35 nm. The cylinder geometry (blue dashed
curve) clearly shows the bulk delocalization transition, which occurs
here for weaker disorder strengths U than in the uncorrelated case.
(c) Average conductance through systems with positive topological
mass m = 10 meV (ordinary insulator) in a correlated potential of
correlation length ξ = 35 nm. The disorder average is taken over 200
configurations. The cylinder geometry shows a less pronounced bulk
delocalization transition than in (b), followed here also by the results
for the ribbon due to the absence of edge states.

entirely. Here we consider a situation, in which the correlations
all but dissolve the plateau in the ribbon geometry [see the
red curve in Fig. 2(b)]. For these parameter values it is best
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FIG. 3. (Color online) Comparison of the scattering wave func-
tion |ψ(xi,yi)|2 (shown on a logarithmic scale in the left col-
umn) and the potential itself (right column) at the delocalization
transition (U = 220 meV) for systems with W = L = 1000 nm,
EF = 16 meV, and m = −10 meV. We only colored the potential
values between 26 meV � V (xi,yi) � 78 meV for which the Fermi
energy is effectively shifted into the valence band of the clean band
structure (the remaining potential values are left in white). Two
different correlated disorder configurations for cylinder and ribbon
geometry are considered in the top and bottom row, respectively (the
correlation length ξ = 35 nm is the same for both). The similarity
of the wave functions and these truncated potentials illustrates that
the delocalizing bulk states are percolating around the hills of the
potential landscape and that these percolating states have their origin
in the bulk band structure of the clean sample.

visible that the dissolution of the plateau is accompanied by a
delocalization of bulk states. As can be seen by comparing the
blue dashed curves in Figs. 2(a) and 2(b), this delocalization
happens at much lower disorder values for correlated potentials
than for uncorrelated ones. In both cases, however, these
delocalized bulk states contribute to the conductance, but also
suppress the edge conductance by coupling counterpropagat-
ing edge states with each other, thereby leading to a breakdown
of the TAI conductance plateau.

To get a better insight into this scenario, we now con-
sider the scattering wave functions ψ(xi,yi) during this
delocalization transition [see Figs. 3(a) and 3(c) for two
such states at U = 220 meV]. A first optical inspection of
these wave function images suggests that the associated flux
is circumnavigating the hills of the underlying correlated
potential [15], reminiscent of percolation states found in the
quantum Hall effect [21] and in antidot topological insulator
lattices [22]. To make this first impression more quantitative,
we analyze how the intensities of the wave functions ψ(xi,yi)

FIG. 4. (Color online) Probability density distribution P (V ) for
disorder values V (xi,yi) at grid points (xi,yi) weighted by the absolute
value |ψ(xi,yi)|2 of the scattering wave function at EF = 16 meV
with injection in the first lead mode in a system of width and
length W = L = 1000 nm and topological mass m = −10 meV.
A disorder average is taken over 1000 configurations of random
potentials with disorder strength U = 220 meV and correlation
length ξ = 35 nm. The distribution shows an enhancement of the
wave functions at disorder values V situated between Vmin ≈ 25 meV
and Vmax ≈ 75 meV. These values correspond nicely to the distance
of Fermi energy EF to the flat valence bulk band states at the BZ
edges.

shown in Fig. 3 are correlated with the values V (xi,yi) of the
underlying potential landscape. For this purpose we compute
the weighted probability P (V ) for a wave to encounter
a potential value V with the weights of this probability
distribution being given by the intensity |ψ(xi,yi)|2 of the
wave function at a grid point (xi,yi) with a potential value
V . The distribution P (V ) resulting from an average over
1000 disorder realizations shows a surprisingly pronounced
enhancement at positive disorder values V approximately
situated between Vmin ≈ 25 meV and Vmax ≈ 75 meV (see
Fig. 4), suggesting that disorder values from this interval give
rise to clearly enhanced wave function intensities. Apparently
the states responsible for the bulk delocalization tend to reside
primarily at relatively high values of the disorder potential,
i.e., in a certain altitude interval of the hills in the correlated
potential landscape. Correspondingly, we find that the wave
function intensities shown in Figs. 3(a) and 3(c) strongly
resemble contour plots of the associated disorder potential,
when we truncate the latter to the interval V ∈ [25,75] meV
[see Figs. 3(b) and 3(d)].

To identify the origin of this curious behavior, we first point
to the fact that the above interval bounds, i.e., Vmin ≈ 25 meV
and Vmax ≈ 75 meV, are astonishingly close to the minimal
and maximal distances Emin = 26 meV and Emax = 78 meV
of the Fermi energy EF = 16 meV to the energy range Ebulk =
[−10, − 62] meV in which the valence band states are situated
in the clean system [see the band structure of Fig. 5(a)]. This
observation suggests that the flux in our correlated potential
is carried mostly by the disorder analogs of these valence
band states. Further evidence for this correspondence can be
deduced when considering the rescaled probability distribution
P (EF − V ), which measures, as above, the probability for a
scattering state to reside at a potential value V , but now shifted
by the Fermi energy EF . We find that this distribution, quite
remarkably, stays almost invariant with respect to a change
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FIG. 5. (Color online) (a) Band structure E(kx) of a system of
width W = 1000 nm and topological mass m = −10 meV obtained
by directly solving the Bloch-eigenvalue problem numerically for the
Hamiltonian in Eq. (1). (b) Density of states ρ(E) in a closed and clean
system of width and length W = L = 1000 nm, topological mass
m = −10 meV, and cylindrical geometry. (c) Weighted probability
density distribution P (EF − V ) for systems with m = −10 meV,
W = L = 1000 nm in a correlated potential of correlation length
ξ = 35 nm. The wave functions are calculated in the region of the
bulk delocalization at disorder strength U = 220 meV and for 1000
random disorder configurations. The red solid and blue dashed lines
show P (EF − V ) at EF = 16 meV in the ribbon and the cylinder
geometry. The green dashed-dotted and black dotted lines represent
P (EF − V ) for ribbon and cylinder at EF = 30 meV. The similarity
of all four curves shows that the distribution is a very fundamental
system property. The shape of the distributions closely resembles the
density of states at the BZ boundary shown in (b). This indicates
the bulklike nature of the states responsible for the delocalization
transition. (d) Weighted probability density distribution P (EF − V )
with the same system parameters as in (c) but in an uncorrelated
disorder potential. The calculations were performed in the region of
the bulk delocalization at disorder strength U = 370 meV and for
1000 disorder configurations.

of the Fermi energy [see a comparison between two different
values of EF in Fig. 5(c)]. This observation reflects the fact that
a change of EF just shifts the corresponding wave functions
to different disorder values, but that the origin of states in the
valence bands stays unchanged. Furthermore, the density of
states ρ(E), shown in Fig. 5(b), and the distribution P (EF −
V ), shown in Fig. 5(c), are very similar—even the small kinks
in ρ(E) are clearly reproduced in P (EF − V ). Such kinks in
the density of states are merely van Hove singularities resulting
from the flat bands in the band structure. We may thus conclude
that the flat valence band states, especially at the Brillouin zone
(BZ) edges [where the maximum of P (EF − V ) is located],
represent the most significant contribution to the intensity of
the scattering wave functions. In addition, we find that the
distribution P (EF − V ) is not at all sensitive to the boundary
conditions since it is almost exactly equal for the ribbon and
for the cylinder [see Fig. 5(c)]. The distribution P (EF − V )
thus turns out to be quite fundamental in that it has its origin
in basic system properties, which are given here by the band
structure in Fig. 5(a) and by the flat band states contained
in it.

These observations allow us to construct a comprehensive
picture of the physics in the cylindrical geometry with a
correlated potential [see the blue dashed curve in Fig. 2(b)]:
While in the clean limit pure bulk conduction is observed, the
conductance drops down to a minimum at disorder strength
of U ≈ 60 meV due to the increasing localization of the bulk
states [see Fig. 2(b)]. When at U ≈ 100 meV the hills of the
correlated potential are high enough to locally shift the Fermi
energy into the valence band, the bulk is filled with localized
states deriving from clean valence band bulk states spatially
located around the hills of the underlying disorder potential.
With growing disorder strength, these localized states connect
with each other and go through a percolation threshold,
which is responsible for the delocalization transition and the
increased bulk conductance. Only at very strong disorder
U ≈ 300 meV does the connection between these percolating
states weaken and the conductance again decreases. This
picture is also strongly supported by previous studies of the
TAI in the uncorrelated case (see Refs. [20,23]): Considering
the arithmetic and geometric average of the local density of
states, it was shown there that the states carrying the flux
in the TAI are not single extended states throughout the
whole TAI phase (as would be expected for edge states),
but rather for very strong disorder formed by clusters of
well-localized states. Our percolating wave functions deriving
from the valence band are perfect candidates for such linked,
localized states. This picture is also corroborated by the flatness
of the valence band states, which leads to the very small
group velocity responsible for the wave function enhancements
around the potential hills, as seen in the examples of Figs. 3(a)
and 3(c).

The flatness of the states in the effective band structure
is, in fact, also important for the theory put forward in
the aforementioned studies [20,23]: Considering disordered
supercell structures, it was argued that flat and localized
bands develop small subgaps that can be of topological
nontrivial type. Hence these gaps have to be filled with edge
states in the same way as the inverted band gap of a clean
topological insulator [4,5,16]. In this picture the TAI phase
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is thus characterized by edge states that appear in the energy
gaps between localized bulk states and are consequently again
immune from backscattering.

At this point the question arises how the above results
can be reconciled with our own model, which so far does
not contain any reference to edge states in the percolation
transition. To investigate this issue in detail, we performed
additional calculations for a system where no edge effects can
be present due to a topological mass, which we choose to take
on the positive value of m = 10.0 meV. As shown in Fig. 2(c),
this sign change of m significantly modifies the conductance
properties. While previously for m < 0 and moderate disorder
strength U the conductance in the ribbon was clearly enhanced
in comparison to the cylinder [see Fig. 2(b)], the conductance
of the ribbon for m > 0 is even smaller than in the cylinder
[see Fig. 2(c)]. This behavior can be attributed to the absence
of edge states at the sample edges for positive topological
mass m > 0. In the cylindrical geometries we find that the
delocalization transition is less pronounced for m > 0 than it
was for m < 0 [compare the blue dashed lines in Figs. 2(b)
and 2(c)]. On the one hand, the fact that the delocalization
transition still exists for m > 0 supports our model of flat bulk
states undergoing a percolation transition. On the other hand,
however, the more pronounced nature of the transition for
m < 0 suggests that edge states propagating along the edges of
the potential hills provide an additional link between localized
states leading to a larger conductance. This picture, indeed,
agrees very well with the analyses of Refs. [20,23], since
the connecting local edge states in our model can directly be
identified with the edge states that were predicted to form in
the nontrivial subgaps of the localized flat bands.

We would thus be in a perfect position to complement
the theory of Refs. [20,23] with the intuitive explanation that
these subgap edge states exist locally and connect bulk states
localized around hills of the potential landscape to form a
percolating network of internal bulk states that lead to the
decay of the TAI phase. The missing piece to complete our
argument is to show that the picture we derived for the case
of correlated disorder holds also for the uncorrelated case
considered in Refs. [20,23].

We check this point explicitly, by verifying that our model
can explain the appearance of the TAI as well as the observed
delocalization-localization transition of the bulk states for the
case of uncorrelated disorder. Consider, in this context, that
the TAI conductance plateau in the ribbon geometry between
U ≈ 80 and 280 meV [see the red curve in Fig. 2(a)] is
destroyed by the onset of the bulk delocalization at U ≈
280 meV in the cylinder [see the blue dashed curve Fig. 2(a)]
which happens for much larger U than in the correlated case.
Still, when the delocalization transition is in full effect (at
U = 370 meV), the corresponding scattering states show a
similar weighted distribution P (EF − V ) in the now spatially
uncorrelated potential, as already observed in the correlated
case [see Fig. 5(d)]. Again, the peak of this distribution fits
nicely to the band structure of the clean limit, indicating that
our picture of local edge states percolating around internal
edges of strong disorder holds also for the uncorrelated case.
Last but not least, we mention that such a percolating state
corresponds exactly to the “single bulk state” that is held
responsible for the delocalization in Ref. [11].

IV. DISCUSSION

Our results suggest that the emergence as well as the decay
of the TAI phase depend strongly on the energy offset and on
the flatness of the bulk valence bands in the clean limit. These
flat bands feature an enhanced contribution to the density of
states and occur in the center as well as at the boundaries
of the BZ. Yet, the underlying BHZ model is only valid for
small kx close to the 	 point and thus does not yield a good
approximation for the valence bands at the BZ boundaries
of a real HgTe/CdTe quantum well [4]. Correspondingly, we
find that when changing the grid spacing a in our discretized
lattice from the value conventionally used in the literature (a =
5 nm) to different values, the position of the BZ boundaries
kBZ
x = ±π/a and the energy offset of these states at the BZ

boundaries also change significantly. We also verified that
the flatness of the bands at the BZ boundary is a direct
consequence of the discreteness of the underlying lattice used
for the numerical solution of the transport problem (see also
Refs. [6,7,10] where discretized models were first employed to
describe the TAI). As a result, the localization-delocalization
transition and possibly even the TAI phase itself associated
with these states at the BZ boundary will not occur in real
HgTe/CdTe quantum wells as the strong-disorder limit in
these devices will be different from the predictions of the
discretized model. Quite remarkably, however, realizations
of topological insulators have recently also been considered
based on photonic systems [24,25]. These so-called Floquet
topological insulators are based on a discretized lattice of
sites, just as in the numerical model used above to ap-
proximate the physics in HgTe/CdTe quantum wells. The
strong-disorder physics, which we have discussed here, may
thus well be realized in experiments based on effective model
systems in optics [24,25] as well as in acoustics [26] or in
other fields where wave scattering parameters can be tuned
appropriately.

V. CONCLUSION

In this paper we uncover the existence of percolating
states in two-dimensional topological insulators. In particular,
we show how these states affect the phase boundaries of
the topological Anderson insulator, which is a topologically
nontrivial phase caused by disorder. While the reason for
the emergence of this phase has already been understood,
its breakdown could so far only be vaguely connected to a
delocalization of bulk states. Here we show that in a spatially
correlated potential, this delocalization is caused primarily by
bulk states that are localized when circumnavigating the hills
of the disorder potential, but that become connected with each
other when passing a percolation threshold. These connections
and thus also the delocalization transition are consolidated by
local edge states that can internally form in the disordered
sample. By showing how the localized bulk states derive
from flat bands in the valence band structure of the clean
sample without disorder, we clarify that the same physics is at
work also in the well-studied case of an uncorrelated disorder
potential.
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