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Abstract A very promising recent trend in applied quantum
physics is to combine the advantageous features of different
quantum systems into what is called “hybrid quantum technol-
ogy”. One of the key elements in this new field will have to
be a quantum memory enabling to store quanta over extended
periods of time. Systems that may fulfill the demands of such
applications are comb-shaped spin ensembles coupled to a
cavity. Due to the decoherence induced by the inhomogeneous
ensemble broadening, the storage time of these quantum mem-
ories is, however, still rather limited. Here we demonstrate how
to overcome this problem by burning well-placed holes into the
spectral spin density leading to spectacular performance in the
multimode regime. Specifically, we show how an initial exci-
tation of the ensemble leads to the emission of more than a
hundred well-separated photon pulses with a decay rate sig-
nificantly below the fundamental limit of the recently proposed
“cavity protection effect”.
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1. Introduction

Various setups in cavity quantum electrodynamics (QED)
have been intensively studied during the last decade with
regard to their potential for enabling the storage and pro-
cessing of quantum information. Particularly attractive in
this context are so-called “hybrid quantum systems” (HQS)
[1,2], which combine the individual advantages of different
quantum technologies. A major challenge for the realiza-
tion of quantum information processing consists in ensuring
coherent and reversible mapping of an encoded information
between different elements in such systems [3-8]. A par-
ticularly attractive scenario in this context is realized based
on atomic frequency combs or gradient memories in cav-
ity or cavity-less setups [9—18] for which the information
that one intends to store is emitted by the memory after
the writing process in pulsed revivals at equidistant times.
One of the major bottlenecks of this technology is, how-
ever, that an inhomogeneous broadening of the atomic or
spin ensemble, which plays the role of a quantum memory
[19,20], typically leads to a relatively fast decoherence of
the stored information [21-23]. To counteract this detrimen-
tal effect on the storage time, various techniques have been
developed based, e.g., on refocusing pulses [24], gradient
inversion methods [25], or preselecting the optimal spectral
portion of the inhomogeneously broadened ensemble [26].
Other very recent studies propose to access long-lived dark

or subradiant states in atomic or spin ensembles for efficient
information storage [27-31]. Also new setup designs with-
out any inhomogeneous broadening such as those based on
magnon modes strongly coupled to a cavity have recently
been realized [17, 18]. In this case, however, the gradient
memory is characterized by relatively large intrinsic losses
which impose limitations on the achievable time span of the
revival dynamics. From these state-of-the-art experiments
it is clear that new ideas and concepts will be needed to
make these quantum memories viable for practical imple-
mentations, in particular in terms of the achievable storage
time and the associated information retrieval efficiency.

In this work, we propose a novel approach to obtain a
sustained emission of photon pulses from spin-ensembles
in spite of a significant inhomogeneous broadening of the
spin transition frequencies. Our concept is not restricted to
a particular experimental realization of a spin ensemble, but
can instead be generally applied to different physical real-
izations based, for instance, on negatively charged nitrogen-
vacancy (NV) defects in diamond [21-23,32], or rare-earth
spin ensembles [13,33,34]. The main requirement for our
theory to be applied is that the losses exhibited by each
individual constituent in the ensemble, y, are substantially
smaller as compared to the bare cavity decay rate, k. Our
key insight is that the decoherence in such hybrid quantum
systems can be all but suppressed by a very non-invasive
preparatory step involving the burning of a certain number
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of narrow holes in the comb-shaped spectral spin distribu-
tion at well-defined frequencies. Such a procedure allows
us to access the corresponding collective dark state to align
the system with the lowest decay scale y, and as a result,
to go beyond the fundamental limit of half the bare cavity
decay rate k set by the recently proposed ‘“cavity protection
effect” [35-38]. In this way we demonstrate how to sustain
the pulsed emission from the ensemble during very long
time intervals up to a few microseconds, achieving more
than a hundred well-separated pulses.

2. Results

Starting point of our analysis is an arrangement of several
inhomogeneously broadened spin ensembles coupled to a
single cavity mode with frequency w.. We assume that the
spin ensembles have been prepared with mean frequen-
cies " that are equidistantly spaced at intervals of Aw,
such that 0 = w, +n Ao, resulting in a comb-shaped
spectral density (see Fig. 1(a)). While our approach is gen-
eral we will be referring in the following to one partic-
ular experimental realization based on magnetic coupling
of N'V-ensembles residing in several diamonds coupled to
a superconducting microwave resonator. Note that by an
appropriate alignment of the diamonds with respect to an
external magnetic field and by exploiting the Zeeman effect,
the mean frequencies of the spin ensembles, ", can be ef-
ficiently tuned in a rather wide spectral interval [22,23]. To
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Figure 1 (a) Spectral spin distribution, F(w) = Zf‘f; Q2/Q2.

pu(w), consisting of seven equally spaced g-Gaussians of equal
width, y4/2m = 9.4 MHz. F(w) has peaks at frequencies w(“)
we £ n,Aw with the spacing, Aw/27 =40 MHz. The cavity
frequency w. coincides with the mean frequency of the cen-
tral g-Gaussian, ws = w; = 27 - 2.6915 GHz. Spin ensembles
have coupling strengths distributed as Q2/Q? = exp[—(wc —
w{")2/252], with og/27 = 150 MHz. (b) Spectral function from
(a) with eight spectral holes (see arrows) at the maxima of the
cavity content |A,|?> shown in Fig. 3(e) for Q/27 = 26 MHz. Al
holes are of equal width, A,/27 = 0.47 MHz, and are modelled
by a Gaussian lineshape.

be concrete, we used in our calculations the specific param-
eter values from recent studies, where the non-Markovian
dynamics and the cavity protection effect in a single-mode
cavity strongly coupled to a single inhomogeneously broad-
ened NV-ensemble have been studied (without holes in the
spectral spin density) [37,38].

2.1. Theoretical model

To account for the spin-cavity dynamics, we start from the
Tavis-Cummings Hamiltonian (% = 1) [40]

M Ny
= wala + ZZ 1) (u)()
: k=1
N,
IZZ[ (u)aliu)(f)a-r _ g,ﬂ’”*o,f’”(*)a] _

n=1 k=1

i[n@ale" —y@)‘ae'] (1)
where M and N, in the summations above stand for the
number of spin ensembles coupled to the single cavity mode
and the number of spins in the u-th ensemble, respectively.
Here a' and a are standard cavity creation and annihilation

operators and a(“ &2 are the Pauli operators associated

with each individual spin of frequency a)(’ Y, which obey

the usual fermionic commutation relatlons (The subscript
k enumerates an individual spin which resides in the u-
th ensemble.) The interaction part of the Hamiltonian is
written in the rotating-wave and dipole approximation, with
g,((" ) being the coupling strength of the k-th spin located in
the -th ensemble. The absence of dipole-dipole interaction
terms in Eq. (1) implies that the concentration of spins in
each ensemble is sufficiently low and the distance between
them is large enough. The last term in Eq. (1) describes an
incoming signal with carrier frequency w, and amplitude
n(t) whose time variation is much slower as compared to
l/w,.

Although the individual spin coupling strengths g’ are
very small, the effective collective coupling strength of each
spin ensemble to the cavity mode, 2, = (31", g/%)!/2,
is enhanced by a factor of ~ m . Thus, thanks to this
collective coupling it becomes possible to reach the strong
coupling regime for sufficiently large ensembles (see, e.g.,
[7,22,32] for NV spin ensembles). In a number of pre-
vious studies [23, 35-38] it was demonstrated that it is
very convenient to phenomenologically introduce a con-
tinuous distribution p(w) which describes the shape of the
single spin spectral density. In a similar manner, we define
here M distributions, p,, (@) = 1", g/?8(w — &)/ 2,
which stand for the shape of the p-th spin spectral density,
each satisfying the normalization condition f dowp,(w) =
1. Note that the coupling strengths €2, are not equal in
general, so that the total spectral distribution acquires the

following form, F(w) = Z =1 Q2 w/ Q? - pu(w), where Q

© 2016 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.lpr-journal.org



Laser Photonics Rev. 10, No. 6 (2016)

stands for the collective coupling strength of the central
ensemble [see Fig. 1(a)]. In agreement with our previous
studies [23,37,38], we assume that the spectral spin density
of each ensemble, p, (), can be modelled by a g-Gaussian
distribution of the following form

p/t(w) =C- [1 — (1 — q)(a) _ a)EM))Z/AZ]ﬁ 7

where ¢ is the dimensionless shape parameter, 1 < g < 3,
vy = 2A4/(29 — 2)/(2q — 2) is the full-width at half max-
imum (FWHM) and C is the normalization constant.
Next, we derive the Heisenberg operator equations for
the cavity and spin operators and write a set of equa-
tions for the expectation values (semiclassical approach).
We consider the limit of weak driving powers and there-
fore the number of the excited spins is always small com-
pared to the ensemble size. This allows us to simplify these
equations by setting (o.""“)) ~ —1 (Holstein-Primakoff-
approximation [41]) which results in a closed set of lin-
ear first-order ordinary differential equations (ODEs) for
the cavity and spin expectation values, A(t) = (a(¢)) and
B! (t) = (6" (1)). Finally, by going to the continu-
ous limit and performing rather cumbersome but straight-
forward calculations, we end up with a Volterra integral

t
equation for the cavity amplitude, A(t) = Q? [dt #(t —
0

T)A(T) + D(t) [38], where 2(t) depends on the driving
signal and initial conditions. Here the memory kernel func-
tion, £ (r — 1) = [doF(0)F(w,t, 1) (see Supplemen-
tary Note 1), strongly depends on the exact shape of the
spectral distribution, F(w), and is responsible for the non-
Markovian feedback of the spin ensembles on the cavity,
so that the cavity amplitude at time ¢ depends on all pre-
vious events t < t. (#(w, t, T) depends on the time delay,
t — 7, frequency, w, but is independent from the spectral
distribution.)

The Volterra equation turns out to be the governing
equation not only for the semiclassical but also for the quan-
tum case, when at r = 0 the cavity is fed with a single pho-
ton and all spins in the ensembles are unexcited, |1, |@).
In Supplementary Note 2 we show in detail that the prob-
ability for a photon to stay inside the cavity at time ¢ > 0,
N(@t) = (1, {|a’(H)a(t)|1, |), reduces to N(t) = |A(?)|* in
this case, where A(¢) is the solution of the aforementioned
Volterra equation with the initial condition A(t = 0) = 1.
Note that in the context of spontaneous emission inhibi-
tion using the Zeno effect also analytical solutions of the
Volterra equation have been explored [39].

2.2. Multimode strong coupling dynamics

We first apply the Volterra equation to the spectral function
F(w) displayed in Fig. 1(a), for the case when the cou-
pling strength is in the regime, where only the central spin
ensemble is strongly coupled to the cavity mode (at the res-
onance condition w; = w,). In Fig. 2(a) we plot the decay
of the cavity occupation N (1) = (1, }|af(t)a(?)|1, |) from
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Figure 2 Left column: Decay of the cavity occupation N(t) =
(1, lla'(t)a(t)|1, |), when at t = 0 the cavity is fed with a single
photon of frequency w. and all spins are in the ground state,
[1,1). Right column: Cavity probability amplitude |A(t)|? versus
time t under the action of an incident short rectangular pulse of
duration 6 ns. The carrier frequency, wp = w; = 27 - 2.6915 GHz.
Gray (white) area indicates the time interval during which the
pumping signal is on (off). (a,b) Strong coupling regime (/27 =
8 MHz) with damped Rabi oscillations. (c,d) Multimode strong
coupling regime (/27 = 26 MHz) featuring pulsed revivals. The
spectral function F(w) is taken from Fig. 1(a) when the mean
spin frequency of the central g-Gaussian, ws = o [resonant case
designated by vertical cuts in Fig. 3(a,d)].

the initial state, for which a single photon with frequency w,
resides in the cavity and all spins are unexcited (the model
is given in Supplementary Note 2). The resulting dynamics
displays damped Rabi oscillations, which feature, however,
a slightly distorted shape arising from the dispersive con-
tribution of neighbouring spin ensembles. We observe very
similar dynamics also in the semiclassical case shown in
Fig. 2(b), when the cavity is pumped by a short rectangular
microwave pulse with a carrier frequency matching the res-
onance condition, w, = w; = w. (see Supplementary Note
1 for the derivation of governing equations).

In a next step, we repeat the calculations for both the
quantum and the semiclassical case keeping all parame-
ters unchanged except for the coupling strength, which we
increase from /2w =8 MHz to Q/27 =26 MHz. In
this limit we already entered the multimode strong cou-
pling regime (see [42], where the reverse situation was
explored, when a single emitter is coupled to many cav-
ity modes). Correspondingly, we now observe the desired
pulsed revivals of the cavity occupation N(¢) and the peri-
odic emission of excitations from the spin-ensembles into
the cavity amplitude A(#). This type of dynamics can be
attributed to a constructive rephasing of spins in the en-
sembles at time intervals that are approximately equal to
the inverse of the spectral distance between adjacent spin-
ensembles, 27/ Aw, shown in Fig. 1(a). It is worth noting
that we intentionally chose the duration of the initial driv-
ing pulse in Fig. 2(d) to be much smaller as compared to
the characteristic dephasing time in our system. Such a
choice ensures that the dephasing, caused by the effect of
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inhomogeneous broadening, only has a negligible influ-
ence up to the moment of time when the driving pulse is
turned off. As a result, we obtain very regularly spaced and
well-separated pulses similar to the single-photon case. As
the duration of the driving pulse increases, the dephasing
effect gradually sets in, and as a consequence, the dynam-
ics becomes more and more irregular (not shown). While
these results already demonstrate that the pulsed emission
from collectively coupled and inhomogeneously broadened
spin ensembles is achievable for realistic parameter val-
ues, the number of pulses that we observe in our solu-
tions is rather limited (see Fig. 2). The crucial question
to ask at this point is thus, whether a simple and efficient
procedure can resolve this major bottleneck in the system
performance.

2.3. Eigenvalue analysis

As we will show below, such a procedure can, indeed, be
worked out based on a delicate modification of the spin
spectral density. To arrive at this result, we need to in-
vestigate first how the eigenvalues and the corresponding
eigenstates of this hybrid cavity-spin system look like. For
this purpose we discretise the spectral distribution F(w) in
the frequency domain and substitute A(f) = A - exp(—At)
as well as B,i“)(t) = B. exp(—AXtr) into the above set of
ODEs for the cavity and spin expectation values. This al-
lows us to derive and solve numerically for each value
of w, the non-Hermitian eigenvalue problem Ly, = Ay,
with ¥, = (A, B,")T being the eigenvector which repre-
sents the collective spin-cavity excitation belonging to the
eigenvalue A; (see Supplementary Note 4 for details). Note
that Im(;) plays the role of the collective eigenfrequency
and Re(A;) > O is the rate at which ¥; decays. When solv-
ing this eigenvalue problem we always keep the same shape
for the spectral function F'(w) depicted in Fig. 1(a) but shift
the whole structure in the frequency domain by detuning
the mean spin frequency wy of the central ensemble with
respect to the cavity w,. [Fig. 1(a) corresponds to the res-
onant case, w; = w,..] The only other parameter that we
vary is again the value of the coupling strength €2, that we
tune from the limit where the cavity mode is strongly cou-
pled solely to the central spin subensemble to the regime of
“multimode strong coupling”.

The results of these calculations are presented in Fig. 3,
where we plot the cavity content, |A; |2, of the normalised
eigenvector ; as a function of w; and the calculated col-
lective eigenfrequency Im(A;) [(a),(d)] or decay rate Re();)
[(c),(D)]. Let us consider first the regime where the value for
the coupling strength €2, of each spin ensemble separately
is large enough to ensure strong coupling to the cavity.
In this “single-mode strong coupling limit” we observe an
avoided crossing in Fig. 3(a) whenever the resonance con-
dition with the u-th ensemble is met, a)g” ) = .. The other
off-resonant spin ensembles in turn give rise to small dis-
persive contribution only. The most pronounced avoided
crossing is observed when the cavity is at resonance with

the central spin ensemble, w; = w., where two symmet-
ric polaritonic peaks in the structure of |A;|> occur, see
Fig. 3(b). It is also seen from Fig. 3(c) [yellow symbols]
that a large fraction of eigenstates, ¥;, decays with some
intermediate values of the decay rate which lie within the
interval y < ReA; < k. (Here k and y < « are the dis-
sipative cavity and spin losses, respectively.) This can be
explained by the fact that such eigenvectors represent an
entangled spin-cavity state, where both the cavity and spin
contents are essentially nonzero.

With a further increase of the coupling strength, the
distance between the two polaritonic peaks depicted in
Fig. 3(b), which is approximately as large as 22, increases
and the peak line shapes become substantially sharper (not
shown). Such a peak narrowing can be attributed to the
so-called “cavity protection effect” [35-38] that appears in
the strong coupling regime provided that the spin density
has a spectral distribution with tails that decay sufficiently
fast. The latter requirement is indeed satisfied in our case
because the spectral function F(w) in Fig. 1(a) consists of
seven g-Gaussian distributions.

At even larger values of 2 the avoided crossings even-
tually disappear, being replaced instead by a comb-shaped
structure with parallel stripes characterised by a large cav-
ity content, see yellow curves in Fig. 3(d). Such a picture
is, however, valid only for moderate values of detuning of
wy from w,, whereas for large detuning we are in the dis-
persive regime [see Fig. 3(d,f)]. A comb-shaped structure
of |A;|? with almost equally spaced polaritonic peaks is
clearly seen at resonance, w; = w,, indicating the multi-
mode strong coupling between all spin ensembles and the
cavity mode [see Fig. 3(e)]. It is worth noting that the peaks
become substantially sharper as compared to the case of
the single-mode strong coupling regime [compare Fig. 3(e)
with Fig. 3(b)] due to the aforementioned “cavity protection
effect”. These narrow peaks in the frequency domain are
exactly those that are responsible for the pulsed emission
in the time domain as observed in Fig. 2(d).

The shapes of |A;]? versus Im(};) at @; = w, for both
the multimode and the single-mode strong coupling regime
reproduce exactly the corresponding shapes of the kernel
function U(w) obtained in the framework of the Laplace
transform technique sketched in Supplementary Note 3
[compare Fig. 3(b,e) in the main text with Fig. 2(a,b) in
Supplementary Material]. The connection between these
two complementary concepts provides instructive insights
into the physics underlying the multimode strong coupling
regime.

2.4. Suppression of decoherence

Specifically, we want to apply these findings now to the sup-
pression of decoherence in the multimode strong-coupling
regime [17,42]. For this purpose we will make use of the
recent insight [30], that for single-mode strong-coupling
the decoherence induced by the spin broadening can be
strongly suppressed simply by burning two narrow spectral
holes in the spin spectral density close to the maxima of
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Figure 3 Upper row. Single-mode strong coupling regime. Solution of the eigenvalue problem (see the main text for details) at
Q /27 = 8 MHz as a function of the mean spin frequency ws of the spectral function F(w) shown in Fig. 1(a). (a) The cavity content,
|A/2, of the normalised eigenvector, v, = (A, B,"), versus eigenfrequencies Im(%/) and ws is represented by the color gradient (color
bar on the right in log scale): two prominent polariton modes are clearly distinguishable from a bath of dark states at fixed value
of ws. (b) the cavity content |A;|? versus Im(x) for the resonant case, ws = w,, along the vertical cut shown in (a) (dashed blued
line). (c) |A/|? versus decay rates, Re(x;), and ws with the same coloring as in (a). Cyan dashed line: the minimally reachable decay
rate achieved due to the cavity protection effect, '/2 ~ «/2 (limit of y « «), with x = 27 - 0.4 MHz (HWHM of the cavity decay) and
y =27 - 0.01 MHz « « (HWHM of the spin decay). White dashed line: decay rate of a bare cavity mode, «.

Lower row: Multimode strong coupling regime. Solution of the same eigenvalue problem as above, but for an increased coupling
strength /27 = 26 MHz (notation and colors are the same as in the upper row). Eight polariton modes are clearly distinguishable
with an almost equidistant spacing, see (e) for the resonant case, ws = w. In all calculations N = 1200 spins were used.

the two polaritonic peaks as shown here in Fig. 3(b). The in a corresponding experiment [31], we will try to general-
working principle of this effect is based on the creation of  ize it here to the case where not just two polaritonic peaks
long-lived collective dark states [27,31,35,36] in the spin  appear (as for single-mode strong coupling), but instead
ensemble that only have very little cavity content and may = many of them (as for multimode strong coupling).

thus even outperform the ultimate limit for the decoher- The most natural extension of this hole-burning ap-
ence rate of the cavity protection effect given by I' =«  proach to the multimode regime would demand that the
for y <« « [30]. (Note that the decay rate for a bare cavity  positions of the burned spectral holes remain close to the
without spin ensembles coupled to it is 2«x.) Mathemati-  polaritonic peaks of which we observe altogether eight in
cally, this effect can be associated with rapid variations of ~ Fig. 3(e), corresponding to the seven spin-subensembles
the nonlinear Lamb shift around the holes’ positions and  shown in Fig. 1(a). As illustrated in Fig. 1(b), we there-
with contribution of poles in the Laplace transform of the  fore propose to burn eight narrow spectral holes into the
Volterra equation derived above [30]. Since this theoretical ~ spin distribution at frequencies which correspond to the
concept has meanwhile also been successfully implemented ~ maxima of the cavity content, |A;|?, shown in Fig. 3(e) (or,
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Figure 4 (a) Cavity probability amplitude |A(t)|? versus time t under the action of an incident short rectangular pulse of duration 6 ns
after eight holes are burnt at t = 0, see Fig. 1(b). All other parameters are the same as for the case without hole burning presented in
Fig. 2(d). (b) Same as (a) with the ordinate plotted on a logarithmic scale. The decay process with the minimal decay rate reachable
by the cavity protection effect, e, with x /27 = 0.4 MHz is depicted by the dashed line (limit of ¥ <« «). The decay rate of |A(t)|? for
a bare cavity without spin ensembles coupled to it is given by 2! (not shown).

equivalently, to the maxima of the kernel function U(w)
depicted in Fig. 2(b) of the Supplementary material). The
hole burning itself can be straightforwardly implemented
in the experiment by exposing the cavity to very high in-
tensity tones that feature frequency components exactly at
the desired holes positions. In this way the spins at these
frequency values will be shuffled into an equal population
of ground and excited states, where they can no longer cou-
ple to the cavity and thus effectively form a hole in the spin
distribution. This hole burning is essentially a nonlinear
process, which can not be captured by the Volterra equa-
tion, but we may very well describe the system dynamics
right after the holes have been burned. For this purpose
we directly integrate the Volterra equation numerically in
time, resulting in the time evolution for both the quantum
and the semiclassical case, which looks qualitatively very
similar for both cases (see Fig. 4, where the results for the
semiclassical case are presented only). For these results we
assume that the holes are burned at + = 0 and that they
keep their shape during the whole time interval shown in
Fig. 4, a property which is well-fulfilled in recent experi-
ments where the hole lifetime was estimated to be as large
as 27 ps [31]. Most importantly, we can see very clearly in
Fig. 4 that the pulsed emission from the spin ensemble per-
sists over a drastically increased time interval as compared
to the corresponding case without hole burning represented
in Fig. 2(d). This suppression of decoherence is not only a
quantitative improvement, but it breaks the barrier achiev-
able when making maximal use of the “cavity protection
effect”. To illustrate this explicitly, we replot in Fig. 4(b)
our results from Fig. 4(a) on a logarithmic scale and com-
pare them with this minimal exponential decay e *' of the
fully cavity-protected ensemble. We find that the proba-
bilities |A(#)|?> for the photon pulse revivals significantly
exceed this barrier such that, e.g., att ~ 3 ws after the driv-
ing pulse, the values for |A(t)|* are two orders of magni-

tude above those achievable through cavity-protection. For
longer time-scales this outperformance ratio continues to
grow. To check if the holes we burned in the ensemble are,
indeed, located at the optimal positions, we also performed
additional calculations in which we varied the hole posi-
tions by only a few percent away from the maxima of | A;|>.
We find that such a shift leads to a substantial decrease
in the revival amplitudes as compared to those in Fig. 4
(not shown), thereby confirming our initial choice of po-
sitioning the holes right at the frequencies of the po-
laritonic peaks to secure the long-lived photon pulse
revivals.

3. Conclusions and outlook

In conclusion, our study provides a novel approach to sup-
press the decoherence in quantum memories based on inho-
mogeneously broadened spin ensembles coupled to a cav-
ity. Specifically, when the ensembles feature a comb-shape
structure to give rise to repetitive photon pulse revivals,
we show how the burning of narrow holes in this atomic
frequency comb leads to a dramatic prolongation of the
revival dynamics. We emphasize that the positions of the
holes are generally incommensurate with the positions of
the peaks in the frequency comb - a result that follows di-
rectly from our theory for the multimode strong coupling
regime. Since our protocol successfully manages to over-
come the decoherence both from the inhomogeneous spin
broadening as well as from the cavity dissipation, we ex-
pect our protocol to be an important step towards future
possible realizations of quantum memories based on spin
ensembles.

The challenges we anticipate on the experimental side
are the preparation of a comb-shaped spectral spin distri-
bution (e.g., by detuning several sub-ensembles from each
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other) as well as the strong coupling to a single-mode cav-
ity. Following our proposal, several narrow spectral holes
then need to be burned into this spin ensemble (through the
cavity or from the outside). After such a preparatory step,
the quantum information (as stored, e.g., in a qubit [32])
may be transferred through the cavity bus to the spins from
where it is reemitted back into the cavity at periodic time
intervals without requiring any further control or refocusing
techniques.

Supporting Information

Additional supporting information may be found in the online ver-
sion of this article at the publisher’'s website.
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