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A. WEAK VS. STRONG MODE COUPLING

Principal modes (PMs) in multimode �bers (MMFs)
with weak mode coupling have been well studied in [1].
In our experiment, we intentionally applied stress to the
�ber to achieve strong mode coupling. To illustrate the
fundamental di�erence between PMs in the weak and
strong mode coupling regimes, we conducted a numer-
ical simulation using the same model as described in the
main text. In this model, the �ber is divided into many
short segments, in each of which light propagates as in
a perfect �ber without mode coupling. In between adja-
cent segments, the guided modes are randomly coupled.
The scattering is simulated by a unitary random matrix.
The magnitude of the matrix elements decays away from
the diagonal. The decay rate determines the degree of
mode coupling, a slower decay leads to stronger mode
coupling.
When the mode coupling is weak, each mode is cou-

pled only to the ones with similar propagation constants.
Thus the transmission matrix (in the mode basis) is
nearly diagonal [Fig. S1(a)]. As shown in Fig. S1(c), the
output �eld pattern of a PM bears similarity to that of an
eigenmode of the perfect �ber without mode mixing. The
modal decomposition of the PM in Fig. S1(e) reveals that
the PM is composed of a few modes with similar propaga-
tion constant. In the strong coupling regime, by contrast,
all the modes are mixed. Both diagonal and o�-diagonal
elements of the transmission matrix have comparable am-
plitude [Fig. S1(b)]. The �eld pro�le of a PM looks like
a speckle pattern [Fig. S1(d)], and it is composed of all
the modes [Fig. S1(f)].
To further illustrate the di�erence between weak and

strong coupling regimes, let us consider an example in
which light is injected into a few modes with slightly
di�erent propagation constants. In the weak coupling
regime, the light will remain mostly in these modes when
propagating through the �ber. The variation of the
output �eld pattern with input frequency reveals `mode
beating', namely, the spectral correlation function for the
output �eld pattern exhibits oscillations with input fre-
quency [Fig. S1(g)] very similar to those observed in [1].
However, if mode coupling is strong, light will quickly
spread to all the modes. The output �eld pattern decor-
relates with frequency detuning, i.e., the spectral corre-
lation function decays instead of oscillating with input
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frequency [Fig. S1(h)].

B. EFFECT OF POLARIZATION

In our experiment, the transmission matrix was mea-
sured for a single linear polarization of input and output
light. Since the polarization is scrambled in the MMF,
some of the input light is converted to the other polariza-
tion and thus not measured at the output. Consequently,
the transmission matrix is non-unitary even without in-
trinsic loss in the �ber, and it is part of the full trans-
mission matrix for both polarizations. Nevertheless, we
can still obtain the time-delay matrix for one polariza-
tion from the partial transmission matrix. Its eigenstate
gives a linearly polarized input wavefront and generates
an output �eld whose one polarization component has a
frequency-invariant spatial pro�le.
To investigate the e�ect of polarization on the PM, we

performed numerical simulation using the concatenated
waveguide model [2]. The two polarizations are assumed
to have the same propagation constant. We obtained the
time-delay matrix Q from the full transmission matrix
(for both polarizations) and the partial transmission ma-
trix (for one polarization). Then we calculated the eigen-
states and compared their spectral and temporal prop-
erties. Our numerical results con�rm that the PMs for
one polarization exhibit the same characteristic as the
PMs for both polarizations. Their spectral correlation
widths overlap, as shown in Fig. S2(a,b), regardless of
the mode-dependent loss.

C. SPECTRAL CORRELATION FUNCTION

The spectral correlation function is de�ned as

C(�!) � j ̂(!0 +�!) �  ̂(!0)j = cos[�(�!)];

where  ̂ is a unit vector that describes the output �eld
pattern, and � is the angle between the two vectors at
di�erent frequencies. The �rst-order derivative of C(�!)
with respect to �! is

dC(�!)

d�!
= � sin[�(�!)]

d�(�!)

d�!
:

At �! = 0, �(�!) = 0 and sin[�(�!)] = 0. Thus the
�rst-order derivative of the spectral correlation function
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Figure S1. (color online) Comparison of multimode �ber with
weak (a,c,e,g) and strong (b,e,f,h) mode coupling. The results
are obtained by numerical calculation. (a,b) Transmission
matrix in the mode basis. (c,d) Spatial distribution of output
�eld for a PM. (e,f) Amplitude of the mode decomposition
coe�cients for the input �elds of the PMs in (c,d). (g,h) Cor-
relation of the output �eld pattern C with frequency detuning
�! when light is injected to a few modes of the �ber.

vanishes for any input �eld. The second-order derivative
of C(�!) is

d2C(�!)

d�!2
= � cos[�(�!)]

�
d�(�!)

d�!

�2

� sin[�(�!)]
d2�(�!)

d�!2
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Figure S2. (color online) Spectral correlation width of the
PMs for both polarizations (black cross) and those for one
polarization (red circle) of input and output light in the mul-
timode �ber with strong mode mixing. The width is normal-
ized by the average correlation width for random input �elds.
The mode-dependent loss is absent in (a), and present in (b).

At �! = 0, the second term on the right hand side
vanishes, and cos[� = 0] = 1 in the �rst term, giving
C 00(�! = 0) = �[�0(�! = 0)]2.
For a PM, the output �eld pattern is invariant with fre-

quency to the �rst order, i.e., �0(�! = 0) = 0. Thus the
second-order derivative of the spectral correlation func-
tion vanishes, C 00(�! = 0) = 0. For a random input
�eld, �0(�! = 0) does not vanish, and hence C 00(�! = 0)
is nonzero. Consequently, the spectral decorrelation of
PMs is much slower than that of a random input.
We note that C 00 vanishes only at !0, not at nearby

frequencies for a PM. Moreover, the third-order deriva-
tives are non-zero even at !0. Thus the output �eld of
a PM still de-correlates as a result of a frequency shift,
leading to a �nite bandwidth.

D. PARTICLELIKE STATE VS. PRINCIPAL

MODES

Particle-like states [3, 4] and principal modes have
the common feature that they are both eigenstates of
the Wigner-Smith time-delay operator. The fact that
the particle-like states additionally stay spatially focused
throughout the scattering process distinguishes these two
types of scattering states. To have particle-like states,
however, the relevant length scales for wave spreading
need to be longer than the system size, a requirement
not ful�lled in elongated multimode �bers.
In our experiment, instead, light di�racts after prop-

agating a certain distance in the �ber (characterized by
the Rayleigh range), whereby all particle-like states are
strongly depleted. Irrespective of this limitation, the
eigenstates of the Wigner-Smith time-delay operator still
exist in the �ber (even in the presence of strong scatter-
ing). In other words, despite the fact that the wave now
travels not along a single particle trajectory, but along
many di�erent ones at once, an eigenstate of the Wigner-
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Figure S3. Calculated temporal width of an optical pulse at
di�erent location in a 2-meter-long �ber using the cancate-
nated �ber model. The input pulse is transform-limited and
launched to the PM with the largest bandwidth. The pulse
width is normalized to the input pulse. The pulse width �rst
increases and then decreases as the pulse propagates in the
�ber.

Smith matrix still has a well-de�ned delay time. This
property, however, only holds at the end of the �ber and
is not guaranteed anywhere between the two �ber facets.
Correspondingly, the principal modes are not spatially
focused throughout their propagation through the �ber.
We simulate the evolution of the temporal width of

a transform limited pulse propagating through a multi-
mode �ber. The input wavefront of the pulse is set to
that of the principal mode with the largest bandwidth.
The spectral bandwidth of the pulse, �f , is 120 GHz,
equal to the bandwidth of the principal mode. Figure S3
shows the temporal pulse width normalized by the width
of the input pulse at di�erent locations of the �ber. The
pulse is broadened gradually in the �ber because of mode
coupling. It becomes the broadest in the middle of the

�ber. As it approaches the output end of the �ber, the
pulse width decreases again. Figure S3 clearly shows that
unlike particle-like states, principal modes do not remain
focused in time throughout the �ber.

E. PM BANDWIDTH

We de�ne the bandwidth of PMs as the width of
the spectral correlation function at C(�!) = 0:9C(0).
2�=�! determines the temporal width of an optical pulse
that can transmit through the MMF without signi�cant
distortion of its shape at the end. The full width at half
maximum of the spectral correlation function C gives a
larger width than our de�nition, but the corresponding
pulse su�ers temporal distortions and no longer remains
focused.
In Fig. 4(c), we show that PMs associated with short

or long delay times have smaller bandwidths than those
with medium delay times. In the concatenated �ber
model, light propagates in each segment without mode
coupling. Between adjacent segments, the modes are ran-
domly coupled. We denote the length of the optical path
associated with the mth mode in the ith segment as li

m
.

The total path-length for one trajectory through the �ber

is L =
P
N

i=1
li
m
, whereN is the total number of segments.

The probability of li
m
taking the value of li

1
, li
2
, ..., or li

M

is constant, where M is the highest order mode. Accord-
ing to the central limit theorem, when N is very large, L
is a Gaussian distribution. Hence, there are more trajec-
tories with intermediate total path-lengths in comparison
to long or short paths. Since there are more trajectories
available for a PM with an intermediate delay time, the
multi-path interference e�ect is more e�cient in narrow-
ing the path-length distribution, making its bandwidth
broader than that of a PM with a short or long delay
time.
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