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We investigate transport through graphene nanoribbons in the
presence of disorder scattering. We show that size quantization
patterns are only present when SU(2) pseudospin symmetry
is preserved. Symmetry breaking disorder strongly suppresses
signatures of transverse quantization due to the inherent en-
tanglement of pseudospin and transverse quantum numbers in

graphene. To quantitatively distinguish the influence of symme-
try breaking and symmetry conserving disorder on transport, we
consider weak localization: we observe a transition from weak
antilocalization to weak localization as symmetry-breaking dis-
order is introduced. We discuss implications for experimental
observations of size quantization signatures.

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction Graphene, the first two-dimensional
solid [1], features remarkable electrical and mechanical prop-
erties that open up possibilities for many new and intriguing
applications [2]. While properties of the perfect honeycomb
lattice and its consequences for electronic structure and dy-
namics are well understood, the effect of disorder caused by
local distortions of the graphene lattice, graphene–substrate
interaction, or charged impurities on the unique properties
of graphene remains the focus of theoretical investigations
[3–9]. On general grounds, local symmetry breaking in low-
dimensional systems is expected to have more pronounced
effects than in 3D bulk materials. Investigations of scatter-
ing at long-range potentials [10] demonstrate the importance
of the underlying symmetry for conductance properties. In-
vestigations of the local density of states near edges [11, 12]
or at bulk vacancies [13–17] show a pronounced structure
associated with the formation of quasilocalized states that
strongly influence the material properties. In this article, we
demonstrate that not only the spatial extension of defects (i.e.,
short range vs. long range), but also their symmetry breaking
property is crucial: we find a remarkably strong sensitivity
of quantum transport and of weak localization in graphene
nanoribbons to very low concentrations of single vacancies
that break the SU(2) pseudospin symmetry associated with

the triangular sublattices of graphene. By contrast, point
defects that conserve this symmetry have a substantially
weaker effect. We simulate transport through disordered
nanoribbons of realistic size described by a tight-binding
Hamiltonian. To interpret our numerical results, we consider
two simpler models: a continuous Dirac-like equation
and a quasi-classical Monte-Carlo simulation. We identify
pseudospin non-conserving scattering at lattice vacancies to
be the key for the breakdown of size quantization.

2 Model Graphene can be described in tight-binding
approximation by the Hamiltonian [18]

H =
∑

i,s

∣∣φi,s

〉
Vi

〈
φi,s

∣∣ −
∑
(i,j),s

γi,j

∣∣φi,s

〉 〈
φj,s

∣∣ + h.c.,

(1)

where the sum (i, j) extends over pairs of lattice sites,
∣∣φj,s

〉
is the tight-binding orbital with spin s at lattice site j, Vi is a
locally varying potential, and γi,j is the hopping matrix ele-
ment between lattice sites i and j. For improved accuracy, we
describe the hexagonal graphene lattice using third-nearest-
neighbor coupling (for details see Ref. [12]). We consider
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2 F. Libisch et al.: Transport through graphene nanoribbons

ensembles of ribbons with an average width of up to 60 nm
corresponding to ≈ 300 unit cells in transverse direction (y)
orthogonal to the direction of transport (x) using the mod-
ular recursive Green’s function method (MRGM) [12, 20].
A magnetic field is included by a Peierls phase factor. We
perform ensemble averages over, typically, 100 different dis-
order realizations to eliminate any non-generic feature.

We analyze the implications of the numerical results with
the help of simpler models. One of them employs the Dirac-
like bandstructure of graphene. Close to the Fermi energy,
the band structure of Eq. (1) can be approximated (assuming
that Vi � γi,j) by a conical dispersion relation around the K

point [21],

E(k + kK) = E(kK) + k∂kE(kK) + O(k2
K

) ≈ vF|k|,
(2)

with the Dirac-like Hamiltonian,

H = �vF

(
0 ∂x + i∂y

∂x − i∂y 0

)
+ 1 · V (x), (3)

where we have set E(kK) = 0. Equation (3) ignores both the
length scale of the graphene lattice constant a = 1.4 Å and
the broken rotational symmetry of the cone due to the hexag-
onal lattice structure, an effect known as trigonal warping
[2]. Eigenfunctions of Eq. (3) on an infinitely extended sheet
(V = 0) are plane waves |k〉 where the direction of motion
θk,

θk = tan−1(ky/kx), (4)

is coupled to the AB-sublattice degree of freedom [2],

|k〉 = eik·r (|A〉 + eiθk |B〉) /
√

2. (5)

The Hamiltonian H preserves the SU(2) pseudospin projec-
tion (or helicity) h = (σ · k)/ |k| along k̂, i.e., the angle θk

(σ is the vector of the Pauli matrices). Conservation of pseu-
dospin is a direct consequence of the symmetry between the
two sublattices A and B. Furthermore, the band structure fea-
tures two non-equivalent cones (“valleys”) at the K and K′

points in the reciprocal lattice. This additional degeneracy al-
lows to represent the low-energy band-structure near E = 0
in terms of Dirac-like four-spinors |ψ〉 = (ψK

A
, ψK

B
, ψK′

A
, ψK′

B
)

with amplitudes for the AB-sublattice in real space and for
the KK′ points in reciprocal space. The sign of θk is reversed
upon transition from K to K′. Note that physical spin s is not
included in the present analysis.

3 Lattice defects One of the consequences of pseu-
dospin conservation is the suppression of backscattering [2].
If the scattering potential commutes with the helicity op-
erator, the first-order transition probability P for scattering

Figure 1 Defects in graphene nanoribbons: (a) single vacancy,
breaking the degeneracy between the two sublattices; (b) double
vacancy which equally affects both sublattices; (c) Stone–Wales
deformation: four hexagons are replaced by pairs of pentagons and
heptagons.

|k〉 → |k′〉 is proportional to

P(k → k′) = ∣∣〈k′∣∣ V |k〉∣∣2 ∝ cos2[(θk − θ′
k′ )/2], (6)

which vanishes for
∣∣θk − θ′

k′
∣∣ = π, i.e., for backscattering. If,

however, the lattice structure is locally disturbed, e.g., by a
single vacancy, such that the sublattice symmetry is broken
and pseudospin is no longer conserved, Eq. (6) no longer ap-
plies and backscattering becomes possible. Indeed, for single
vacancies, simple algebra proves the emergence of states lo-
calized at only one sublattice [9], in contrast to the plane
wave solutions of Eq. (5). However, if the same number of
atoms are removed from both lattices (i.e., by forming a dou-
ble vacancy, Fig. 1b), no such localized states are observed
[9]. More generally, differential cross-sections for scattering
at local defects that preserve the SU(2) pseudospin symmetry
should obey Eq. (6) while defects that locally break it allow
for scattering in arbitrary direction, in particular for isotropic
s-wave scattering in the long-wavelength limit (k → 0),

P(k → k′) ∝ const. (7)

We consider three different lattice defects (Fig. 1), which
locally perturb the electronic structure and, thus, introduce
disorder. The simplest defect is a point defect residing on
a single carbon atom. Such a defect can be caused, e.g., by
chemical absorption of molecules [22], such as hydrogen,
forming a covalent bond with the pz orbital of a carbon atom,
locally changing the electronic configuration from sp2 to sp3.
Consequently, the pz orbital of this carbon atom no longer
contributes to the electronic bandstructure of graphene. In
a tight-binding approximation, this can be modeled by a
single (electronic) lattice vacancy, i.e., one carbon atom is
effectively removed from the graphene lattice (see Fig. 1a).
This defect features a localized state [13–15, 23] Since the
number of active sites on both sublattices becomes different,
states localized on one sublattice emerge [9]. We consider
an ensemble average over many configurations of randomly
placed point defects with a relative defect density as small
as ni = 10−5 impurities per carbon. As a second class of de-
fects, we consider double vacancies as recently investigated
[24], i.e., we remove both atoms of a unit cell (see Fig. 1b).
Double vacancies are pseudospin conserving as both the A
and the B lattice are equally affected. In contrast to a single
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Figure 2 Quantum conductance G of a 60 nm wide graphene
nanoribbon with a length of 1 �m and a defect density ni = 1 ×
10−5 defects/atom of (a) single-point vacancies, (b) double vacan-
cies, or (c) Stone–Wales deformations (curves vertically offset by
5e2/h for clarity). The staircase function for ideal size quantization
plateaus is shown in (c) as thick black line.

vacancy, this defect therefore neither breaks the SU(2)
pseudospin symmetry nor results in localized states [9]. A
third and more complex defect of the ideal graphene lattice
is the Stone–Wales deformation (SWd): four hexagons are
replaced by two heptagon–pentagon pairs (see Fig. 1c).
As a consequence, AB-scattering occurs. To first order
approximation, we adapt the tight-binding parameters of the
graphene ribbon to model the coupling parameters at the
SWd using geometry-dependent coupling parameters.

4 Conductance in the presence of disorder We
perform quantum transport simulations for a zigzag graphene
nanoribbon of width W = 60 nm and length L = 1�m in the
presence of disorder. “Bulk” disorder is introduced by ran-
domly distributed electronic lattice defects. Even relative de-
fect concentrations as low as ni = 10−5 defects per atom give
rise to pronounced deviations from the ideal staircase-shaped
conductance G with plateaus due to transverse size quantiza-
tion (see Fig. 2). Both single- and double vacancies lead to a
reduction of transmission, yet the two types of vacancies give
rise to very different modifications. While pseudospin con-
serving double vacancies approximately preserve the feature
of quantization plateaus, with reduced height and pronounced
dips near the steps where additional modes open, the quan-
tization plateaus are completely washed out for single va-
cancies. This is all the more remarkable as the total number
of point defects for single vacancies is only half the num-
ber for the double vacancies. The drastic difference between
pseudospin conserving double vacancies and non-conserving
single vacancies persists over a wide range of defect concen-
trations and is robust against an average over many disorder
configurations (Fig. 3). Note that in experiment, the energy
of the incoming electrons is usually modulated indirectly by
a back gate voltage, which shifts the charge carrier density
using capacitive coupling. While simple models predict a
square root relation between back gate voltage and electron

Figure 3 Quantum conductance G through a graphene zigzag
nanoribbon of length 1 �m and width W = 60 nm as a function of
energy and disorder concentration ni (in units of 10−5 defects/atom)
averaged over 100 disorder realizations for (a) single vacancies and
(b) double vacancies.

energy, a more quantitative treatment of the local device ge-
ometry is often needed [25, 26].

The connection between pseudospin conservation and
transverse quantization steps can be inferred from the rela-
tion between the direction of the wave vector (Eq. (4)) and the
helicity operator acting on the SU(2) representation-space
spanned up by the A and B sublattices. For the free Dirac
equation (Eq. (3)), the ratio between kx and ky is determined
by the relative amplitude on the two sublattices, i.e., the
pseudo-spin (see Eq. (5)). In turn, transverse quantization
for a finite-width ribbon relates the step quantum number
n with ky. Consequently, the pseudospin degree of freedom
is reflected in the size quantization in nanoribbons. Through
the introduction of defects that break pseudospin conserva-
tion the transverse quantum number n becomes ill defined,
resulting in the strong suppression of transverse quantization
steps. The same is true for interactions with an underlying
substrate, e.g., hexagonal boron nitride, which invariably
introduces a spatially varying electronic potential V (x)
(see Eq. (3)). The absence of pronounced size-quantization
plateaus in the experiment [28–32] points toward scattering
at, e.g., rough edges [26] breaking pseudospin symmetry in
experimental structures.

This mechanism can be illustrated and verified with the
help of quasi-classical simulations based on the propagation
of Monte-Carlo ensembles of classical trajectories: pseu-
dospin conserving lattice defects are simulated by elastic
scattering probabilities of the form of Eq. (6), pseudospin
non-conserving defects will be represented by isotropic s-
wave scattering (Eq. (7)). We randomly shoot trajectories that
propagate classically (i.e., on straight lines) in between scat-
tering events. After traversing on average a mean free path λs

(determined by the disorder concentration), a scattering event
with either pseudospin conserving or non-conserving angu-
lar differential scattering probability takes place. Note that
the only quantum input are the differential scattering proba-
bilities Eqs. (6) and (7). A trajectory is counted as transmitted
(reflected) if it traverses the length L 
 λ (or returns past the
starting point).

As initial condition, we choose the longitudinal wave
numbers kx,n corresponding to the quantized open modes n,

www.pss-b.com © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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4 F. Libisch et al.: Transport through graphene nanoribbons

for each energy E

kx,n =
√(

E

�vF

)2

−
(nπ

W

)2

, n ∈ Z. (8)

We use, typically, 200.000 trajectories per scattering chan-
nel with initial momenta chosen according to Eq. (8). If the
mismatch

∣∣ky − ky,n

∣∣ between the transverse wave number ky

and ky,n corresponding to the largest flux-carrying mode (i.e.,
the largest n for which kx,n is real) is larger than

∣∣ky − ky,n+1

∣∣,
scattering into an evanescent mode (i.e., complex kx) is as-
sumed, initiating a new scattering event in backward direc-
tion (−kx, ky). The average over ensembles of trajectories
provides a quasi-classical Monte-Carlo estimate for the con-
ductance as a function of energy.

Using either an angular dependent scattering probability
for scattering at point defects that are pseudospin preserving
(Eq. (6)) or non-conserving (Eq. (7)), we can reproduce all
qualitative features of the full quantum conductance simu-
lations in remarkable detail (Fig. 4): for s-wave scattering,
quantization steps are strongly suppressed, yielding an (ap-
proximately) linear slope of transmission with energy. For
pseudospin-conserving scattering, quantization steps sur-
vive, and the characteristic dips in the transmission near the
thresholds observed in the full quantum mechanical calcula-
tion are reproduced. These dips resulting from scattering into
evanescent modes disappear in the case of s-wave scattering
because the isotropically scattered portion of the wave retains
no information on the direction prior to the scattering event.
Our quasi-classical model thus provides simple qualitative
explanations for the full quantum-mechanical calculations,
even though it does not include self-focusing due to the wave
nature of the charge carriers is not included or diffractive
scattering. We have verified (not shown) that the striking dif-
ferences between single- and double vacancy scattering are
not qualitatively changed by higher-order effects (e.g. trigo-
nal warping). The relation between broken SU(2) pseudospin
symmetry and the destruction of size-quantization plateaus
implies that for disorder caused by different and more com-
plex defects which also result in pseudospin non-conserving
scattering, signatures of transverse quantization should also
disappear [26]. This can, indeed, be verified for Stone–Wales
defects [Fig. 1(c)]. The size quantization plateaus are washed
out also here by as few as 1 SWd in 105 atoms (see Fig. 2c).

5 Weak localization We now turn our attention to
transport in the presence of a weak perpendicular magnetic
field. In conventional semiconductors, coherent backscatter-
ing leads to weak localization, an enhancement of resis-
tance for zero magnetic fields [33]. From a semiclassical
point of view, each trajectory contributing to reflection has
a time-reversed partner, that is transversed in the opposite
direction. Since both trajectories will accumulate the same
phase, they interfere constructively. At finite magnetic fields
B, however, the additional Aharonov–Bohm phase features
opposite signs for the two paired trajectories, destroying the

Figure 4 Quasi-classical Monte-Carlo simulation of transport
through a disordered nanowire, using a Dirac-like linear dispersion
relation, and either pseudospin-conserving scattering (upper blue
line) or s-wave scattering (lower red line) at randomly distributed
local defects.

constructive interference between time-reversed reflection
pathways. When plotting the reflection or, equivalently, the
resistance as a function of magnetic field, one thus finds a
peak at zero field strength and, through unitarity, a corre-
sponding dip in transmission. The characteristic width of
this peak is related to the average accumulated phase differ-
ence 〈	φ〉 between a trajectory and its time-reversed part-
ner. 	φ is proportional to the enclosed magnetic flux Φ,
〈	φ〉 = 2πΦ/Φ0 = 2πB · 〈A〉 /Φ0, where 〈A〉 is the aver-
age area enclosed by trajectories and Φ0 is the magnetic flux
quantum. For random scattering among the defects we esti-
mate that after a time τ the enclosed area 〈A〉 ≈ λevFτ, where
λe is the elastic mean free path. As 〈	φ〉 reaches 2π, a given
trajectory no longer contributes to weak localization.

〈	φ〉 = 2πB · 〈A〉
Φ0

= 2π → τB = Φ0

λevFB
, (9)

where τB represents the time scale after which the phase ac-
cumulated by the magnetic field B is of the order of 2π.

For transport through bulk-disordered graphene the situ-
ation is more involved [34]. Since pseudospin conservation
leads to a suppression of backscattering (see Eq. (6)), one
would expect a suppression of reflection at zero magnetic
field. Indeed, each individual Dirac cone is not time-reversal
invariant by itself (due to the additional Berry phase of π as-
sociated with pseudospin), resulting in destructive interfer-
ence for a trajectory and its time-reversed path. Thus, ideal
graphene features a weak antilocalization dip in resistance
R or a weak antilocalization peak in conductance G. (In or-
der to avoid confusion we will refer in the following only
to the properties of G). Likewise, conventional localization
manifests itself as a dip in G. The antilocalization peak in G

hinges on the absence of both inter-valley scattering (charac-
terized by a time-scale τi) and of intra-valley scattering (char-
acterized by τz). Inter-valley scattering invalidates the single-
Dirac-cone picture thus leading to conventional localization
(dip in G) while intra-valley scattering randomizes pseudo-
spin and suppresses any weak (anti)localization effect [34].
In light of our previous results, we therefore expect a weak

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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Figure 5 Conductance (	T ) as function of perpendicular magnetic
field B for 60 nm wide ribbons with single (red squares) and double
(blue triangles) vacancies, at two energies (see the label). Curves
are fits to Eq. (10), for fit parameters see Table 1. Black arrows mark
an oscillation not reproduced by Eq. (10).

localization dip in the presence of single vacancies (τz 
 τi),
and no localization effect, or even a weak anti-localization
peak, in the presence of double vacancies (τi 
 τz).

A requirement for a weak antilocalization peak is de-
structive interference of a reflected trajectory and its time-
reversed partner. The Berry phase associated with the conical
bandstructure of graphene leads to this exact cancelation if
we assume a perfect cone structure. However, if the accu-
mulated phase difference is randomized, either by intraval-
ley scattering (small τz) or by dephasing by trigonal warping
(small τW) for energies further away from the Dirac point, the
accumulated relative phase will differ from the mean value
of π for the Berry phase and suppresses antilocalization. By
contrast, the conventional weak localization dip in G due to
inter-valley scattering (τi) is not affected by trigonal warping,
as K and K’ are deformed in an identical way.

We investigate the magnetic-field dependence of the con-
ductance in the presence of single and double vacancies,
taken as prototypical cases of pseudo-spin conserving and
pseudo-spin breaking scattering. Note that proper treatment
of the intermediate case of a Stone–Wales defect in a mag-
netic field would require a full density functional theory
parametrization, which is beyond the scope of this work.
At moderate energies (E = 77.5 meV), we find a weak an-
tilocalization peak in G for the case of double vacancy de-
fects (Fig. 5). With increasing distance in energy from the
Dirac point (E = 280 meV), the conventional localization
dip becomes more pronounced as the dephasing due to trig-
onal warping (smaller τW) becomes significant resulting in
a narrow localization dip on top of an underlying broad an-
tilocalization maximum (Fig. 5). Long trajectories feature
multiple scattering events, incorporate a substantial amount
of inter-valley scattering, and thus contribute to the localiza-
tion dip. By contrast, short trajectories may still contribute to
the antilocalization peak, as they enclose smaller areas. Con-

sequently, the residue of the antilocalization peak extends to
higher field strengths.

Even for only a few double vacancies at low energies,
the antilocalization peak is substantially reduced. This might
be related to the additional internal degree of freedom for
disorder of double vacancies: the angle of orientation α of
the lattice vector connecting the two vacancies relative to the
ribbon axis. Previously, we assumed a random orientation
with equal statistical weight for all three possible orienta-
tions of double vacancies (DV, see open blue triangles in
Fig. 5). To obtain more pronounced antilocalization features,
we consider symmetric double vacancies (SDV, see full
blue triangles in Fig. 5), where we fix the alignment of
the axis through the two missing carbon atoms orthogonal
to the direction of transport. Indeed, the localization dip
vanishes, and we only find pronounced antilocalization for
this system, showing the pronounced sensitivity of transport
in graphene to local symmetries (see full triangles in Fig. 5).

To make the present analysis more quantitative, we fit
our data by the weak (anti-) localization approximation for
diffusive transport in disordered graphene [34, 35]

	T = e2

h

[
F

(
τ−1

B

τ−1
D

)
− F

(
τ−1

B

τ−1
D + 2τ−1

i

)

− 2F

(
τ−1

B

τ−1
D + τ−1

∗

)]
, (10)

F (x) = log(x) +�
(

1

2
+ 1

x

)
, (11)

τ−1
∗ = τ−1

i + τ−1
W + τ−1

z , (12)

where � denotes the digamma function, and τD the dwell
time in the cavity and τ−1

∗ is the total scattering and dephas-
ing rate. Note that the above formulas where originally de-
rived for diffusive transport, where the major contribution
to weak localizations comes from paths of virtually excited
electron-hole pairs [36]. Suppression of weak localization in
the experiment points toward decrease of the relevant time
scales by disorder or strain effects [19]. In ballistic transport,
the Aharonov–Bohm phase replaces this contribution, while
the origin of the different contributions to (anti-)localization
should be, to first order, the same. Our nanoribbons feature
a low disorder concentration and are not perfectly ballistic.
Even though the underlying processes contributing to either
localization or anti-localization are different in the ballistic
and diffusive regimes, the net effect on the (anti-) localization
curve is the same. We thus use the parametrized lineshapes
of Eq. (10) to compare the relative prefactors associated with
scattering events leading to either weak localization or weak
antilocalization.

Extracting three different time scales from the shape of
a single weak localization curve may lead to ambiguous fits.
We therefore exploit the fact that the dwell time τD only de-
pends on the electron energy (and not the disorder, [37]):
different defect types at the same energy should result in the

www.pss-b.com © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Table 1 Scattering times used to fit the calculated transmission data
(see Fig. 5) for single vacancies (SV), double vacancies (DV), and
symmetric double vacancies (SDV) at different energies. Values set
in bold text where fitted using Eq. (10), while values set in normal
text where taken from the corresponding fitted configuration (see
text).

defect energy [meV] τD/τB τi/τB τ∗/τB

SDV 75 3.9 7.1 7.0
DV 75 3.9 6.5 3.3
DV 280 8.5 6.5 3.7
SV 75 3.9 5.9 2.6
SV 280 8.5 5.9 2.9

same τD. Likewise, the inter-valley scattering time τi should
only depend on the defect type (i.e., single, double, and sym-
metric double vacancies). We thus fit the dwell time τD for
the case of SDVs at each energy (bold-face entries in Ta-
ble 1), and use identical values of τD for DV and SV defects
(normal-face entries in Table 1). Likewise, we only fit one τi

for each defect type (SDV, DV, SV), and use this value for
both energies. We find that with these constraints we can fit
the numerical data very well, especially for symmetric dou-
ble vacancies (see solid lines in Fig. 5). There is, however,
an oscillation superimposed on the magnetoconductance un-
accounted for by Eq. (10) (see black arrows in Fig. 5) that
we relate to the shift of the conductance step by the magnetic
field. Since conductance steps are much less pronounced for
single vacancies, we do not observe a similar feature in the
single vacancy data (see red squares in Fig. 5). Comparing
the specific scattering rates, we find a strong decrease in τ∗
when comparing nanoribbons with single to those with dou-
ble vacancies (about 20%, see Table 1). τ∗ is dominated by
the smallest scattering time of τi, τW and τz (see Eq. (12)).
Since the relative change in τi is small (see Table 1), and
the trigonal warping scattering time τW only depends on en-
ergy, a substantially reduced intra-valley scattering time τz

is responsible for the reduction in τ∗. Our analysis of weak
localization, thus, quantitatively confirms that single vacan-
cies lead to substantial intra-valley scattering which breaks
pseudospin and, in turn, washes out signatures of size quan-
tization.

6 Conclusions We have presented full quantum trans-
port simulations through disordered graphene nanoribbons of
realistic size and find that even very low concentrations of sin-
gle defects destroy the graphene pseudospin symmetry lead-
ing to a destruction of transverse size quantization plateaus
in the conductance. By contrast, randomly distributed dou-
ble defects that equally affect both sublattices and, thus, pre-
serve the SU(2) pseudospin symmetry, leave the quantization
plateaus intact while modifying the transmission function.
Our present results suggest that the difficulty in observing
pronounced quantization plateaus in the conductance may
be related to the presence of pseudospin non-conserving de-
fects. Indeed, in agreement with these results, recent studies

demonstrate that plateaus of quantized conductance can be
observed if graphene quantum point contacts are both sus-
pended from the substrate and thoroughly annealed to reduce
the number of adsorbates on the graphene lattice. We show
that the investigation of weak localization at low energies
can be a powerful tool to determine symmetry properties of
graphene nanoribbons. Weak antilocalization indicates high
symmetry and approximate pseudospin conservation. A fit
to a theoretical model [34] allows us to extract the relative
strength of inter-valley and intra-valley scattering. Combin-
ing the information on measured size quantization plateaus
and weak (anti)localization peaks allows us to probe the dy-
namics of short and long scattering paths. Such measure-
ments could thus be used as a tool to characterize the scatter-
ing behavior of different probes, and ultimately to identify
and improve fabrication of pseudospin conserving samples.
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