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Particlelike wave packets in complex scattering systems
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A wave packet undergoes a strong spatial and temporal dispersion while propagating through a complex
medium. This wave scattering is often seen as a nightmare in wave physics whether it be for focusing, imaging,
or communication purposes. Controlling wave propagation through complex systems is thus of fundamental
interest in many areas, ranging from optics or acoustics to medical imaging or telecommunications. Here, we
study the propagation of elastic waves in a cavity and a disordered waveguide by means of laser interferometry.
From the direct experimental access to the time-delay matrix of these systems, we demonstrate the existence
of particlelike wave packets that remain focused in time and space throughout their complex trajectory. Due to
their limited dispersion, their selective excitation will be crucially relevant for all applications involving selective
wave focusing and efficient information transfer through complex media.
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I. INTRODUCTION

Waves propagating in complex media typically undergo
diffraction and multiple scattering at all the inhomogeneities
they encounter. As a consequence, a wave packet suffers
from strong temporal and spatial dispersion while propagating
through a scattering medium. Eventually, the incident wave
is converted into a diffuse halo that gives rise to a com-
plicated interference pattern (speckle) at the output of the
medium. Albeit complex, this wave field remains, however,
deterministic. By actively shaping the wave field at the input,
one can manipulate the interference between all the scattering
paths that the wave can follow. On the one hand, this insight
has given rise to spectacular focusing schemes in which
scattering enables—rather than impedes—wave focusing and
pulse compression [1–9]. On the other hand, it can lead to
an optimized control of wave transport [10–13]. A designed
wave front can, e.g., be completely transmitted/reflected at
will [14,15] as a result of a multiple-scattering interference
that is intrinsically narrow band [16]. Here we will aim at
the more challenging goal to generate states that are fully
transmitted/reflected, yet very robust in a broadband spectral
range. As we will demonstrate explicitly, this goal can be
reached by way of highly collimated scattering states that are
concentrated along individual particlelike bouncing patterns
inside the medium [17]. By avoiding the multipath interference
associated with conventional scattering states, these wave
beams also avoid the frequency sensitivity associated with
this interference. As we shall see, particlelike scattering states
give rise, in the time domain, to wave packets that remain
focused in time and space throughout their trajectory within
the medium. This crucial feature makes these states uniquely
suited for many applications in a variety of fields, ranging
from high intensity focused ultrasound [18,19] or underwater
acoustics [20,21] to endoscopic microscopy [22–24], fiber
optics [25–29], or telecommunications [30–32].

The key aspect of our experimental study is to demonstrate
that these particlelike wave packets can be created just based
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on the information stored in the scattering matrix [17]. This
high dimensional S matrix relates any arbitrary wave field
at the input to the output of the scattering medium, and in
principle, allows the reconstruction or prediction of either. It
fully describes wave propagation across a scattering medium
and can meanwhile be routinely measured not only in acoustics
[33,34], but also in microwave technology [13,35] and optics
[6,12]. The sub-blocks of the scattering matrix contain the
complex-valued transmission (t,t′) and reflection (r, r′) matri-
ces with a certain number N of input and output channels,

S =
(

r t′
t r′

)
. (1)

To describe the statistical properties of S for wave transport
through complex media, random matrix theory (RMT) has
been very successful [36]. One of the striking results of
RMT is the universal bimodal distribution followed by the
transmission eigenvalues T of tt† [37] through diffusive media
[36,38,39] or chaotic cavities [40,41]. In contradiction with a
classical diffusion or chaotic picture, a substantial fraction of
propagation channels are found to be essentially closed (T ∼
0) or open (T ∼ 1). Going beyond such a statistical approach,
Rotter et al. [17] recently showed how a system-specific
combination of fully open or fully closed channels may lead to
scattering states that follow the particlelike bouncing pattern of
a classical trajectory throughout the entire scattering process.
Such particlelike scattering states with transmission close to 1
or 0 are eigenstates of the Wigner-Smith time-delay matrix:

Q = − i

2π
S†∂f S, (2)

where ∂f denotes the derivative with respect to the frequency
f . Originally introduced by Wigner in nuclear scattering
theory [42] and extended by Smith to multichannel scattering
problems [43], the Q matrix generally describes the time that
the incoming wave accumulates due to the scattering process:
each eigenvalue yields the time delay of the associated
scattering state. Compared to a mere study of the S matrix,
the Q matrix provides an elegant and powerful tool to harness
the dispersion properties of a complex medium. In this paper,
we show, in particular, how a time-delay eigenstate can be
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FIG. 1. The two systems under investigation consist of (a) a
regular cavity and (b) a disordered slab machined in an elastic plate.
In both configurations, the S matrix is measured in the time domain
between two arrays of points placed on the left and right sides of
the system (see Appendix A). Flexural waves are generated on each
point by a pulsed laser via thermoelastic conversion over a focal spot
of 1 mm2. The normal component of the plate vibration is measured
with an interferometric optical probe. The laser source and the probe
are both mounted on two-dimensional (2D) translation stages.

engineered to be “particlelike” not only in its stationary wave
function patterns [17], but also in the sense that a nondispersive
wave packet can be propagated along the corresponding
particlelike bouncing pattern. The associated eigenvalue of Q
then corresponds to the propagation time of this wave packet.

Our experimental setup consists of an elastic cavity and a
disordered elastic wave guide at ultrasound frequencies (see
Fig. 1). In a first step we measure the entries of the S and Q ma-
trices over a large bandwidth using laser-ultrasonic techniques.
The eigenvalues of the transmission matrix are shown to follow
the expected bimodal distributions in both configurations.
The wave fields associated with the open/closed channels
are monitored within each system in the time domain by
laser interferometry. Not surprisingly, they are shown to be
strongly dispersive as they combine various path trajectories
and thus many interfering scattering phases. To reduce this
dispersion and to lift the degeneracy among the open/closed
channels, we consider the eigenstates of the Q matrix that
have a well-defined time delay, corresponding to a wave
that follows a single path trajectory. In transmission, a one-
to-one association is found between time-delay eigenstates
and ray-path trajectories. The corresponding wave functions
are imaged in the time domain by laser interferometry. The
synthesized wave packets are shown to follow particlelike
trajectories along which the temporal spreading of the incident
pulse is minimal. In reflection, the Q matrix yields the
collimated wave fronts that focus selectively on each scatterer
of a multitarget medium. Contrary to alternative approaches
based on time-reversal techniques [44–47], the discrimination

FIG. 2. (a) Real part of the S matrix measured in the cavity
[Fig. 1(a)] at f0 = 0.30 MHz. The black lines delimit transmission
and reflection matrices as depicted in Eq. (1). (b) Transmission
eigenvalue histogram ρ(T ) averaged over the frequency bandwidth
f = 0.23–0.37 MHz. The distribution is compared to the bimodal
law ρb(T ) [red continuous line, Eq. (3)]. (c),(d) Absolute values of
the monochromatic wave fields (f0 = 0.30 MHz) associated with the
two most open channels.

between several targets is not based on their reflectivity but on
their position. The eigenvalues of Q directly yield the time of
flight of the pulsed echoes reflected by each scatterer.

II. EXPERIMENTAL RESULTS

A. Revealing the open and closed channels in a cavity

The waves we excite and measure are flexural waves in
a duralumin plate of dimension 500 × 40 × 0.5 mm3 (see
Fig. 1). The frequency range of interest spans from 0.23 to
0.37 MHz (�f = 0.14 MHz) with a corresponding average
wavelength λ of 3.5 mm. We thus have access to N = 2W/λ ∼
22 independent channels, W being the width of the elastic
plate. Two complex scattering systems are built from the
homogeneous plate: (i) a regular cavity formed by cutting the
plate over 20 mm on both sides of the plate [see Fig. 1(a)] and
(ii) a scattering slab obtained by drilling several circular holes
in the plate [see Fig. 1(b)]. The thickness L of each system is
45 and 52 mm, respectively.

The S matrix is measured for each system with the
laser-ultrasonic setup described in Fig. 1, following the
procedure explained in the Appendix A. Transmission and
reflection matrices are expressed in the basis of the modes
of the homogeneous plate [15]. These eigenmodes and their
eigenfrequencies have been determined theoretically using the
thin elastic plate theory [48,49]. They are renormalized such
that each of them carries unit energy flux across the plate
section [15]. Figure 2(a) displays an example of an S matrix
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recorded at the central frequency f0 = 0.30 MHz for the
cavity. Most of the energy emerges along the main diagonal and
two subdiagonals [50] of the reflection/transmission matrices.
These reflection and transmission matrix elements correspond
to specular reflection of each mode on the cavity boundaries
and to the ballistic transmission of the incident wave front,
respectively.

We first focus on the statistics of the transmission eigenval-
ues Tl computed from the measured t matrix (see Appendix B).
Their distribution ρ(T ) is estimated by averaging the corre-
sponding histograms over the frequency bandwidth. Figure
2(b) shows the comparison between the distribution measured
in the rectangular cavity and the bimodal law ρb which is
theoretically expected in the chaotic regime [40,41],

ρb(T ) = 1

π
√

T (1 − T )
. (3)

Even though our system is not chaotic, but exhibits regular
dynamics, a good agreement is found between the measured
eigenvalue distribution and the RMT predictions, confirming
previous numerical studies [51]. A similar bimodal distribution
of transmission eigenvalues is obtained in the disordered plate,
as shown in the Supplemental Material [52].

Whereas the eigenvalues Tl of tt† yield the transmission
coefficients of each eigenchannel, the corresponding eigenvec-
tors provide the combination of incident modes that allow us to
excite this specific channel. Hence, the wave field associated
with each eigenchannel can be measured by propagating the
corresponding eigenvector. To that aim, the whole system
is scanned with the interferometric optical probe. A set of
impulse responses is measured between the line of sources at
the input and a grid of points that maps the medium. The wave
function associated with a scattering state is then deduced
by a coherent superposition of these responses weighted by
the amplitude and phase of the eigenvector at the input (see
Appendix C). Hence all the wave functions displayed in this
paper are only composed of experimentally measured data
and do not imply any theoretical calculation or numerical
simulation.

Figures 2(c) and 2(d) display the wave field associated
with the two most open eigenchannels (Tl ∼ 1) of the cavity.
Although such open channels allow a full transmission of the
incident energy, they do not show a clear correspondence with
a particular path trajectory. The same observation holds in
the disordered plate [52]. As a consequence, the associated
scattering state undergoes multiple scattering when passing
through the cavity. Figures 3(a) and 3(b) illustrate this
dispersion by displaying the output temporal signal associated
with the two open channels shown in Figs. 2(c) and 2(d) (see
Appendix B). Both signals contain several peaks occurring at
altogether three different times of flight. As we will see further,
each peak is associated with a particular path trajectory and
can be addressed independently by means of the Wigner-Smith
time-delay matrix.

B. Addressing particlelike scattering states in a cavity

The Wigner-Smith time-delay matrix Q is now investigated
to generate coherent scattering states from the set of open
channels. Since Q is Hermitian when derived from a unitary
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FIG. 3. The time trace of a scattering or time-delay eigenstates
is computed from the set of t matrices measured over the frequency
range f = 0.23–0.37 MHz (see Appendix B). The output intensity is
displayed vs time for, (a) and (b), the two first open channels displayed
in Figs. 2(c) and 2(d) and for, (c)–(e), the three time-delay eigenstates
displayed in Fig. 4. For each time trace, the different echoes are
labeled with a number 1, 2, or 3 that corresponds respectively to the
direct, double, or quadruple scattering paths highlighted in Fig. 4.

S matrix [Eq. (2)], the time-delay eigenstates qin
m form an

orthogonal and complete set of states, to each of which a real
proper delay time τm can be assigned, such that Qqin

m = τmqin
m .

In general, qin
m is a 2N -dimensional eigenvector which implies

an injection from both the left and the right leads of the system.
However, among this set of time-delay eigenstates, a subset
features an incoming flux from only one lead that also exits
through just one of the leads. These are exactly the desired
states that belong to the subspace of open or closed channels
and display trajectorylike wave-function patterns.

As was shown by Rotter et al. [17], the above arguments can
be translated into a straightforward operational procedure (see
Appendix B), which we apply here to identify the particlelike
scattering states among the time-delay eigenstates of the
measured Q matrix. The litmus test for this procedure in
the present context will be to show that the three different
time traces that are identifiable in the open transmission
channels [see Figs. 3(a) and 3(b)] can now be individually
addressed through an associated particlelike state. The results
we obtain for the cavity geometry [Fig. 1(a)] fully confirm our
successful implementation of particlelike scattering states: The
propagation of the states we obtain from our procedure yields
monochromatic wave states that are clearly concentrated on
individual bouncing patterns (see Fig. 4). Whereas Fig. 4(a)
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FIG. 4. Absolute value of the wave field associated with the
three particlelike scattering states derived from the matrix Q. The
corresponding time delays (a) τm = 20 μs, (b) τm = 30 μs, and (c)
τm = 59 μs, nicely match with the run times of the corresponding
classical trajectories shown in the inset (top left).

corresponds to the direct path between the input and output
leads, Figs. 4(b) and 4(c) display a more complex trajectory
with two and four reflections on the boundaries of the cavity,
respectively. The associated time delays τm do correspond to
the run times of a particle that would follow the same trajectory
at the group velocity vg ∼ 2.6 mm/μs of the flexural wave
[53]. Their transmission coefficients |tm| are equal to 0.90,
0.95, and 0.85, respectively, meaning that they are almost fully
transmitted through the cavity.

The time trace associated with each particlelike scattering
state is computed from the frequency-dependent t matrix (see
Appendix B). The result is displayed in Figs. 3(c)–3(e). Unlike
the open transmission channels studied above, each particlelike
state gives rise to a single pulse that arrives at the output
temporally unscattered at time τ = τm. Figure 3 also shows
that each temporal peak in the time trace of the open channels
can be attributed to a particular path trajectory. We may thus
conclude that the open channel displayed in Fig. 2(c) is mainly
associated with the double and quadruple scattering paths
displayed in Figs. 4(b) and 4(c). The open channel displayed in
Fig. 2(d) consists of a linear combination of the paths displayed
in Fig. 4. This association is also confirmed by explicitly
analyzing the vectorial decomposition of the particlelike state
in terms of the transmission eigenchannel basis.

The frequency dependence of the particlelike scattering
states is investigated in the Supplemental Material [52].
They are shown to be stable over the frequency ranges f =
0.2–0.6 MHz [Fig. 4(a)], f = 0.3–0.6 MHz [Fig. 4(b)], and
f = 0.2–0.4 MHz [Fig. 4(c)]. The corresponding bandwidths
are at least one order of magnitude larger than the frequency

correlation width of the transmission matrix coefficients which
is equal to 0.02 MHz [52]. This proves the robustness of
particlelike states over a broadband spectral range. Given this
nondispersive feature, they turn out to be perfect candidates
also for the formation of minimally dispersive wave packets
in the time domain. To check this conjecture, we investigate
here the spatiotemporal wave functions of these states over the
aforementioned bandwidths (see Appendix B). The propaga-
tion of the particlelike wave packets through the cavity can
be visualized in the three first movies of the Supplemental
Material [52]. Figure 5 displays successive snapshots of the
wave packet synthesized from the particlelike scattering state
displayed in Fig. 4(c). Quite remarkably, the spatiotemporal
focus of the incident wave packet is maintained throughout its
trajectory despite the multiple-scattering events it undergoes
in the cavity.

C. Lifting the degeneracy of particlelike scattering states

In a next step, we investigate particlelike scattering states
in the disordered wave guide [Fig. 1(b)]. The corresponding Q
matrix is measured at the central frequency f0 = 0.3 MHz (see
Appendix A). Figures 6(a) and 6(b) display the monochromatic
wave functions associated with two fully transmitted time-
delay eigenstates. Whereas Fig. 6(a) displays the typical
features of a particlelike scattering state that winds its way
through the scatterers, the time-delay eigenstate of Fig. 6(b)
is clearly associated with two scattering paths of identical
length. We thus encounter here a degeneracy in the time-
delay eigenvalues that needs to be lifted by an additional
criterion, such as by considering well-defined subspaces of
the measured S matrix [54]. In this instance, the two ray paths
can be discriminated by their different angles of incidence.
Correspondingly, we consider two subspaces S′ of the original
S matrix by keeping either positive or negative angles of inci-
dence from the left lead (see Appendix D). The corresponding
time-delay matrices lead to two distinct particlelike scattering
states displayed in Figs. 6(c) and 6(d). The two scattering
paths that were previously mixed in the original time-delay
eigenstate [Fig. 6(b)] are now clearly separated. The frequency
stability of these states is investigated in the Supplemental
Material [52]. They are shown to be stable over the frequency
ranges f = 0.2–0.4 MHz [Fig. 6(c)] and f = 0.2–0.5 MHz
[Fig. 6(d)]. The corresponding particlelike wave packets are
shown in the two last movies of the Supplemental Material
[52] where the high quality of their focus in space and time is
immediately apparent.

D. Revealing time-delay eigenstates in reflection

Time-delay eigenstates can also result from a suitable
combination of closed channels. Figures 6(e) and 6(f) display
two such closed channels derived from the S matrix of
the disordered slab. The closed channels combine multiple
reflections from the holes of the scattering layer. However, the
closed channel displayed in Fig. 6(e) mixes the contributions
from the scatterers labeled 1 and 2. Also the closed channel
displayed in Fig. 6(f) is associated with reflections from
altogether three scatterers (2, 3, and 4). A simple eigenvalue
decomposition of rr† or tt† does not allow a discrimination
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showing selective focusing on scatterer 3 (time delay τm = 30 μs, reflection coefficient |rm| = 0.88).
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between the scatterers. On the contrary, the analysis of the Q
matrix allows a one-to-one correspondence with each scatterer
based on a time-of-flight discrimination. Figures 6(g) and 6(h)
actually display the wave functions associated with two
reflected time-delay eigenstates. Each of these eigenstates is
associated with a reflection from a single scatterer (2 and 3,
respectively). The corresponding time delays τm given in the
caption of Fig. 6 are directly related to the depth z of each
scatterer, such that τm ∼ 2z/vg .

III. DISCUSSION

The first point we would like to emphasize is the relevance
of the time-delay matrix for selective focusing and imaging in
multitarget media. The state-of-the-art approach is the DORT
method (French acronym for Decomposition of the Time
Reversal Operator). Initially developed for ultrasound [44,45]
and more recently extended to optics [46,47], this widely
used approach takes advantage of the reflection matrix r to
focus iteratively by time-reversal processing on each scatterer
of a multitarget medium. Mathematically, the time-reversal
invariants can be deduced from the eigenvalue decomposition
of the time reversal operator rr† or, equivalently, from the
singular value decomposition of r. On the one hand, the
eigenvectors of r should, in principle, allow selective focusing
and imaging of each scatterer. On the other hand, the associated
eigenvalue directly yields the scatterer reflectivity. However, a
one-to-one association between each eigenstate of r and each
scatterer only exists under a single-scattering approximation
and if the scatterers exhibit sufficiently different reflectivities.
Figures 6(e) and 6(f) illustrate this limit. Because the holes
display similar scattering cross sections in the disordered slab,
closed channels are associated with several scatterers at once.
On the contrary, the time-delay matrix allows a discrimination
between scatterers based on the time-of-flight of the reflected
echoes [see Figs. 6(g) and 6(h)]. Moreover, unlike the DORT
method, a time-delay analysis also allows us to discriminate
the single-scattering paths from multiple-scattering events, the
latter ones corresponding to longer time of flight. Hence,
the time-delay matrix provides an alternative and promis-
ing route for selective focusing and imaging in multitarget
media.

A second relevant point to discuss is the nature of transmit-
ted time-delay eigenstates in other complex systems. Recently,
Carpenter et al. [27] and Xiong et al. [28] investigated the
group delay operator, i/(2π )t−1∂f t, in a multimode optical
fiber. The eigenstates of this operator are known as the
principal modes in fiber optics [25,26]. For a principal mode
input, a pulse that is sufficiently narrow band reaches the output
temporally undistorted, although it may have been strongly
scattered and dispersed along the length of propagation. On
the contrary, for a particlelike scattering state input, the
focus of the pulse is not only retrieved at the output of the
scattering medium but maintained throughout its entire propa-
gation through the system. This crucial difference provides
particlelike states with a much broader frequency stability
than principal modes, which translates into the possibility to
send much shorter pulses through these particlelike scattering
channels. Last but not least, we also emphasize that even
though particlelike states are unlikely to occur in diffusive

scattering media, the time-delay eigenstates are still very
relevant also in such a strongly disordered context. Consider
here, e.g., that the eigenstates with the longest time delay can
be of interest for energy storage, coherent absorption [55], or
lasing [56,57] purposes. From a more fundamental point of
view, the trace of the Q matrix directly provides the density of
states of the scattering medium [58], a quantity that turns out
to be entirely independent of the mean free path in a disordered
system [59].

Finally, we would like to stress the impact of our study
on other fields of wave physics and its extension to more
complex geometries. For this experimental proof of concept,
a measurement of the wave field inside the medium was
required in order to image the wave functions and prove their
particlelike feature. However, such a sophisticated protocol is
not needed to physically address particlelike wave packets.
A simple measurement of the scattering matrix (or a subpart
of it) at neighboring frequencies [27] yields the time-delay
matrix from which particlelike state inputs can be extracted.
Such a measurement can be routinely performed through
3D scattering media whether it be in optics [6,12], in the
microwave regime [13,35], or in acoustics [33,34]. As to
the generation of particlelike wave packets, multielement
technology is a powerful tool for the coherent control of
acoustic waves and electromagnetic waves [60]. Moreover,
recent progress in optical manipulation techniques now allows
for a precise spatial and temporal control of light at the input
of a complex medium [60]. Hence there is no obstacle for the
experimental implementation of particlelike wave packets in
other fields of wave physics. At last, we would like to stress
the fact that in our experimental implementation we are in the
limit of only a few participating modes with a wavelength that
is comparable to the spatial scales of the system. In this limit
the implementation of particlelike states is truly nontrivial
since interference and diffraction dominates the scattering
process as a whole. When transferring the concept to the
optical domain one may easily reach the geometric optics
limit where the wavelength is much shorter than most spatial
scales of the system and particlelike states may in fact be
much easier to implement in corresponding complex optical
media.

IV. CONCLUSION

In summary, we experimentally implemented particlelike
scattering states in complex scattering systems. Based on
an experimentally determined time-delay matrix, we have
demonstrated the existence of wave packets that follow
particlelike bouncing patterns in transmission through or in
reflection from a complex scattering landscape. Strikingly,
these wave packets have been shown to remain focused in
time and space throughout their trajectory within the medium.
We are convinced that the superior properties of these states
in terms of frequency stability and spatial focus will make
them very attractive for many applications of wave physics,
ranging from focusing to imaging or communication purposes.
In transmission, the efficiency of these states in terms of
information transfer as well as their focused input and output
profile will be relevant. In reflection, selective focusing based
on a time-of-flight discrimination will be a powerful tool to
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overcome aberration and multiple scattering in detection and
imaging problems.
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APPENDIX A: EXPERIMENTAL PROCEDURE

The first step of the experiment consists of measuring the
impulse responses between two arrays of points placed on the
left and right sides of the disordered slab (see Fig. 1). These
two arrays are placed 5 mm away from the disordered slab.
The array pitch is 0.8 mm (i.e., <λ/2) which guarantees a
satisfying spatial sampling of the wave field. Flexural waves
are generated in the thermoelastic regime by a pumped diode
Nd:YAG laser (THALES Diva II) providing pulses having
a 20-ns duration and 2.5 mJ of energy. The out-of-plane
component of the local vibration of the plate is measured
with a heterodyne interferometer. This probe is sensitive to
the phase shift along the path of the optical probe beam.
The calibration factor for mechanical displacement normal
to the surface (100 mV/nm) was constant over the detection
bandwidth (100–400 kHz). Signals detected by the optical
probe were fed into a digital sampling oscilloscope and
transferred to a computer. The impulse responses between
each point of the same array (left and right) form the time-
dependent reflection matrices (r and r′, respectively). The
set of impulse responses between the two arrays yields the
time-dependent transmission matrices t (from left to right)
and t′ (from right to left). From these four matrices, one
can build the S matrix in a point-to-point basis [Eq. (1)]. A
discrete Fourier transform (DFT) of S is then performed over
a time range �t = 120 μs that excludes the echoes due to
reflections on the ends of the plate and ensures that most of the
energy has escaped from the sample when the measurement is
stopped. The next step of the experimental procedure consists
of decomposing the S matrices in the basis of the flexural
modes of the homogeneous plate. These eigenmodes and their
eigenfrequencies have been determined theoretically using
the thin elastic plate theory [15,48,49]. They are normalized
such that each of them carries unit energy flux across the
plate section. Theoretically, energy conservation would imply
that S is unitary. In other words, its eigenvalues should be
distributed along the unit circle in the complex plane. However,
as shown in a previous work [15], this unitarity is not retrieved
experimentally because of experimental noise. A dispersion
of the eigenvalues si of the S matrix is observed around
the unit circle. We compensate for this undesirable effect
by considering a normalized scattering matrix with the same
eigenspaces but with normalized eigenvalues [15]. The Q
matrix is then deduced from S using Eq. (2). The frequency

derivative of S at f = f0 is estimated from the centered finite
difference,

∂f S(f0) = S(f0 + δf ) − S(f0 − δf )

2δf
,

with δf = 3 kHz.

APPENDIX B: REVEALING
TRANSMISSION/TIME-DELAY EIGENCHANNELS
AND THEIR TEMPORAL/SPECTRAL FEATURES

The transmission and time-delay eigenchannels are derived
from the matrices S and Q measured at the central frequency
f0. The transmission matrix t(f0) (from the left to the right
lead) is extracted from S(f0) [Eq. (1)]. The output and input
transmission eigenvectors, ul and vl , are derived from the
singular value decomposition of t(f0):

t(f0) =
∑

l

√
Tl(f0)ul(f0)v†l (f0)

with Tl(f0) the intensity transmission coefficient associated
with the lth scattering eigenstate at the central frequency. The
frequency-dependent amplitude transmission coefficient tl(f )
of this eigenstate can be obtained from the set of transmission
matrices t(f ) measured over the whole frequency bandwidth,
such that

tl(f ) = u†
l (f0)t(f )vl(f0).

An inverse DFT of tl(f ) finally yields the time-dependent
amplitude transmission coefficient tl(τ ) of the lth scattering
eigenstate measured at the central frequency f0. The time
traces displayed in Figs. 3(a) and 3(b) correspond to the square
norm of this quantity.

The time-delay eigenchannels at the central frequency are
derived from the eigenvalue decomposition of Q(f0)

Q(f0) =
∑
m

τmqin
m (f0)

[
qin

m (f0)
]†

.

The time-delay eigenvector qin
m is a 2N -dimensional column

vector that can be decomposed as

qin(f0) =
(

qin
m,L(f0)

qin
m,R(f0)

)
,

where qin
m,L(f0) and qin

m,R(f0) contain the complex coefficients
of qin

m (f0) in the basis of the N incoming modes in the left
and right leads, respectively. Among the set of time-delay
eigenstates, particlelike scattering states injected from the left
lead should fulfill the following condition [17]:∣∣∣∣qin

m,L(f0)
∣∣∣∣2 � ∣∣∣∣qin

m,R(f0)
∣∣∣∣2 � 0.

A particlelike scattering state is thus associated with a N -
dimensional input eigenvector qin

m,L(f0). The corresponding
output eigenvector qout

m,R(f0) and transmission coefficient

t
(q)
m (f0) can be deduced from the t matrix:

t(f0)qin
m,L(f0) = t (q)

m (f0)qout
m,R(f0).

The frequency-dependent amplitude transmission coefficient
t

(q)
m (f ) of this time-delay eigenstate can be obtained from the
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set of transmission matrices t(f ) measured over the whole
frequency bandwidth, such that

t (q)
m (f ) = [

qout
m,L(f0)

]†
t(f )qin

m,R(f0).

An inverse DFT of t
(q)
m (f ) finally yields the time-dependent

amplitude transmission coefficient t
(q)
m (τ ) of the mth time-

delay eigenstate measured at the central frequency f0. The time
traces displayed in Figs. 3(c)–3(e) correspond to the square
norm of this quantity.

APPENDIX C: IMAGING SPATIOTEMPORAL
WAVE FUNCTIONS OF TRANSMISSION/REFLECTION

AND TIME-DELAY EIGENCHANNELS

Impulse responses are measured between the line of sources
(denoted by the index i) and a grid of points (denoted by the
index j ) that maps the medium, following the same procedure
as the one described above. The grid pitch is 1.3 mm. This
set of impulse responses forms a transmission matrix k(τ ) =
[kji(τ )]. A discrete Fourier transform (DFT) of k(τ ) yields a set
of frequency-dependent transmission matrices k(f ). The lines
of k(f ) are then decomposed in the basis of the plate modes.
The monochromatic wave field 
(f ) = [ψj (f )] associated
with a transmission/reflection or time-delay eigenchannel is
provided by the product between the matrix k(f ) and the
corresponding eigenvector [vl(f0) or qin

m,L(f0), respectively].

The time-dependent wave field 
(τ ) = [ψj (τ )] is deduced by
an inverse DFT over a frequency bandwidth of our choice.
Note that a Hann window function is priorly applied to k(f )
to limit side lobes in the time domain.

APPENDIX D: UNMIXING DEGENERATED
TIME-DELAY EIGENSTATES

Depending on the geometry of the scattering medium, the
different scattering paths involved in a degenerated time-delay
eigenstate can be discriminated either in the real space or in the
spatial frequency domain [54]. Here, the time-delay eigenstate
displayed in Fig. 6(b) shows two scattering paths with opposite
angles of incidence. Hence, they can be discriminated by
analyzing each block of the S matrix in the spatial frequency
domain. The left lead of each block is decomposed over the
positive or negative angles of incidence. This subspace of the
S matrix, referred to as S′, is then used to compute a reduced
time-delay matrix Q′ [54] such that

Q′ = − i

2π
S′−1

∂f S′.

Note that the transpose conjugate operation of Eq. (2) is here
replaced by an inversion of S′ because of its nonunitarity [54].
Depending on the sign of the angle of incidence chosen for
the left lead, the reduced matrix Q′ provides the time-delay
eigenstates displayed in Figs. 6(c) and 6(d).
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