
Hybrid Quantum Systems with Collectively Coupled Spin States:
Suppression of Decoherence through Spectral Hole Burning

Dmitry O. Krimer,* Benedikt Hartl, and Stefan Rotter
Institute for Theoretical Physics, Vienna University of Technology (TU Wien),
Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria, European Union

(Received 14 January 2015; published 14 July 2015)

Spin ensemble based hybrid quantum systems suffer from a significant degree of decoherence resulting
from the inhomogeneous broadening of the spin transition frequencies in the ensemble. We demonstrate
that this strongly restrictive drawback can be overcome simply by burning two narrow spectral holes in the
spin spectral density at judiciously chosen frequencies. Using this procedure we find an increase of the
coherence time by more than an order of magnitude as compared to the case without hole burning. Our
findings pave the way for the practical use of these hybrid quantum systems for the processing of quantum
information.
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Hybrid quantum circuits that conflate the advantages
of different physical systems to achieve new device func-
tionalities have recently shifted to the center of attention [1].
This is largely because a new generation of experiments
[2–11] lends encouraging plausibility to the vision of using
such hybrid device concepts to reliably store andmanipulate
quantum information [12–17]. In particular, the recent
achievements in strongly coupling large spin ensembles
to superconducting microwave cavities [2–6,11] hold
promise for combining many of the advantageous features
ofmicrowave technologywith the long spin coherence times
found, e.g., in crystallographic defects of diamond.
Whereas the collective coupling to a whole ensemble of

spins is the key to reach the strong-coupling limit, the
ensemble generally comes with the downside of being
inhomogeneously broadened; i.e., the transition frequen-
cies between different spin levels are slightly different for
each spin. As it turns out, the decoherence resultant from
this broadening is currently the major bottleneck for the
processing of quantum information in these hybrid quan-
tum systems. First attempts at resolving this problem have
meanwhile been put forward: On the one hand, it was
shown that the decoherence is naturally suppressed for very
strong coupling when the spectral spin distribution realized
by the ensemble falls off sufficiently fast in its tails.
Signatures of this so-called “cavity protection effect”
[18,19] have meanwhile also been observed experimentally
[11,20]. To fully bring to bear the potential of this effect
requires, however, going to very high values of the
coupling strength, which are presently difficult to reach

experimentally. On the other hand, sophisticated concepts
for the spectral engineering of the spin density profile have
been proposed [21,22]. These concepts rely, however, on a
strong modification of the intrinsically predefined density
profile that is again very challenging to implement exper-
imentally. In this Letter, we present a method that circum-
vents the problems of both approaches by building on a
very elementary concept that requires only a considerably
reduced experimental effort. Specifically, we demonstrate
that the burning of two judiciously placed spectral holes in
the spin distribution suffices to drastically increase the
coherence properties of the hybrid spin-cavity system.
From the viewpoint of quantum control, our approach
constitutes a new and efficient strategy to stabilize Rabi
oscillations in the strong-coupling limit of cavity QED
[23–25]. Suppressing the detrimental influence of inhomo-
geneous broadening, as suggested in our work, could also
prove to be a key element for the realization of ultranarrow
linewidth lasers [26,27].
To connect our theoretical work directly with the experi-

ment wewill study in the following the recently implemented
case of a superconducting microwave resonator strongly
coupled to an ensemble of negatively charged nitrogen-
vacancy centers in a diamond (see Fig. 1) [2,3,11,20]. Our
starting point is the Tavis-Cummings Hamiltonian (ℏ ¼ 1)
[28], which describes the dynamics of a single-mode cavity
coupled to a spin ensemble in the dipole and rotating-wave
approximation,

H ¼ ωca†aþ 1
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j are the Pauli operators associated with the

individual spins of frequency ωj. Each spin is coupled with a
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strengthgj to the single cavitymodeof frequencyωc, inwhich
photons are created and annihilated through the operators a†

and a. The probing electromagnetic field injected into the
cavity is characterized by its carrier frequency ω and by the
amplitude ηðtÞ.
Next, we derive the semiclassical equations of motion

using the Holstein-Primakoff approximation [29] (implying
that the condition hσzki ≈ −1 always holds), the rotating-
wave approximation and neglecting the dipole-dipole inter-
action between spins. With these simplifications, which are
well justified for the experiments [11,20] operating at low
input powers of an incoming signal, the equations forAðtÞ≡
haðtÞi and BjðtÞ≡ hσ−j ðtÞi acquire the following form (in
the ω-rotating frame):

_AðtÞ ¼ −½κ þ iðωc − ωÞ�AðtÞ þ
X
j

gjBjðtÞ − ηðtÞ; ð2aÞ

_BjðtÞ ¼ −½γ þ iðωj − ωÞ�BjðtÞ − gjAðtÞ; ð2bÞ

where κ, γ are the dissipative cavity and spin losses,
respectively.
Large spin ensembles (N ∼ 1012 in [11,20]) are best

described by the continuum limit of the normalized
spectral density ρðωÞ ¼ P

N
j g2jδðω − ωjÞ=Ω2. Here Ω ¼

ðPN
j g2jÞ1=2 is an effective coupling strength which is

enhanced by a factor of
ffiffiffiffi
N

p
as compared to a single

coupling strength, gj, so that Ω can reach the values
necessary for the realization of the strong-coupling regime.
The inhomogeneous broadening of the spin frequencies ωj

and coupling strengths gj then lead to a finite-width
distribution ρðωÞ centered around a certain mean frequency
ωs. The specific shape of this spectral density ρðωÞ can
typically be determined by a careful comparison with the
experiment based on stationary [3] or dynamical [11]
transmission measurements. In the following, we will
use the same parameters as in [11,20], taking a

q-Gaussian distribution [3] for ρðωÞ centered around
ωs=2π ¼ 2.6915 GHz, a full-width at half-maximum of
γq=2π ¼ 9.44 MHz and a q parameter of 1.39. The cavity
decay rate κ=2π ¼ 0.4 MHz (half-width at half-maximum)
and the coupling strength Ω=2π ¼ 8.56 MHz.
The starting point for our strategy is the insight that

the non-Markovian dynamics of the spin system, which
is described by ρðωÞ and strongly coupled to the cavity
mode, can be accurately modeled by an integral Volterra
equation for the cavity amplitude AðtÞ [see Eq. (5) below
and [11,20]]. The latter includes a memory kernel, which is
responsible for the non-Markovian feedback of the spin
ensemble on the cavity, so that the cavity amplitude at time
t depends on all previous events τ < t. By performing a
Laplace transform of this Volterra equation [20] or by
carrying out a stationary transmission analysis [18,19],
the total rate of decoherence turns out to be Γ ≈ κ þ
πΩ2ρðωs � ΩÞ in the limit of large coupling strengths,Ω >
Γ and γ → 0. The value of Γ is thus determined by the spin
density ρðωÞ, evaluated close to the maxima of the two
polaritonic peaks, ω ¼ ωs �Ω, split by the Rabi frequency
ΩR ≈ 2Ω due to strong coupling. Our approach is now to
take this relation literally, which is tantamount to saying
that the decoherence rate Γ can be strongly suppressed by
burning two spectral holes into the spin distribution ρðωÞ
right at these two positions, ωh ¼ ωs � Ω, such that
ρðωhÞ ¼ 0. The width of the holes Δh should be very
small, such as to remove only a negligible fraction of the
spins by the hole burning. On the other hand, Δh is limited
from below by the spin dissipation rate, Δh > γ.
To demonstrate the efficiency of our approach explicitly,

we first perform a stationary analysis [ _AðtÞ ¼ _BkðtÞ ¼ 0] of
the transmission TðωÞ through the microwave resonator as
a function of the probing frequency ω. This quantity, which
is directly accessible in the experiment [11,20], provides
direct access to the occupation amplitude of the cavity
[TðωÞ ∝ AðωÞ]. Assuming γ → 0, the transmission TðωÞ
acquires the following form:

TðωÞ ¼ iκ
ω − ωc −Ω2δðωÞ þ i½κ þ πΩ2ρðωÞ� . ð3Þ

This expression is normalized such as to reach the
maximum possible value max ðjTðωÞjÞ ¼ 1 for suitably
chosen ω, κ, and ρðωÞ. The real function δðωÞ is the
nonlinear Lamb shift [30] defined as

δðωÞ ¼ P
Z

∞

0

d ~ωρð ~ωÞ
ω − ~ω

; ð4Þ

where P stands for the Cauchy principal value. In the
reference case taken from the experiment [11,20], ρðωÞ has
no holes, see Fig. 2(a), and the transmission jTðωÞj2
displays the well-resolved double-peak structure typical
for the strong-coupling regime; see Fig. 2(b). If we now

FIG. 1 (color online). Sketch of the studied hybrid quantum
system: a synthetic diamond (black) containing a spin ensemble
(red arrows) coupled to a transmission-line resonator (curved
gray line) confining the electromagnetic field to a small volume.
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burn two narrow holes into the spin density at the relevant
positions ωh ¼ ωs �Ω, see Fig. 2(d), and reevaluate
jTðωÞj2, we observe a more than 50-fold increase in the
corresponding transmission peak values; see Fig. 2(e). This
dramatic change is all the more surprising considering that
the relative number of spins removed from ρðωÞ through
the hole burning is less than 3%.
To understand this behavior it is best to analyze the real

and imaginary parts of the denominator of TðωÞ; see Eq. (3).
For the observed transmission resonances at ω ¼ ωr with a
maximum value of TðωrÞ ¼ 1 to occur, two conditions are
satisfied simultaneously: (i) ðωr − ωcÞ=Ω2 ¼ δðωrÞ and
(ii) ρðωrÞ ¼ 0. Consider condition (i): In the reference case
without holes, see Fig. 2(c), the nonlinear Lamb shift δðωÞ
displays rather smooth variations in the vicinity of the
resonant frequencies ωr, determined by the intersection of
δðωÞ and a straight line ðω − ωcÞ=Ω2. In contrast, for the
case with hole burning, see Fig. 2(f), δðωÞ exhibits rapid
variations around the two resonance points within a very
narrow spectral interval. As a consequence, the resultant
transmission peaks become substantially sharper. Because
of condition (ii) they also dramatically increase in height.
Note that no resonance occurs atω ¼ ωc because ρðωÞ has a
maximumat this point and condition (ii) is strongly violated;
see Figs. 2(c) and 2(f). A close examination of the structure
of TðωÞ shows, furthermore, that the narrow transmission

peaks resultant from the hole burning do not replace the
broad polaritonic peaks present in the reference case, but
rather get to sit on top of them; see Fig. 3(a). As will be
seen below, the different resonance widths in TðωÞ set two
different time scales in the dynamics with, in particular, the
sharp peaks in the transmission giving rise to an asymp-
totically slowly decaying dynamics with a strongly sup-
pressed decoherence.
To explore whether the narrow holes we burnt into the

spectral spin distribution at ωh ¼ ωs �Ω have, indeed, the
optimal location, we now also test all possible other hole
positions symmetrically placed around the maximum of
ρðωÞ at ω ¼ ωs. In Fig. 3(b) we present the numerical
results for TðωÞ as a function of the probe frequency ω and
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FIG. 2 (color online). Comparison of the cavity coupled to the
inhomogeneously broadened spin ensemble without and with
hole burning in the spin density profile (left and right panels,
respectively). (a),(d): The q-Gaussian spin density distribution,
ρðωÞ, without and with hole burning at ωh ¼ ωs � Ω. Both holes
are of equal width, Δh=2π ¼ 0.7 MHz, and have a Fermi-
Dirac profile. (b),(e): Transmission TðωÞ without and with hole
burning in ρðωÞ (note different y axes scale). (c),(f): The
corresponding nonlinear Lamb shift δðωÞ. Filled circles label
resonance values ωr of the transmission TðωÞ occurring at the
intersections between the Lamb shift δðωÞ and the dashed line
ðω − ωcÞ=Ω2. At empty circles such intersections are nonreso-
nant (see text).

FIG. 3 (color online). Transmission through the cavity TðωÞ
versus probe frequency ω for different locations of the holes, ωh,
in the spin density profile, ρðωÞ (the width of the holes is
Δh=2π ¼ 0.7 MHz). (a) Red (gray) curve: jTðωÞj2 in lin-log
scale versus ω for ωh ¼ ωs � Ω. Black curve: Transmission in
the absence of hole burning. (b) Yellow (light gray) areas mark
the most pronounced peaks in jTðωÞj2 in the presence of hole
burning. Blue (gray) areas stand for the secondary polaritonic
peaks which stem from the case without hole burning. Dashed
arrows designate the distance ΩR between polaritonic peaks. The
white vertical cut corresponds to the transmission shown in (a).
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of different hole locations ωh ¼ ωs � ω̄ scanned between
ω̄ ¼ 0 and ω̄ ¼ 16 MHz: While for large hole spacings
(ω̄≳ 11.5 MHz) the effect of holes is negligible, in the
interval 0.8 MHz≲ ω̄≲ 11.5 MHz we always find two
sharp peaks superimposed on the two polaritonic peaks
approximately at the hole positions. Close to ωh ¼ ωs �Ω,
these peaks are most pronounced and reach unity. In the
limit when the holes are burnt very close together
(ω̄≲ 0.8 MHz) the sharp peaks merge into a single one,
located directly at the central frequency ωs with a trans-
mission maximum reaching again unity in the limit of
ωh → ωs [see the yellow cusp in Fig. 3(b)]. Using the
symmetry of ρðωÞ with respect to ωs, this behavior can also
be proven analytically (not shown). To check the robustness
of our method we also tested different functional forms for
the hole profiles (Fermi-Dirac, q-Gaussian, and rectangular
distributions) and found qualitatively similar results to the
Fermi-Dirac form employed for all of the above figures.
To reach our ultimate goal of understanding the influence

of the spectral hole burning on the resultant dynamics, we
now study the time evolution of AðtÞ explicitly for the
resonant case ω ¼ ωc ¼ ωs. The expression for the corre-
sponding Volterra equation can be derived from Eqs. (2a)
and (2b) (see [20] for details),

_AðtÞ ¼ −κAðtÞ

−Ω2

Z
dωρðωÞ

Z
t

0

dτe−iðω−ωc−iγÞðt−τÞAðτÞ − ηðtÞ:

ð5Þ

To prove that our predictions are valid not only in the
semiclassical but also in the quantum case, we consider the
case when all spins are initially in the ground state and
the cavity mode a contains initially a single photon, j1;↓i.
It can be shown that the probability for a photon to reside
in the cavity at time t > 0, NðtÞ ¼ h1;↓ja†ðtÞaðtÞj1;↓i,
reduces to NðtÞ ¼ jh0;↓jaðtÞj1;↓ij2 ¼ jAðtÞj2, where AðtÞ
is the solution of Eq. (5) with the initial condition
Aðt ¼ 0Þ ¼ 1 [external drive ηðtÞ ¼ 0]. For the case with-
out hole burning, this solution is represented by the damped
Rabi oscillations [see Fig. 4(a)] found already previously
[11,20]. By burning narrow holes in ρðωÞ at ωh ¼ ωs � Ω
(immediately before t ¼ 0), we observe very similar
transient dynamics, which is followed, however, by a
crossover to Rabi oscillations with a much slower asymp-
totic decay [see Fig. 4(b)]. Quite remarkably, the total
decay rate Γ in this asymptotic time limit can even be
substantially smaller than the cavity decay rate κ alone.
This is all the more surprising since κ was identified as the
minimally reachable value for Γ in recent studies on the
cavity protection effect [11,19,20]. Apparently a new type
of physics is at work here: Although the system is in the
strong-coupling regime, the two spectral holes slow down
the leakage of the energy stored in the spin ensemble back

into the cavity. In particular, when being even slower than
the inverse of the cavity decay rate κ, this sets a new global
time scale for Γ, corresponding to the width of the sharp
resonance peaks which we identified before in Fig. 3(a).
From the mathematical point of view such a slow asymp-
totic behavior is associated with the contribution of two
poles in the Laplace transform of Eq. (5) [20], which appear
when the holes in ρðωÞ reach a critical depth. The pole
contributions also stabilize the long-time behavior when
the holes are shifted away from the polaritonic peaks [see
Fig. 3(b)], but the optimal hole positions remain close to
the polaritonic peaks. Note that despite the considerable
photon loss ½NðtÞ ≪ 1� for long times, the phase coherence
is very well preserved here, a clear signature of which is
the stable form of the Rabi oscillations. In this way a high
“visibility” can be achieved, as required for the efficient
processing of quantum information [31].
To demonstrate the efficiency of the hole burning effect

also for quantum control schemes, we pump the cavity by a
sequence of π phase-switched rectangular pulses, each with
a duration corresponding to the Rabi period, τ ¼ 2π=ΩR
and a carrier frequency ω ¼ ωc ¼ ωs. As shown in [11],
this procedure is very well suited to feed energy into the
strongly coupled cavity-spin system, leading to giant
oscillations of both spin and cavity amplitude [see left
parts of Figs. 4(c) and 4(d)]. Not only do we observe that
these driven oscillations are more pronounced when burn-
ing holes at ωh ¼ ωs �Ω, but we find, in particular, that
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FIG. 4 (color online). (a),(b): Decay of the cavity occupation
NðtÞ ¼ h1;↓ja†ðtÞaðtÞj1;↓i from the initial state, for which a
single photon with frequency ωc resides in the cavity and all spins
are unexcited. The asymptotic decay Ce−Γt with and without hole
burning (see red lines) is determined by the constants Γ=2π ¼
3 MHz in (a) and a drastically reduced Γ ¼ 0.42κ ¼ 2π0.17 MHz
in (b). (c),(d): Dynamics of jAðtÞj2 under the action of 11
successive rectangular microwave pulses of duration corre-
sponding to the Rabi period, τ ¼ 2π=ΩR ¼ 52 ns, phase
switched by π (every second pulse is shown as a vertical gray
bar). Also here the asymptotic decay is much slower due to the
presence of the holes. In all panels the holes in ρðωÞ have a width
Δh=2π ¼ 1.4 MHz and are burnt at t ¼ 0 at ωh ¼ ωs �Ω.
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the Rabi relaxation oscillations setting in after switching off
the driving field are dramatically more long lived than in
the case without holes [compare right parts of Figs. 4(c)
and 4(d)]. These results confirm the robustness as well as
the general applicability of our approach for various
coherent-control schemes in the strong-coupling regime
of cavity QED.
In summary, we present an efficient method to suppress

the decoherence in a single-mode cavity strongly coupled
to an inhomogeneously broadened spin ensemble. By
burning narrow spectral holes in the spin density at
judiciously chosen positions, the total decay rate is dra-
matically decreased to values that may even lie below the
dissipation rate of the bare cavity. Experimentally, our
approach can be implemented by exposing the cavity to
high-intensity microwave signals with spectral components
near the desired hole positions. Because of the strong
driving the spins at these frequencies will equally populate
their ground and excited state and will thus be effectively
removed from the coupling process with the cavity.
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