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We study the crossover between the diffusive and quasi-ballistic regimes of random lasers. In particular, we
compare incoherent models based on the diffusion equation and the radiative transfer equation (RTE), which
neglect all wave effects, with a coherent wave model for the random laser threshold. We show that both the
incoherent and the coherent models predict qualitatively similar thresholds, with a smooth transition from a
diffuse to a quasi-ballistic regime. The shape of the intensity distribution in the sample as predicted by the
RTE model at threshold is also in good agreement with the coherent model. The approximate incoherent models
thus provide useful analytical predictions for the threshold of random lasers as well as the shape of the random
laser modes at threshold. © 2016 Optical Society of America
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1. INTRODUCTION

Random lasers are probably among the most exotic sources of
coherent light studied so far [1–5]. As their name already sug-
gests, random lasers get their optical feedback not by external
mirrors or through a resonator but rather by the random scat-
tering of light in a disordered medium. Even though this opera-
tional principle makes a deliberate tuning or selection of desired
laser modes and output frequencies technically rather involved
[6–10], the first promising applications of random lasers are
recently emerging for which these cost-efficient devices are
ideally suited [11,12]. From the fundamental point of view,
random lasers offer an exciting research area at the interface
between mesoscopic physics, non-Hermitian optics, and laser
physics [2,3,13]. Particularly exciting in this context is the hy-
pothesis, first put forward by Lethokov [14], that random lasers
also may actually be occurring on a natural basis in stellar gases
because multiple scattering and amplification are present in
such media [15–17]. Such hitherto unobserved “astrophysical
random lasers” would have a spatial extension many orders of
magnitudes larger than the micrometer-sized random lasers that
are meanwhile routinely fabricated in the laboratory [18].

The vastly different length scales on which random lasing
may occur, and the many different physical systems in which
they have been realized, have triggered the development of dif-
ferent theoretical approaches to describe this phenomenon
[19–26]. Whereas it might appear reasonable that a radiative
transfer approach, which does not incorporate interference

effects, may be appropriate for astronomical length scales with
long amplifying paths and few scattering events, and a diffusive
model may be suitable to describe strongly scattering media in
the diffusive limit [27], it has so far remained unexplored how
to describe the crossover between such different regimes. An
important aspect that is also missing in the literature is a global
perspective on random lasing in which all the possible random
lasing regimes are charted and properly identified.

The aim of this paper will be to take such a bird’s-eye per-
spective on random lasing and to connect different approaches
with each other. In particular, we will focus on the general ques-
tion of which size a medium with a certain amount of gain and
disorder needs to have such that it reaches the random lasing
threshold. To address this problem, we employ approximative
tools such as the radiative transfer equation (RTE) (for the low-
scattering, or quasi-ballistic, limit) as well as a diffusive model
(for the strongly scattering limit) and compare them with a full
solution of the scalar wave equation that encompasses both of
these limits just as well as the crossover region in between.
While the latter model includes diffraction and interference
effects and relies on heavy numerical simulations, the diffusive
and radiative transfer models are “incoherent” in the sense that
they neglect all wave effects. Their advantage is to provide
simple analytical results.

Our paper is organized as follows. In Section 2 we first
briefly recall Letokhov’s seminal results on the threshold of ran-
dom lasers based on the diffusion equation [19]. In Section 3

1888 Vol. 33, No. 9 / September 2016 / Journal of the Optical Society of America B Research Article

0740-3224/16/091888-09 Journal © 2016 Optical Society of America

mailto:william.guerin@inln.cnrs.fr
mailto:william.guerin@inln.cnrs.fr
mailto:william.guerin@inln.cnrs.fr
mailto:william.guerin@inln.cnrs.fr
http://dx.doi.org/10.1364/JOSAB.33.001888


we present a theory of the random laser threshold based on the
RTE. In Section 4 we introduce the employed coherent wave
model. Finally, in Section 5 we compare the results from these
different models and discuss the conclusions that can be drawn
from them. A short summary is presented in Section 6.

2. RANDOM LASER THRESHOLD FROM THE
DIFFUSION EQUATION

We summarize here the well-known results of Letokhov on the
random laser threshold [19]. The presentation is inspired by
the one given in the review [1]. We start from the diffusion
equation for light with a gain term,

∂W �r; t�
∂t

� D∇2W �r; t� � vE
lg

; (1)

whereW is the energy density, vE is the energy transport veloc-
ity inside the medium, lg is the gain length, and D is the
diffusion coefficient. At 2D or 3D, it reads,

D2D � vElsc

2
; D3D � vElsc

3
; (2)

where lsc is the mean free path. For simplicity, we consider
only isotropic scatterers such that the mean free path is equal
to the transport length [1]. To map our results also to the case
of finite-size scatterers, which scatter anisotropically, the scat-
tering mean free path lsc needs to be rescaled to the transport
length ltr � lsc∕�1 − cos ϕ�, where ϕ is the scattering angle.
The scatterers need to stay below the wavelength, though, as
shape-specific resonances would otherwise destroy the univer-
sality of our analysis [28].

Using the modal decomposition

W �r; t� �
X
n

anΨn�r�e�DB2
n−vE∕lg�t ; (3)

with appropriate boundary conditions, one can show that the
threshold of a random laser is reached when

DB2
1 −

vE
lg

� 0; (4)

where B1 is the smallest eigenvalue, corresponding with the
longest-lived mode. For a 3D sphere of radius R, B1 � π∕R
and for a 2D disk of radius R, B1 � j0;0∕R, where j0;0 ≃ 2.40
is the first root of the Bessel function J0.

Finally, it leads to the following critical radius:

R3D
cr � π

ffiffiffiffiffiffiffiffiffiffi
lsclg

3

r
; R2D

cr � 2.40

ffiffiffiffiffiffiffiffiffiffi
lsclg

2

r
: (5)

Note that the numerical factors in front of �lsclg�1∕2 differ
from each other by only a few percents. Note also that we have
neglected here the “extrapolation length” [29–31], which is a
small correction in the diffusive limit that we consider in this
section. The diffusive, or multiple-scattering regime, is reached
when R ≫ lsc, which corresponds to the validity range of this
threshold condition.

3. RANDOM LASER THRESHOLD FROM THE
RADIATIVE TRANSFER EQUATION

In a regime of low scattering, transport of light is no longer
governed by a diffusive equation but is well described by

the radiative transfer equation (RTE). The RTE is used in many
different fields dealing with transport in complex media, such
as astrophysics [32–34], neutron physics [35], or biological im-
aging [36]. The diffusion equation can be derived from the
RTE with supplementary approximations (see, e.g., [30,36]).
The RTE is thus more general and has been shown to be valid
from the ballistic regime to the diffusive one [37]. It neglects,
however, all wave effects such as interference and diffraction.

The basic quantity of the RTE is the “radiance” or “specific
intensity” L�r; u; t�, which describes the photon density at
point r, propagating along direction u at time t . In a system
exhibiting absorption and scattering, the RTE reads,

1

c
∂L
∂t

�r; u; t� � u · ∇L�r; u; t�

� −�α� χ�L�r; u; t� � χ

4π

Z
4π

0

p�u; v�L�r; v; t�dΩ; (6)

where α is the linear absorption coefficient, χ � l−1
sc and

p�u; v� describes the scattering angular diagram. For a medium
with gain, α < 0, and we can also use the linear gain coefficient
g � −α � l−1

g > 0. The RTE can be derived from Maxwell
equations [38] but also can be found by simple energy conser-
vation arguments because it is a Boltzmann-type equation.

From the specific intensity, one can define two other useful
quantities: the radiative flux q�r; t�, which is identical to the
Poynting vector, and the energy density W �r; t�, which is
the quantity entering into the diffusion equation:

q�r; t� �
Z
4π
L�r; v; t�udΩ; (7)

W �r; t� �
Z
4π

L�r; v; t�
c

dΩ: (8)

A. Random Laser Threshold

For a slab geometry, the random laser threshold was found from
the RTE using a modal decomposition [22] and applied to the
case of a random laser based on cold atoms [39,40]. For a
sphere geometry, Letokhov and co-workers also have derived
the random laser threshold from the RTE [14,41,42]. The de-
tailed derivation can be found in [43]; we only recapitulate the
result here. Moreover, for a better comparison with the data
obtained from the coherent wave model (Section 4), we have
extended these results to the case of a 2D disk. We also give
only the result in this section; a detailed derivation is provided
in Appendix A.

For a 3D sphere, one obtains a critical radius for the random
laser threshold Rcr given by [14,41–43]

tan�qRcr� �
2gqRcr

2g − q2Rcr

; (9)

with

q2 � 3g�χ − g� � 3

lg

�
1

lsc

−
1

lg

�
: (10)

For a 2D disk, the threshold condition is

J0�βRcr�
J1�βRcr�

� π

2

g
β
; (11)
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where J0, J1 are Bessel functions of the first kind, and with

β2 � 2g�χ − g� � 2

lg

�
1

lsc

−
1

lg

�
: (12)

These threshold equations can easily be solved numerically
and give results that are very close to each other. We show in
Fig. 1 the result for the 3D case. It shows a smooth transition
from the diffusive regime (upper-left part) to the quasi-ballistic
regime (lower-right part).

B. Limiting Cases

1. Diffusive Limit

For the 3D case, one can recover the diffusive threshold given
by Eq. (5) from Eqs. (9) and (10) by supposing that there is
much more scattering than gain, χ ≫ g , so that q2 ≃ 3gχ, and
also that χRcr ≫ 1 (diffusive regime). One can then easily show
that the r.h.s. of Eq. (9) is very small. Then Eq. (9) simplifies to
qRcr ∼ π, which gives Rcr ∼ π∕q ∼ π�lglsc∕3�1∕2 as expected.

For the 2D case, supposing also that χ ≫ g , then β2 ≃ 2gχ,
and the threshold equation reduces to

J0�βRcr�
J1�βRcr�

� πg
2β

≃
π

2

ffiffiffiffiffi
g
2χ

r
≪ 1: (13)

We can thus take the zero of the function J0�z�∕J1�z�,
which is the zero of J0�z�, i.e., j0;0 ≃ 2.40. Thus βRcr ∼ 2.40,
and we recover Rcr ∼ 2.40�lglsc∕2�1∕2.

2. Ballistic Limit

Interestingly, one also can simplify the threshold equations in
the opposite limit of very low scattering and high gain.

For the 3D case, if χ ≪ g, we have the simplification q ≃
�ig

ffiffiffi
3

p
and tan�qRcr� ≃ tan��i

ffiffiffi
3

p
gRcr�. For gRcr > 1, it

gives tan�qRcr� ≃�i. Then Eq. (9) is easily solved to [44]

Rcr ∼
1� ffiffiffi

3
p

− 3∕2
�
g
≈ 4.31lg: (14)

At 2D, if χ ≪ g, β2 ≃ −2g2, β ≃�i
ffiffiffi
2

p
g , and the threshold

equation reduces to

�i
ffiffiffi
2

p
J0
�
�i

ffiffiffi
2

p
gRcr

�

J1
�
�i

ffiffiffi
2

p
gRcr

� � π

2
: (15)

The solution is

Rcr ≈ 3.76lg : (16)

In both cases, we obtain a finite critical radius that does not
depend on the scattering χ, corresponding to the vertical
asymptotes in Fig. 1. Surprisingly, this result suggests that a
threshold exists even without scattering, a conclusion that
seems clearly unphysical, suggesting that some of the approx-
imations made to derive the RTE threshold (see Appendix A)
break down in the ballistic limit. We discuss in more detail the
nature of the employed approximations in Appendix B.

C. Shape of the Energy Density at Threshold

The shape of the intensity distribution at threshold can be
obtained by solving Eq. (A15) (or its 3D equivalent).

In 3D one finds [43]

W 0�r� ∝
sin�qr�

r
; (17)

while in 2D we obtain

W 0�r� ∝ J0�βr�: (18)

In both cases, if there is more scattering than gain, χ > g , β
and q are real and W 0�r� is bell-shaped with its maximum at
r � 0. On the contrary, if χ < g, β and q are purely imaginary
andW 0�r� increases from the center (Fig. 3). This is consistent
with what could be expected in a quasi-ballistic regime, where
photons farther from the center have been in averaged more
amplified.

4. RANDOM LASER THRESHOLD FROM
COHERENT WAVE CALCULATIONS

In order to compare the predictions of the RTE with a more
complete model, we use coherent wave calculations of the las-
ing threshold, which account for the effects of finite wave-
lengths and wave interference. Due to the computational
difficulty of performing such calculations on disordered media,
we restrict the comparison study to 2D, using the scalar wave
equation �

∇2 � ε�r;ω�
�
ω

c

�
2
�
ψ�r� � 0: (19)

This describes a 2D electromagnetic mode in the transverse
magnetic (TM) polarization, where ψ�r� is the complex scalar
wavefunction corresponding to the out-of-plane component of
the electric field, ω is the mode frequency, ∇2 is the 2D
Laplacian, and ε�r;ω� is the dielectric function.

Wave equation (19) introduces an extra length scale, the
wavelength λ ∼ 2πc∕ω. For comparison with the RTE, we shall
be interested in the regime where the wavelength is shorter than
the other length scales, i.e., c∕ω ≪ fR;lsc;lgg.

We model the random laser by uniformly distributing N
delta-function scatterers at positions fr1;…; rN g, within a cir-
cular region of radius R. This region also contains a uniform
background of gain material, with susceptibility χg ∈ C. Thus,
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Fig. 1. Critical radius for the random laser threshold as a function
of the gain coefficient g � l−1

g and the scattering coefficient χ � l−1
sc ,

as given by the numerical solution of Eq. (9). Note the log scales. The
dotted lines are iso-Rcr contours.
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ε�r;ω� �
	
1� χg � a

PN
j�1 δ

2�r − rj�; r ≤ R
1; r > R:

(20)

The parameter a, which has units of area, determines the
strength of each scatterer. The use of independent delta-
function scatterers allows us to relate the model parameters to
the mean free path. The density of scatterers is ρ � N∕πR2,
and the 2D scattering cross section of an individual scatterer in
the first Born approximation is σ � a2�ω∕c�3∕4. Thus,

lsc �
1

ρσ
� 4πR2

Na2�ω∕c�3 : (21)

From this setup, the lasing threshold calculation proceeds as
follows: for a fixed lasing frequency, scatterer distribution, and
scatterer strength, we find a complex value of χg that satisfies
Eq. (19) with purely outgoing boundary conditions. The de-
tailed procedure is described in Appendix C. Essentially, we
perform a partial-wave expansion on ψ�r�, which reduces
Eq. (19) to a non-Hermitian eigenproblem whose eigenvalues
are the values of χg for which the solution is purely outgoing in
the external region r > R. Out of these possible values of χg , we
choose one with sufficiently small Re�χg � (i.e., negligible index
shift), and the smallest value of −Im�χg � (i.e., least gain needed
to reach threshold). This mode’s refractive index is

ng ≈ 1� i
2
�Im�χg ��: (22)

By repeating this procedure for many realizations of the scat-
terer distribution, we compute

g � l−1
g ≡ h−2 Im�ng �ω∕ci �

ω

c
h−Im�χg �i: (23)

As in the RTE, lg represents the average path length trav-
eled by a photon before an amplification event. By changing
the individual scatterer strength a and using Eq. (21), we
can find the dependence of lg on lsc and compare the result
to the predictions of the RTE.

We perform two sets of calculations, for ω � 30c∕R and
ω � 60c∕R; as we shall see, these two frequencies give
qualitatively similar results. For each case, we take N � 250
scatterers and tune a so that the mean free path varies over
10−1R ≲ lsc ≲ 102R, ranging from the diffusive to the quasi-
ballistic regime.

5. COMPARISON

In this section, we compare the results of the different models
for the threshold and for the intensity distribution at threshold.

A. Threshold

We use the different models to plot gR at threshold as a func-
tion of χR � R∕lsc or 1∕�χR�. We show in Fig. 2 the com-
parison between the data of the coherent wave model (previous
section) and the analytical results of the diffusion (Section 2)
and RTE thresholds (Section 3).

Overall, looking at Fig. 2(a), we can observe that the wave
model and the RTE thresholds are quite close to each other.
Moreover, the wave-model threshold becomes close to the dif-
fusive ones for large optical thickness χR. The fact that fully
incoherent models provide here very good estimates was not
obvious from the outset because the incoherent models are only

expected to describe transport properties averaged over the
disorder configurations. On the contrary, the coherent model
selects the “best”mode at each realization (see Fig. 4). This also
explains why the incoherent models predict larger gain thresh-
olds and are thus “pessimistic.” The discrepancy between the
different models increases as the optical thickness (∝χR)
decreases [see Fig. 2(b)].

Another important observation is that the RTE threshold is
significantly more accurate (closer to the wave model) than the
threshold from the diffusion equation. For example, in the in-
termediate regime R ≈ lsc, the wave model predicts a gain
threshold gR ≈ 1.1, while the RTE threshold is gR ≈ 1.5 and
the diffusive one is gR ≈ 2.9. Thus, as soon as the random laser
is not deeply in the diffusive regime, the RTE theory provides a
significant improvement.

However, in the limit of low scattering (ballistic or empty
disk), the RTE model predicts a scattering-independent finite
threshold. As already mentioned, this indicates a breakdown of
the approximations used to derive the threshold in the RTE
model. On the contrary, the scattering-independent threshold
of the coherent model can have a clear physical interpretation:
the disk boundary creates an index mismatch with the sur-
rounding vacuum due to the gain coefficient and thus reflects
some light, which induces some coherent feedback. In this re-
gime, the laser is not “random” and is based on whispering
gallery modes. The corresponding gain threshold depends on
the wavelength because the index mismatch depends on the
wavelength for a fixed gain coefficient. The coherent model is
thus able to describe the transition from a diffusive random
laser to a “ballistic,” cavity-based one. The partial reflection due
to the index mismatch is not included in the incoherent models.

B. Intensity Distribution

We also can compare the averaged intensity distribution of the
lasing mode at threshold obtained from the wave model and the
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Fig. 2. (a) Comparison of the thresholds computed from the differ-
ent models. Points are numerical solutions of the wave model for two
different frequencies. The dashed blue line is the diffusive threshold
computed from Eq. (5). The red solid line is the RTE threshold com-
puted from Eq. (11). Its asymptotic behavior in the ballistic regime
[Eq. (16)] is indicated by the green dotted line. Note the logarithmic
scales. (b) Zoom into the diffusive and intermediate regimes (linear
scales and inverted x axis).
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analytical profile predicted by the RTE model [see Eq. (18)].
We show in Fig. 3 the intensity profile computed in the wave
model at threshold for ω � 60c∕R, averaged over 100 disorder
configurations and over the radial angle, for two different scat-
terers strengths (solid lines). For highly scattering samples
(lsc � 0.2R), we observe that the energy is confined near
the center, as it could be expected in the diffusive regime. On
the contrary, for weakly disordered samples (lsc � 20R), the
averaged intensity increases from the center (this also can be
seen in Fig. 4 of [25]). These qualitatively different behaviors
are well captured by the RTE prediction (dash–dotted lines).
The agreement is even quite good in the diffusive regime.
Differences are more important in the quasi-ballistic regime.
First, the gain at threshold is higher in the RTE model [Fig. 2];
thus the intensity increases faster than in the wave model.
Second, oscillations appear in the coherent model, which are
a signature of interference effects due to the partial reflection
at the boundary, creating an oscillatory pattern in the lasing
mode. This partial reflection also contributes to increasing the
intensity at the center, reducing the difference between the
center and the edge.

6. CONCLUSION

In this paper, we have studied the threshold of random lasing in
a 2D disk in the crossover from the diffusive to the quasi-bal-
listic regimes, and we compared different models to describe
this transition. The more accurate, coherent model is able to
describe this system in all regimes, at the cost of computational
complexity, which, in particular, limits the size and dimension-
ality of the system under study. In the diffusive limit, the dif-
fusion equation, which provides a fully incoherent description,
predicts the threshold quite accurately, although interference
and wave effects are neglected. Moreover, an incoherent model
is also available beyond the diffusive regime. This model, based

on the radiative transfer equation, also provides analytical re-
sults, which agree with the full coherent model on a qualitative
level and even show quantitative agreement in the crossover
regime on a level superior to the diffusive model. The radiative
transfer equation also correctly predicts the global shape of the
averaged intensity distribution at threshold.

Surprisingly, even though the incoherent model is expected
to break down deep in the ballistic limit because the boundary
conditions cannot be treated rigorously, it predicts a random
laser threshold as well as a modal intensity distribution in quali-
tative agreement with the coherent model. At the other ex-
treme, the diffusion model also should break down when
the mean-free path becomes comparable with the wavelength.
Despite these limitations, the incoherent models are efficient in
predicting the good order of magnitude for the random laser
threshold in a large range of parameters.

The comparison with experimental data also would be in-
teresting. In most experimentally accessible systems, however,
the polydispersity of the samples and the complicated geometry
due to the scattering of the pump [45] makes a quantitative
comparison quite difficult. These problems are reduced with
cold atoms, and the observed threshold reported in [46] was
not far from Letokhov’s diffusive threshold, showing that such
simplified models can be useful guides to experimentalists.

APPENDIX A: DERIVATION OF THE RTE
THRESHOLD AT 2D

We present here a detailed derivation of the random laser
threshold [Eq. (11)] as well as the shape of the intensity dis-
tribution at threshold [Eq. (18)], from the radiative transfer
equation for a 2D disk.

A. Threshold Condition from the RTE

We start from the RTE written at 2D:

1

c
∂L
∂t

�r; u; t� � u · ∇L�r; u; t�

� −�α� χ�L�r; u; t� � χ

2π

Z
2π

0

p�u; v�L�r; v; t�dθ 0; (A1)

where θ 0 � �r; v� is the plane angle between r and v. In the
following, we suppose isotropic scattering: p�u; v� � 1. Then
the last integral reads

R
L�r; θ; t�dθ, where θ is in the following

the angle between r and u. In the cylindrical coordinate, the
gradient is

∇L � ∂L
∂r

er �
1

r
∂L
∂θ

eθ; (A2)

and we have u · er � cos θ and u · eθ � − sin θ. We thus
obtain

1

c
∂L
∂t

� cos θ
∂L
∂r

−
sin θ

r
∂L
∂θ

� −�α� χ�L� χ

2π

Z
2π

0

Ldθ:

(A3)

We now look for a separable solution in the form

L�r; θ; t� � Lt�t� × Lsp�r; θ�; (A4)

where “sp” means “space.” Injecting Eq. (A4) into Eq. (A3) we
obtain

Fig. 3. Intensity distribution at threshold averaged over the disorder
and over the radial angle. The solid lines are computed with the co-
herent wave model and the dash–dotted lines with the analytical re-
sults of the RTE model [Eq. (18)]. The vertical scale has been chosen
such that hIi ∼ 1 at the center. In the diffusive regime (lsc � 0.2R),
the energy is confined near the center, while in the quasi-ballistic
regime (lsc � 20R) it increases from the center toward the edge.
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1

c
∂Lt
∂t

� Lt
Lsp

×
�
− cos θ

∂Lsp
∂r

� sin θ

r
∂Lsp
∂θ

− �α� χ�Lsp

� χ

2π

Z
2π

0

Lspdθ
�
: (A5)

This is an equation in the form ∂Lt∕∂t � cSLt , which in-
duces an exponential increase when S > 0. The threshold
condition is thus S � 0, i.e.,

cos θ
∂Lsp
∂r

−
sin θ

r
∂Lsp
∂θ

� −�α� χ�Lsp �
χ

2π

Z
2π

0

Lspdθ:

(A6)

B. Eddington Approximation

Unfortunately this equation is still difficult to solve, and we
need an approximation. Following Letokhov and co-workers
[14,41,42], we use the derivation of Sobolev [33] based on
the so-called Eddington approximation [47,48]. It consists
in supposing that the second moment of the luminance Lsp
respective to the cosine of the propagation angle is proportional
to the zeroth one. It is equivalent to writing

Lsp�r; θ� � a�r� � b�r� cos�θ�: (A7)

We can then derive several useful relations:

L0�r� �
1

2π

Z
2π

0

Lsp�r; θ�dθ � a�r�; (A8)

L1�r� �
1

2π

Z
2π

0

Lsp�r; θ� cos θdθ � b�r�
2

; (A9)

L2�r� �
1

2π

Z
2π

0

Lsp�r; θ�cos2 θdθ � a�r�
2

� L0�r�
2

; (A10)

∂Lsp
∂θ

� − sin�θ�b�r�: (A11)

We can use these relations to simplify the θ dependency in
the threshold equation (A6). For this, we first integrate
Eq. (A6) over θ and, using Eqs. (A9) and (A11), we obtain

dL1
dr

� L1
r
� −αL0: (A12)

Then we integrate again Eq. (A6) over θ after multiplication
by cos�θ� and we obtain

dL2
dr

� −�α� χ�L1: (A13)

Next we multiply Eq. (A12) by −�α� χ� and use Eq. (A13)
to obtain

d2L2
dr

� 1

r
dL2
dr

� α�α� χ�L0: (A14)

Finally, because L2 � L0∕2 [Eq. (A10)],

d2L0
dr

� 1

r
dL0
dr

� 2α�α� χ�L0: (A15)

At this stage, we get a single differential equation on the
quantity L0�r�, which is the intensity distribution, with only
one variable. Note that in the derivation at 3D, small
differences appear because we integrate each time over the full

solid angle, which makes a supplementary sin�θ� appear in the
integrals. We obtain at the end a very similar equation, with the
factor 1∕r replaced by 2∕r and the 2 in the r.h.s. replaced by 3.

Another expression that will be useful in the following is
obtained by combining Eqs. (A8), (A10), and (A13) into
Eq. (A7):

Lsp�r; θ� � L0�r� −
1

α� χ

dL0
dr

cos�θ�: (A16)

C. Shape of the Mode

If we solve Eq. (A15), we get the shape of the intensity distri-
bution L0�r� at threshold. The solution of Eq. (A15) that has
no divergence at r � 0 is

L0�r� � CJ0�βr�; (A17)

with β2 � −2α�α� χ� � 2g�χ − g�, where g � −α is the gain
coefficient, and J0 is the Bessel function of the first kind of
order 0.

D. Boundary Conditions

Because the random laser threshold obviously depends on the
size of the medium, it comes from the boundary condition that
should be applied to Eq. (A15).

The medium has a finite radius R. The physical boundary
condition should be that there is no ingoing intensity, i.e.,
Lsp�R; θ� � 0 for all θ such that cos θ < 0. However, it is
not possible to fulfill this condition consistently with the
Eddington approximation in Eq. (A7) (except for the trivial
case of Lsp � 0 everywhere). We thus have to use an approxi-
mate boundary condition, which is that the total ingoing flux
is zero: Z

cos θ<0

Lsp�R; θ� cos�θ�dθ � 0: (A18)

Note that the same problem appears with the use of the dif-
fusion equation and the same approximate condition is used,
leading to the extrapolation length (see, e.g., [30], p. 179).

We thus apply Eq. (A18) to Eq. (A16) to obtain
−2L0�R� � πL1�R� � 0. Using Eqs. (A10) and (A13),

L1�R� � −
1

α� χ

dL2
dr






R
� −

1

α� χ

1

2

dL0
dr






R
; (A19)

and we obtain the approximate boundary condition

L0�R� � −
π

4

1

α� χ

dL0
dr






R
: (A20)

Note that the boundary condition for the 3D case is similar,
the factor π∕4 being replaced by 2/3 (and is the same as in the
diffusion approximation).

Using the intensity profile in Eq. (A17), we finally get a
threshold condition:

J0�βR� �
π

4

β

α� χ
J1�βR�: (A21)

We can simplify β∕�χ − g� � 2g∕β and, because we use
quantities that are normalized to the medium size, it is better
to write the threshold condition in the following way:
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βRJ0�βR�
J1�βR�

� π

2
gR with β2 � 2g�χ − g�: (A22)

APPENDIX B: DISCUSSION ON THE
APPROXIMATIONS USED IN THE INCOHERENT
MODELS

From the initial RTE, there are several ways of finding a ran-
dom laser threshold.

The first one is to first derive the diffusion equation and
then investigate the random laser problem. This approach gives
the well-known results of Section 2. The derivation of the dif-
fusion equation from the RTE needs two approximations (see,
e.g., [36] for a complete derivation, and [49] for a discussion on
various possible approximations). The first one is called the P1

approximation; it consists in decomposing the specific intensity
on the basis of Legendre polynomials of cos θ and keeping only
the first order. At 3D, using the definitions of the radiative
energy density and flux [Eqs. (7), (8)], it reads,

L�r; u; t� � c
4π

W �r; t� � 3

4π
q�r; t� · u: (B1)

This approximation is good if the radiation is “nearly”
isotropic. For this, photons need enough scattering events to
randomize their directions, i.e., one needs R ≫ lsc and, in case
of absorption, la ≫ lsc. The second approximation consists in
neglecting the time derivative of the flux compared with the
time scale associated with transport. This condition is usually
said to be fulfilled if la ≫ lsc, where only absorption is con-
sidered. However, in case of gain, it adds the condition
lg ≫ lsc, which may be a limitation for the random laser prob-
lem, because it excludes the regime of parameters where there is
more gain than scattering. Finally, to determine the random
laser threshold from the diffusion equation, the boundary con-
ditions due to the finite size of the medium are treated with
an approximation that makes the extrapolation length appear
[29–31]. Because of these approximate boundary conditions,
the diffusion equation is known to be bad near the borders
of the medium (meaning at a few lsc).

In the approach presented in Section 3, we first find a
complicated threshold equation directly from the RTE, and
then, on this threshold equation, we make approximations.
The Eddington approximation [Eq. (A7)] is exactly the same
as the P1 approximation [note the similarity between Eqs. (B1)
and (A16)], and the approximated boundary conditions
[Eq. (A18)] are also exactly the same as those used with the
diffusion equation [29,30]. The only condition that is relaxed
is the one about the derivative of the flux. It relaxes the condition
lg ≫ lsc, which increases the validity range of the threshold
condition to the case where the gain is similar or larger than
the scattering. It is thus a significant improvement over the
traditional Letokhov’s threshold. However, the condition
R ≫ lsc, necessary for the isotropization of the flux, and for
the approximate boundary conditions, is a priori not relaxed,
although the RTE in itself is also valid in the ballistic regime.

However, we find in the astrophysics literature (radiative
transfer in stellar or planetary atmospheres) that the Eddington
approximation is good for isotropic scattering and extends to
the optically thin regime [47,48]. Nevertheless, the boundary

conditions are not discussed, and, to our knowledge, there
is no other method to treat the boundary conditions within
the Eddington approximation. Following Letokhov and co-
workers [14,41,42], we have used the method usually applied
with the diffusion equation. It is known that these approximate
boundary conditions lead to an extrapolation length propor-
tional to the scattering mean-free path [29–31]. In the limit
of vanishing scattering, this extrapolation length goes to infinity
and so does the effective size of the medium. This may explain
the appearance of a finite random laser threshold in the ballistic
limit of the RTE [Eqs. (14) and (16)].

Finding a better way to treat the boundary conditions, and
even including the partial reflection due to the index mismatch,
as can be done with the diffusion equation [29,30,36,50–52],
would certainly improve the validity range and the precision of
the RTE threshold.

APPENDIX C: PARTIAL-WAVE CALCULATION OF
LASING THRESHOLDS

This appendix describes the numerical method used to calcu-
late the laser threshold of a 2D disordered system in Section 4.
It relies on basis functions that are purely outgoing at infinity,
called “constant flux” (CF) states [53]. CF states were originally
introduced in the context of steady-state ab initio laser theory
(SALT) [25,53–56], a method for accurately calculating above-
threshold lasing solutions. In this work, however, we will not
draw upon the full machinery of SALT because our interest lies
in threshold statistics. The CF states we shall use are solutions
to the wave equation (19), assuming (i) there are no scatterers,
and (ii) the solutions are purely outgoing in the external region
r > R. These wavefunctions have the form

ump�r;ϕ� �
	
AmpJm�qmpr�Θm�ϕ�; r ≤ R
BmpH�

m �ωr∕c�Θm�ϕ�; r ≥ R; (C1)

where �r;ϕ� are polar coordinates, �m; p� are azimuthal and
radial quantum numbers, H�

m denotes Hankel functions of
the first kind, and Θm�ϕ� are azimuthal basis functions
defined by

Θm�ϕ� �
1

2π

8<
:

ffiffiffi
2

p
sin ϕ; m > 0

1; m � 0ffiffiffi
2

p
cos ϕ; m < 0;

(C2)

which satisfy
R
2π
0 dϕΘm�ϕ�Θm 0 �ϕ� � δmm 0. Matching the

wavefunction and its first radial derivative at r � R gives

qmpJm 0 �qmpR�
Jm�qmpR�

� �ω∕c�H�0
m �ωR∕c�

H�
m �ωR∕c�

; (C3)

which can be solved numerically to find a discrete set of qmp
values, corresponding to the different CF states. With appro-
priate normalization (choice of Amp ), the CF states come to
satisfy a self-orthogonality condition:Z

r<R
d2rumpum 0p 0 � δpp

0

mm 0 : (C4)

Note that the CF basis depends implicitly on the frequency
ω, which appears in Eqs. (C1) and (C3).

We now consider the disordered system with ε�r� given by
Eq. (20). Its modes can be expanded using the CF basis states:
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ψ�r� �
X
mp

cmpump�r�: (C5)

Such a superposition automatically satisfies outgoing boun-
dary conditions (with frequency ω), as required of lasing
modes. Plugging this into Eqs. (19) and (20), and using
Eq. (C5), gives
X
m 0p 0

	��qmp
ω∕c

�
2

− 1

�
δpp

0

mm 0 − a
X
j

ump�rj�um 0p 0 �rj�
�
cm 0p 0

� χg cmp: (C6)

This is a non-Hermitian eigenproblem, whose eigenvalues
are the complex susceptibilities χg that would allow the disor-
dered structure to lase at frequency ω. Note that the delta-
function scatterers enter in the second term in the matrix; their
delta-function nature is handled “exactly” in the sense that we
need not approximate them through spatial discretization.

In order to solve the eigenproblem numerically, we truncate
to a finite CF basis set. For ω � 60c∕R (see Section 4), we take
m ≤ 75 and Re�qmp� ≤ 180∕R. Essentially, these truncations
limit the resolution of the wavefunction in the azimuthal
and radial directions, respectively. There are 6098 CF states
in the remaining basis set. The matrix in Eq. (C6) is non-
sparse, so the solution time increases with the basis size, M ,
as O�M 3�.

Figure 4 shows the computed values of χg for a typical dis-
order realization. The eigenvalues with very large Re�χg � are not
the lasing modes we are interested in; those are modes confined
because of a large real uniform background susceptibility χg,
rather than random scattering. We filter out these solutions
by truncating the eigenvalues to those with sufficiently small
real parts (specifically, jRe�1∕χg �j < 3jIm�1∕χg �j). These re-
maining eigenvalues form a random distribution in Im�χg �,
i.e., the amplification provided by the gain medium. Their
residual small but nonzero Re�χg � correspond to the index shifts
necessary to make each mode lase at frequency ω. Varying ω
moves these eigenvalues mostly sideways in the complex plane,
without much change in Im�χg �. As described in Section 4, we

then pick the smallest eigenvalue with the smallest value of
jIm�χg �j, which determines the gain length lg . Shifts in the real
part of χg due to the gain may be relevant for the study of
individual laser thresholds but are neglected here, as they do
not influence the overall statistics of the laser threshold we
are interested in.
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