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Symmetry, stability, and computation of degenerate lasing modes
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We present a general method to obtain the stable lasing solutions for the steady-state ab initio lasing theory
(SALT) for the case of a degenerate symmetric laser in two dimensions (2D). We find that under most regimes
(with one pathological exception), the stable solutions are clockwise and counterclockwise circulating modes,
generalizing previously known results of ring lasers to all 2D rotational symmetry groups. Our method uses
a combination of semianalytical solutions close to lasing threshold and numerical solvers to track the lasing
modes far above threshold. Near threshold, we find closed-form expressions for both circulating modes and
other types of lasing solutions as well as for their linearized Maxwell-Bloch eigenvalues, providing a simple
way to determine their stability without having to do a full nonlinear numerical calculation. Above threshold, we
show that a key feature of the circulating mode is its “chiral” intensity pattern, which arises from spontaneous
symmetry breaking of mirror symmetry, and whose symmetry group requires that the degeneracy persists even
when nonlinear effects become important. Finally, we introduce a numerical technique to solve the degenerate
SALT equations far above threshold even when spatial discretization artificially breaks the degeneracy.
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I. INTRODUCTION

Many lasers are formed from high-symmetry microcavity
geometries that have degenerate resonant modes, most fa-
mously ring and disk resonators in which the clockwise and
counterclockwise circulating modes are degenerate (having
the same complex resonant frequency). In a linear system,
any superposition of these solutions also satisfies Maxwell’s
equations, but above-threshold lasers have nonlinear gain that
allows only certain superpositions; it is well known that
the only stable lasing solutions of a ring are the circulating
solutions E ∼ eimφ , as opposed to the standing-wave modes
E ∼ sin mφ, cos mφ [1–4]. However, more recent microcavi-
ties often have other symmetry groups supporting degeneracies
[5], such as the sixfold symmetry that commonly occurs in
photonic-crystal resonators [6], as seen in Fig. 1, or more
generally the Cnv symmetry group (n-fold rotations and n

mirror planes) for n > 2 [5], and much less is known about
the lasing solutions in such cases. Figure 1 gives examples
of degenerate lasing modes in Cnv geometries. Previous
work [7] showed how the steady-state degenerate solutions
of SALT (steady-state ab initio lasing theory [8–12]) could
be found from an educated guess of a superposition of the
threshold degenerate modes, and how their stability could be
computed numerically. In this work, we show rigorously using
degenerate perturbation theory on the SALT equations that the
circulating modes used in Ref. [7], along with standing-wave
modes that are linear combinations of the clockwise and
counterclockwise circulating modes, are the only solutions to
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SALT in the Cnv degenerate case. We complement those results
with semianalytical closed-form expressions for the stability
eigenvalues of the Maxwell-Bloch equations linearized about
these lasing solutions (Sec. III). We find that the only stable
solutions right above threshold (with one isolated exception
that is unattainable under normal circumstances) are typically
the circulating ones. An important observation of our paper
is that Cnv symmetries experience a spontaneous symmetry
breaking due to nonlinearity above threshold, and analysis of
the resulting “chiral” symmetry [13] is key to stability of the
lasing mode. These analytical solutions then give us a starting
point for a numerical method to compute the degenerate
solutions far above threshold, extending our earlier work on
computational methods for nondegenerate SALT [14]. Our
numerical method, in turn, relies on a new semianalytical
technique (Sec. V A) to address problems created by numerical
symmetry breaking (e.g., by a low-symmetry computational
grid) that would otherwise spoil the nonlinear SALT solutions.

In Ref. [7], a full linear-stability analysis (Sec. III B) was
applied numerically to the Maxwell-Bloch equations of lasing
in order to check whether the steady state was stable, and
stability of the solution was also analyzed when the degen-
eracy was broken by a perturbation. This generalized many
earlier works on ring-laser solutions and perturbations thereof
[15–19]. It reproduced the stability of the circulating solution
near threshold, and found that far above the lasing threshold
(where nonlinearities are strong) the circulating solution
may become unstable (replaced by an oscillating limit-cycle
solution). Conversely, it was found there that slightly breaking
the symmetry caused the (now nearly degenerate) solution
to become unstable (e.g., oscillating between clockwise and
counterclockwise modes) in the vicinity of the threshold, but
that a stable solution reappears further above threshold by
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FIG. 1. Degenerate pairs of standing-wave modes in a laser. For
this uniform dielectric disk (top), which has C∞v symmetry, the two
eigenfunctions (of which only the real part is shown) are proportional
to cos(�φ) and sin(�φ) (here, � = 9). For a homogeneous dielectric
square (ε = 5 inside a square of length 1), the eigenfunctions
are π

2 rotations of one another. Here, the order of the irreducible
representation (irrep) is � = 1, which is the only possibility for C4v.
The π

2 rotation is an exact symmetry of the geometry, so there is an
exact degeneracy even for the numerical grid. For C6v, the symmetry
group of the regular hexagon, as in this example of TE modes (with
the transverse magnetic field Hz shown) in a 2D slab with air holes
(described in further detail in Sec. V B), the two eigenfunctions have
no immediately obvious symmetry operation that transforms between
them, but are in fact still degenerate (here � = 1, and there also exists
an � = 2 irrep with its own degenerate pair). In all three cases (and
in fact for all Cnv), the standing-wave modes have mirror planes that
are π

2 rotations from one another, and the two standing-wave modes
have opposite parities across these mirror planes.

means of cooperative frequency locking [19,20]. This paper
complements those results in two ways. First, near threshold,
we are able to both solve for the steady-state lasing modes
(Sec. III) and evaluate their stability (Sec. III B) analytically,
by perturbation theory in the basis of the degenerate linear
solutions at lasing threshold, and we generalize the notion of a
circulating laser mode to other symmetry groups and establish
its stability near threshold. Even the degeneracy itself is
somewhat unusual above threshold because the nonlinear gain
spontaneously breaks some of the symmetry in noncircular
(Cnv with n �= ∞) geometries, leaving one with a “chiral”
degeneracy as discussed in Sec. III B, Ref. [13], and Appendix
B. Second, we develop a numerical solution technique for
far above threshold in Sec. V A, generalizing earlier SALT
methods, where a numerical nonlinear solver is the only option;
in this regime, our focus is on finding a degenerate lasing mode
in SALT (if one exists), and we defer to the results of Ref. [7]

for checking its stability after a solution far above threshold is
found.

Above threshold, the SALT equations [8,10,12] provide
an elegant formulation of the problem of steady-state lasing
modes: they analytically eliminate the time dependence from
the Maxwell-Bloch equations to obtain a nonlinear Maxwell-
type eigenproblem ∇ × ∇ × Eμ = ω2

μεSALTEμ for the lasing
electric fields Eμ and frequencies ωμ, in which the permittivity
εSALT depends nonlinearly on both the field and frequency
(here, the speed of light c has been set to unity). This equation
can be efficiently solved numerically by adapting standard
techniques from computational electromagnetism [14]. As
described below and also in previous work [2,7], the SALT
framework applies very naturally to lasing of degenerate
microcavities, assuming a stable degenerate steady state exists,
but it turns out that there are two complications. First, in order
to apply a numerical nonlinear solver to a large system of
nonlinear equations like SALT, one needs to have a good
“starting guess” for the solution. In the nondegenerate case, the
starting guess is supplied by the threshold solution, but for a
degenerate threshold there are infinitely many superpositions.
Picking the wrong starting guess, e.g., the sin(mφ) mode in
a ring, would lead SALT to converge to an unstable solution,
but our near-threshold perturbation theory supplies us with a
correct guess (which turns out to be the Cnv analog of the
circulating solution in the ring).

Second, there is a tricky complication that arises purely
from numerical effects when a practical computational method
is applied to spatially discretize the SALT equations. In
principle, what one would like to find from a degenerate
SALT solver is a lasing mode (e.g., the clockwise circulating
mode of a ring) with a passive pole (a pole of the Green’s
function linearized around the lasing solution) that coincides
with the lasing frequency (there will be two possible lasing
modes, e.g., clockwise and counterclockwise, but only one
solution can exist at a time with nonzero amplitude due to
the nonlinearity; which one is found will depend on the
starting “guess” of the SALT solver). However, when one
discretizes a microcavity geometry for a numerical solver,
e.g., in a finite-difference or finite-element method, often the
discretization itself breaks the symmetry and hence breaks the
degeneracy slightly, causing the passive pole to separate from
the lasing frequency. In a linear eigenproblem, this is at worst
a minor annoyance because from the symmetry group one can
easily identify resonance modes that “should” be degenerate
[5,21]. In the nonlinear problem, however, the splitting can
prevent the desired solution (e.g., the circulating mode) from
existing in the SALT equations because the solver can no
longer pick arbitrary superpositions of the formerly degenerate
modes, as described in Sec. V A. (If the discretization breaks
the degeneracy, but the pump strength is high enough, a
single-mode circulating solution may still come back into
existence, due to strong nonlinear self-interaction effects [7].
This effect can provide a fast and easy way to initially
evaluate the field profile of a discretized geometry that is
not exactly symmetric, and hence does not have an exact
degeneracy. However, the conditions under which this effect
can happen are not completely understood, as we explain in
Sec. V, and we wish to deal with the discretization symmetry
breaking in a more systematic and provably reliable manner.)
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To fix the problem of broken degeneracy from discretization,
we found a simple way to uniquely restore the degeneracy
in a way that both guarantees convergence to the correct
solution (as the discretization is refined), that generalizes to an
arbitrary number of lasing modes (in Sec. V C), and that is, at
worst, a few times more computationally expensive than our
nondegenerate solver.

II. BACKGROUND

A. Review of SALT

The equations of SALT are derived from the Maxwell-
Bloch equations [22–25] (with the rotating-wave approxima-
tion)

−εË+ = ∇ × ∇ × E+ + P̈+,

iṖ+ = (ωa − iγ⊥)P+ + γ⊥E+D, (1)

Ḋ = γ‖(D0 − D) + Im(E− · P+),

where E+(x,t) is the “positive-frequency” component of the
electric field [with E− = E+� and the physical field given by
2 Re(E+)], ε(x) is the “cold-cavity” permittivity (not including
the gain transition), P(x,t) is the polarization describing a
transition (of frequency ωa and linewidth γ⊥) between two
atomic energy levels, D(x,t) is the population inversion
between those two levels (with relaxation rate 	‖), and D0(x)
is the strength of a pumping process driving the inversion.
Additionally, for convenience, one chooses units such that the
following factors are set to unity: the dipole moment matrix
element of the two-level system, Planck’s constant h̄, and the
speed of light c. Using the stationary inversion approximation
D(x,t) ≈ D(x) [8,26] along with an ansatz of a finite number
of lasing modes

E+(x,t) =
∑

ν

Eν(x)e−iων t , (2)

where ων are the real-mode frequencies, the second equation
in Eq. (1) is solved to eliminate P+ as an unknown, and the
third equation becomes

Ḋ = γ‖(D0 − D) + D Im

[∑
μν

	(ων)E�
μ · Eνe

i(ωμ−ων )t

]
,

(3)

where 	(ωμ) ≡ γ⊥/(ωμ − ωa + iγ⊥). In order for the station-
ary inversion approximation Ḋ = 0 to be valid, the oscillating
terms on the right-hand side of Eq. (3) must average to zero on
a time scale much faster than the relaxation time scale 1/γ‖.
In order to do so, the beating frequencies ωμ − ων must be
either exactly zero or much faster than the relaxation rate γ‖
[8,11,26]; that is, two modes are either exactly degenerate or
situated very far apart from each other in frequency space,
with the latter case resulting in the time-dependent beating
component of the inversion having a negligible amplitude
compared to the stationary component [24]. When these
conditions are met, Eq. (1) reduces to the SALT equation
[8,10,12]

∇ × ∇ × Eμ = ω2
μ[ε + 	(ωμ)D]Eμ, (4)

for the unknowns Eμ and ων , where D(x) is the steady-
state population inversion, which depends nonlinearly on the
electric fields and lasing frequencies of all lasing modes:

D(x) = D0(x)

1 + γ −1
‖

∑
ν

|	(ων)Eν |2
. (5)

The intensity term in the denominator of Eq. (5) is known
as the “spatial hole-burning” [8,24,26] term; it represents the
saturation of the gain medium due to the total time-averaged
intensity of all the lasing modes. Once Eq. (4) is solved for
all the lasing modes Eμ and frequencies ωμ, one typically
checks that the “passive” poles, i.e., the eigenvalues ω̃μ of the
linearized SALT equation

∇ × ∇ × Ẽμ = ω̃μ[ε + 	(ω̃μ)D]Ẽμ, (6)

are not above the real axis. As long as |ων − ω̃μ| 	 γ‖ (where
ων are the lasing frequencies), this is a good indicator that
the SALT solution is stable. However, a rigorous evaluation
of the stability of the SALT solution requires a linear stability
analysis based on the MB equations [7]. (In Sec. III B, we
give analytical results for this stability analysis for the near-
threshold degenerate case.)

B. Effects of exact degeneracies

So far, most cases in which SALT has been applied have
dealt with either single lasing modes or multimode regimes in
which frequencies are far apart. When two lasing frequencies
are close but not exactly degenerate, there is non-negligible
beating and SALT is invalid. However, when two lasing modes
are exactly degenerate, we find that SALT is still perfectly
valid because there is an exact steady-state solution of the MB
equations (for a single lasing mode), provided that interference
between the two degenerate modes is taken into account. Of
course, it is possible that a degeneracy in the linear regime may
split in the presence of the laser nonlinearity above threshold.
However, if a degeneracy persists (and we have observed
that it is guaranteed to do so for Cnv symmetry-induced
degeneracies because of the “chiral” symmetry of the lasing
mode as discussed in Appendix A), our method will find it. The
literature on degenerate lasing modes has almost invariably
dealt with whispering-gallery modes in microdisks and ring
resonators [1–4]. Many of these earlier works discussed the
stability of traveling-wave modes in ring resonators under
perturbations that break the symmetry [15–19]. A very limited
number of other works on degenerate lasing modes in other
geometries exist [27], which were mostly experimental and
focused on the linear cavity rather than the nonlinear lasing
regime. However, the microdisk is just one of many examples
of a setting where one can find degenerate resonant modes
that can lase: there are a great variety of other symmetric
geometries where degeneracies can occur [5,21,28]. So far,
the problem of above-threshold degenerate modes in lasers
has not been studied systematically for the general Cnv case.

The presence of degenerate eigenvalues is typically a direct
consequence of symmetry. For systems with Cnv symmetry
for n > 2 (n-fold rotational symmetry with n mirror planes,
the symmetry of the regular n-gon), the existence of two-
dimensional (2D) irreducible representations (irreps) of the
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symmetry group corresponds to twofold degeneracies. Below,
we therefore refer to twofold degenerate modes (at lasing
threshold) as corresponding to a 2D irrep, and we exploit
some known properties of these irreps in deriving selection
rules [5] for overlap integrals. For systems with Cn symmetry
(n-fold rotational symmetry without mirror symmetry, e.g., a
“chiral” spiral structure with n arms), the combination of group
theory and electromagnetic reciprocity again supports twofold
degenerate solutions [13] (see also Appendix A for a review).
Even with Cnv symmetry, we explain below that the nonlinear
hole-burning term for lasers above threshold typically breaks
the mirror symmetry, so the reciprocity argument for Cn

symmetry is crucial to maintaining the degeneracy of the
lasing mode and a passive pole. Figure 1 shows three examples
of symmetric geometries, along with examples of degenerate
eigenfunctions.

Ordinarily, SALT assumes that all distinct modes have
distinct frequencies, i.e., ωμ �= ων when μ �= ν, which gives
the stationary-inversion expression (5) when higher-frequency
ωμ − ων (ν �= μ) terms are dropped. However, when there
are degeneracies, the MB equations will have terms of the
form Eμ · E�

ν where μ �= ν since ωμ = ων and one can no
longer drop the ei(ωμ−ων )t term. The correct expression for the
stationary inversion will then be

D = D0

1 + γ −1
‖

∑′
	μEμ · 	�

νE�
ν

, (7)

where 	μ ≡ 	(ωμ) and
∑′ indicates a summation over all μ

and ν for which ωμ = ων , not just for μ = ν. To illustrate the
difference between the two, we examine a case in which there
are three lasing modes, two of which are degenerate with each
other (ω1 = ω2 �= ω3). Equation (5) will have

|	1E1|2 + |	2E2|2 + |	3E3|2 (8)

in the denominator, while Eq. (7) will have

|	1(E1 + E2)|2 + |	3E3|2. (9)

From Eq. (9) we see that the degenerate pair acts as a single
mode that is a superposition of E1 and E2. This means that
the solution to the lasing degenerate problem can be portrayed
in two equivalent pictures. First, we can think of the linear
combination E = E1 + E2 as a single mode that satisfies the
equations

−∇ × ∇ × E = ω2
1(ε + D	1)E,

D ≡ D0

1 + γ −1
‖ (|	1E|2 + |	3E3|2)

(10)

[where the external pump D0(x) may be spatially dependent,
as noted before]. Second, we can think of the two modes as
separately satisfying the two equations

−∇ × ∇ × E1,2 = ω2
1(ε + D	1)E1,2,

D ≡ D0

1 + γ −1
‖ (|	1(E1 + E2)|2 + |	3E3|2)

.

(11)

The existence of a solution to Eq. (10) is a necessary but not
sufficient condition for the existence of a solution to Eq. (11).
The reason is that Eq. (11) enforces a double eigenvalue of

the linearized eigenproblem (i.e., a double pole of the Green’s
function) on the real-ω axis, whereas Eq. (10) only enforces a
single eigenvalue.

Prior to lasing, suppose that we have a twofold degen-
erate solution, corresponding to a double pole in the Green
function. As the gain increases, and even when the system
passes threshold and becomes nonlinear, poles can shift (and
degeneracies may split) but poles do not appear or disappear
discontinuously, so we should always expect there to be two
poles (in the linearized Green’s function around the SALT
solution) arising from the original degenerate pair. Given this
fact, if we solve the single-mode SALT equations as in Eq. (10),
there is the danger that the other pole is unstable. As we show in
Appendix C, close to lasing threshold the zeroth-order stability
analysis (in the pump strength increment) simply depends on
the SALT eigenproblem: if a SALT pole lies above the real-ω
axis, then a lasing solution is necessarily unstable, whereas
SALT poles below the real axis cannot induce instability. If a
pole lies on the real axis, higher-order calculations are required
to check stability as described in Sec. III B.

On the other hand, if we find a solution of the two-mode
SALT equations as in Eq. (11), then by construction we
have placed both poles together on the real-ω axis and the
other passive pole by itself is not a source of instability (and
the overall stability of the Maxwell-Bloch equations can be
checked as in Ref. [7]). However, Eq. (11) has a drawback:
the hole-burning term now depends on the relative phase of E1

and E2. In the original SALT equations, even for multimode
problems, the phase was irrelevant and was chosen arbitrarily
in order to obtain a solvable system of equations. If we
remove the arbitrary phase choice, our equations (derived in
Ref. [14]) become underdetermined. However, if we solve the
single-mode equation [Eq. (10)] but simultaneously constrain
the other pole (the linearly independent degenerate partner) to
be degenerate with the lasing pole, then we will effectively
have solved Eq. (11), and in the following sections we will
explain how to implement this constraint.

III. THRESHOLD PERTURBATION THEORY

In this section, we analyze the SALT [Eq. (4)] and Maxwell-
Bloch equations [Eq. (1)] just above the lasing threshold in
order to obtain insight into the nature of the degenerate solu-
tions, as well as to determine the correct initial guess for the
above-threshold regime (e.g., when solving for lasing modes
using the method of Ref. [14]). For a regime with a single
steady-state lasing mode E+(x,t) = E(x)e−iωt with frequency
ω, one obtains a stationary inversion [8,10,12] D(x,t) = D(x)
and the single-mode SALT nonlinear eigenproblem

∇ × ∇ × E = ω2

[
ε + D0	(ω)

1 + γ −1
‖ |	(ω)E|2

]
E. (12)

The first lasing threshold occurs when D0 is increased to a
value Dt where a complex eigenvalue ω of this SALT equation
with infinitesimal E hits the real-ω axis (Im ω = 0) [8,12].

Now, we will consider the near-threshold problem D0 =
Dt(1 + d) for 0 � d � 1, for the case where the threshold
mode (d = 0) is doubly degenerate, and expand the solutions
to lowest order in d. First (Sec. III A), we will solve the SALT
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equations perturbatively in d, in order to find the steady-state
lasing solutions near threshold, regardless of whether they are
stable. Then (Sec. III B), we will plug those solutions into
the full Maxwell-Bloch equations, again expanding to lowest
order in d, in order to evaluate the dynamical stability of
the SALT modes. This yields a small 4 × 4 eigenproblem,
whose eigenvalues determine the stability, and whose matrix
elements are integrals of the threshold solutions. In the case
of Cnv symmetry, we know enough about the modes in
order to simplify many of these calculations analytically, to
conclude (i) the only SALT solutions are either standing-wave
or circulating solutions (defined below); (ii) the standing-wave
modes are unstable for all Cnv cases (except for a small group
of isolated, realistically unattainable examples when n is a
multiple of four), and otherwise the stability can be determined
by evaluating a simple integral of the threshold modes.

A. Perturbative lasing solutions near threshold

We begin with the situation of a degenerate threshold, where
two modes E1 and E2 (such as any of the pairs in Fig. 1) hit
threshold at the same pump strength Dt and same frequency
ωt. Since the frequencies are the same, we can consider any
linear superposition of the two modes as a single mode. With
infinitesimal amplitude, Eq. (12) is

∇ × ∇ × E1,2 = ω2
t (ε + Dt	t)E1,2, (13)

where 	t = 	(ωt). Now, we perturb the pump strength to bring
the mode slightly above threshold, with D0 = Dt(1 + d) and
0 < d � 1. We then expect the lasing mode slightly above
threshold to be of the form

E = 	−1
t

√
γ‖d(a1E1 + a2E2) + d3/2δE,

(14)
ω = ωt + ω1d + O(d2),

where the complex coefficients a1,2 and the real eigenvalue
shift ω1 are to be determined. The linear relation between d

and intensity |E|2 has previously been shown for lasing modes
above threshold in SPA-SALT approximation [12]. Inserting
Eq. (14) into Eq. (12), expanding to lowest order in d, and
taking the inner product of both sides with E1 and E2 (as
performed in detail in Appendix B), we obtain the pair of
nonlinear equations for a1,2 and ω1:

0 =
∫

d3x E1,2 · (a1E1 + a2E2)

[
ω1

∂

∂ωt
ω2

t (ε + Dt	t)

+ ω2
t Dt	t(1 − |a1E1 + a2E2|2)

]
. (15)

To proceed, we must choose a basis E1,2 to work with [the
end result (14) turns out to be independent of the choice,
as expected]. One possible choice is the even and odd (with
respect to the mirror planes of the Cnv geometry) standing-
wave modes, which we denote as Eeven and Eodd (as in Fig. 1).
However, it turns out that another choice makes the analytical
solution of Eq. (15) significantly easier to obtain, due to various
convenient symmetry properties. In particular, we construct a
basis of clockwise and counterclockwise “circulating” modes

(analogous to e±i�φ modes in a ring)

E± =
n∑

k=1

exp

(
±2πi�k

n

)
Rk/nEeven, (16)

where � is given by the 2D irrep that Eeven belongs to [� ranges
from 1 to floor( n−1

2 )], and Rk/n is a counterclockwise rotation
of the vector field Eeven(x) in the plane of the Cnv symmetry
by 2πk/n [if � is chosen to be the wrong integer, then E±
vanishes because Eq. (16) is a projection operator [5,21]].
With this definition, E+ and E− are mirror flips of one another,
and they span the same space as Eeven and Eodd. One important
property of the E± is that they transform according to the chiral
one-dimensional (1D) irreps of the Cn symmetry group, i.e.,
R1/nE± = exp (∓ 2πi�k

n
)E±. This fact will turn out to greatly

simplify some upcoming calculations. Choosing E1 = E+ and
E2 = E− and exploiting the symmetry properties of this basis,
we see (as shown in detail in Appendix B) that Eq. (15) reduces
to

0 = a∓(ω1H + GD) − a∓|a±|2(I + J )

− a∓|a∓|2I − a2
±a�

∓K, (17)

where the coefficients GD , H , I , J , and K are simple overlap
integrals of the threshold modes, given in closed form in
Eqs. (B5) and (B6). Equation (17) can be solved in closed
form (as performed in Appendix B), and yields only a few
solutions. First, there are the purely circulating modes, given
by

E = 	−1
t

√
(ω1H + GD)γ‖d

I
E±,

(18)

ω1 = − Im(GD/I )

Im(H/I )
.

The other solutions to Eq. (17) are standing-wave modes, as to
be expected, and it turns out their form depends (as explained
in Appendix B) crucially on whether the irrep of the degenerate
pair satisfies n = 4�, where again � is the order of the 2D irrep.
For Cnv with n �= 4�, the other modes are

E = 	−1
t

√
(ω1H + GD)γ‖d

2I + J
(E+ + eiθ E−),

(19)

ω1 = − Im(GD/[2I + J ])

Im(H/[2I + J ])
,

where θ is an arbitrary phase angle. [During numerical solution
of Eq. (12), we have found that for some n, there seem to be
constraints on θ , namely, having to be a multiple of π

n
. These

constraints probably come from equations that are higher
order in d than our perturbation theory. However, they are
inconsequential because it turns out that these standing-wave
modes are always unstable, regardless of θ .] On the other hand,
for the case of n = 4�, there are two sets of standing-wave
modes. The first is

E = 	−1
t

√
(ω1H + GD)γ‖d

2I + J + K
(E+ ± E−),

ω1 = − Im(GD/[2I + J + K])

Im(H/[2I + J + K])
(20)
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and the other is

E = 	−1
t

√
(ω1H + GD)γ‖d

2I + J − K
(E+ ± iE−),

(21)

ω1 = − Im(GD/[2I + J − K])

Im(H/[2I + J − K])
.

These four sets of solutions turn out to constitute all the
solutions of Eq. (17) for the general Cnv case, and this
completes the solution of Eq. (12) slightly above threshold.
Figure 2 shows a comparison of numerical results for a 1D
C5v laser with the predictions of perturbation theory.

In order to find out which of these solutions is the one
that actually lases in a real Cnv system, we must test stability
of each of these solutions. It turns out that this test can also
be done mostly analytically, using perturbation theory on the
linearized Maxwell-Bloch equations, as we will present in the
next section.

B. Perturbative stability analysis

While these three forms of lasing modes all solve SALT
near threshold, and hence are “fixed-point” equilibria of
the Maxwell-Bloch equations, one intuitively expects that
only the circulating mode will be stable. The reason is that
standing-wave modes for the Cnv group have zero amplitude
along certain lines, most obviously along x = 0 for the Eodd

mode, and those zero-amplitude regions are making no use
of the gain. This allows the opposite-symmetry standing-wave
mode to grow exponentially into these nulls, and this is the
reason why the sine and cosine modes are unstable in a ring.
(This fact is only true for exact degeneracies; for real systems,
which almost always break the degeneracy, there may be small
regions near threshold where the standing-wave mode is stable
[29].) To quantify this intuition, we perform linear-stability
analysis, along the same lines as the numerical procedure in
Ref. [7]. We linearize the Maxwell-Bloch equations for small
perturbations around the SALT modes, by inserting

E+(x,t) = [E(x) + δE(x,t)]e−iωt ,

P+(x,t) = [P(x) + δP(x,t)]e−iωt , (22)

D(x,t) = D(x) + δD(x,t)

into the Maxwell-Bloch equations [where E is any of the
SALT solutions obtained in Sec. III A, D(x) is the stationary
inversion given in (12), ω is the lasing frequency given in
Eq. (14), and P(x) = 	(ω)E(x)D, is the polarization field].
We collect terms order by order in the perturbations δ. The
zeroth-order equations are simply the SALT equations and
are already satisfied by construction by E, P, and D(x). The
first-order equations are

0 = −∇ × ∇ × δE +
(

d

dt
− iω

)2

(εδE + δP),

iδṖ = (ωa − ω − iγ⊥)δP + γ⊥(DδE + EδD), (23)

δḊ = −γ‖δD + Im(P · δE� + E� · δP).

Equation (23) can be written as a matrix equation(
C

d2

dt2
+ B

d

dt
+ A

)
u(t) = 0 (24)

FIG. 2. Lasing amplitudes (top) and frequency shifts (bottom)
for 1D laser (periodic geometry with 0 < x < 1) with uniform
dielectric ε(x) = 1 + 0.3i and gain profile D0(x) = Dt(1 + d)[1 +
0.2 cos(2πnx)]. Here, we have chosen n = 5, so the gain has C5v

symmetry, and the discretization had N = 150 grid points. Data
points were obtained by solving Eq. (12) (SALT) numerically using
Newton’s method [14], while theoretical lines were provided by
Eqs. (18) and Eq. (19). For the standing mode, numerical results are
independent of relative phase θ , as predicted by Eq. (19). Agreement
between numerics and theory is excellent for mode amplitudes [up to
at least d ≈ 100 (not shown in the figure), and possibly much higher]
but only good at d < 0.005 for frequency shifts. For the numerical
data in the amplitude plot, only the magnitude of the E+ component
(obtained by taking the normalized inner product of the lasing mode E
with E+) of both the circulating and standing-wave modes are shown.
For the E− component, the circulating mode had magnitude zero and
the standing mode had the same magnitude as the E+ component.

or alternatively as quadratic eigenvalue problem [30]

(Cσ 2 + Bσ + A)x = 0, (25)

where the unknown vector is

u(t) =

⎛
⎜⎜⎜⎝

Re δE
Im δE
Re δP
Im δP
δD

⎞
⎟⎟⎟⎠ = Re(xeσ t ). (26)
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The goal of the stability analysis is to find the eigenvalues σ for
a given lasing mode E. If the real part of any of the eigenvalues
σ is positive, then the lasing mode is unstable, while if all
the eigenvalues have nonpositive real parts, then the lasing
mode is stable (with some technical care required for zero
eigenvalues and structural stability, described in Appendix C).
Reference [7] discretized Eq. (23) to obtain Eq. (25) and then
solved the resulting matrix equation numerically to find the
eigenvalues σ and hence evaluated the SALT stability for any
pump strength above threshold. Here, we focus on the regime
slightly above threshold, and show that the equations can be
solved analytically to lowest order in d, and this is enough to
evaluate near-threshold stability. We begin by noting that the
matrices can be expanded as

A = A0 + A1/2

√
d + A1d + O(d3/2),

B = B0 + B1d + O(d2), (27)

C = C0

(where d is the relative pump increment above threshold,
as introduced in Sec. III) since the matrices come from the
coefficients of Eq. (23) and contain the lasing solutions E and
other associated fields P and D. As a result, the eigenvalues
and eigenvectors can also be expanded this way:

x = x0 + x1/2

√
d + x1d + O(d3/2),

(28)
σ = σ0 + σ1/2

√
d + σ1d + O(d3/2).

We insert Eqs. (27) and (28) into (25) and solve order by order
in

√
d until a nonzero σ is found, as explained in detail in

Appendix C. At zeroth order, Eq. (25) is equivalent to the
SALT equation at threshold [Eq. (13)], and has two kinds of
solutions. First, there are the below-threshold “passive” modes
[8,12], which have Re(σ0) < 0 (because for these modes, σ0

is simply the difference ω̃ − ωt between the complex pole ω̃

of the passive mode and the real threshold frequency ωt) and
hence are stable. Therefore, when d is small enough, we can
say for certain that having one of these σ0 above the real axis
would make the system unstable, so having all passive poles
of the SALT equation be below the real axis is a necessary
condition for lasing near threshold, for small d. (Far above
threshold, however, this is no longer true, as shown in Ref. [7].)
Second, from the degenerate threshold modes, we obtain

σ0 = 0, x0 =
4∑

k=1

bkvk, (29)

where bk are arbitrary complex coefficients that will be
determined later at higher order (similarly to linear degenerate
perturbation theory in quantum mechanics [31]), and the
vectors vk are

vk =

⎛
⎜⎜⎜⎝

Re ek

Im ek

DtRe (	tek)
DtIm (	tek)

0

⎞
⎟⎟⎟⎠, (30)

where we have defined e1,2,3,4 = E1,E2,iE1,iE2 [again, E1,2

are any two threshold solutions to Eq. (13)]. It is shown in Ap-
pendix C that the eigenvalue at the next order σ1/2 is also zero.

Hence, stability is determined by σ1. At order d, Eq. (25) is

(B0σ1 + A1)x0 + A1/2x1/2 + A0x1 = 0. (31)

Here, all quantities except σ1 and x1 are known. Because σ0 =
0, we have A0vk = 0. There are also left eigenvectors [32] wj

that satisfy AT
0 wj = 0. By acting on Eq. (31) with these left

eigenvectors, we obtain a 4 × 4 linear eigenvalue problem for
the eigenvalue σ1 and the eigenvectors [whose elements are the
coefficients bk in Eq. (29)]. We can then, in a straightforward
fashion, write the eigenvalues and eigenvectors in closed
form. While the procedure we have just described can be done
with any basis E1,2, again, it is most convenient to choose
the basis E±, due to the symmetry properties which greatly
simplify the calculation. Here, we present the results, leaving
the detailed derivation to Appendix C.

For the circulating lasing modes in Eq. (18), the four
eigenvalues are, in no particular order,

σ1 = 0, σ1 = 2 Im

(
I

H

)
|a|2,

σ1 =
⎡
⎣Im

(
J

H

)
+

√∣∣∣∣KH
∣∣∣∣
2

− Re

(
J

H

)2
⎤
⎦|a|2, (32)

σ1 =
⎡
⎣Im

(
J

H

)
−

√∣∣∣∣KH
∣∣∣∣
2

− Re

(
J

H

)2
⎤
⎦|a|2,

where |a|2 ≡ ω1H+GD

I
. The first eigenvalue comes from the

global phase degree of freedom for lasing solutions [7]. For
the other three eigenvalues, we have found empirically that
the real part is always negative, indicating that the circulating
modes are stable. Although we have been unable to prove that
Re(σ1) < 0 in general for the last three values in Eq. (32),
we have empirically observed this to be true, and it is easily
checked in any specific case by integrating the threshold modes
to compute H , I , J , and K .

For the n �= 4� standing lasing modes in Eq. (19), the
eigenvalues are given by

σ1 = 0, σ1 = 0,

σ1 = 2 Im

(
2I + J

H

)
|a|2, (33)

σ1 = −2 Im

(
J

H

)
|a|2,

where |a|2 ≡ ω1H+GD

2I+J
. Here, both zero eigenvalues come from

continuous degrees of freedom: one comes from the global
phase degree of freedom, while the other comes from the
relative phase between E+ and E− in Eq. (19), which can take
any value (as explained previously, this degree of freedom is
likely removed at higher orders in d, so that only certain linear
combinations, namely the n-fold rotations of Eeven and Eodd,
are actually lasing solutions). For TM modes in 2D, which have
E = Eẑ [33], it can be shown that I = J , so at least one of the
two nonzero eigenvalues here must have a positive real part (in
practice, it is always the last eigenvalue), indicating that these
standing lasing modes are always unstable. Figure 3 shows a
comparison between the theoretical first-order approximation
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FIG. 3. Stability eigenvalues for the circulating (top) and standing
(bottom) lasing modes from Fig. 2. For each lasing mode, the four
lowest eigenvalues obtained using the numerical procedure of Ref. [7]
are matched against the four eigenvalues found in perturbation theory.
In the top panel, a zero eigenvalue is clearly seen, coming from the
global phase freedom. The real parts of the third and fourth values of
Eq. (32) are equal, so two of the curves coincide. None of the other
eigenvalues go above the real axis, indicating that the circulating
mode is stable. For the bottom panel, there are two zero eigenvalues,
in agreement with Eq. (33). One of the other two eigenvalues becomes
positive, indicating that the standing lasing mode is not stable.

and the exact numerical values of the circulating and standing-
wave stability eigenvalues for a Cnv case with n = 5.

For the n = 4� standing-wave modes, we first have the
E+ ± E− solutions in Eq. (20), which have the eigenvalues

σ1 = 0,

σ1 = 2 Im

(
2I + J + K

H

)
|a|2,

σ1 =
[
−Im

(
J + 3K

H

)
+ ρ

]
|a|2, (34)

σ1 =
[
−Im

(
J + 3K

H

)
− ρ

]
|a|2,

ρ ≡
√

Im

(
J − K

H

)2

− 8 Re

(
K

H

)
Re

(
J + K

H

)
,

where |a|2 ≡ ω1H+GD

2I+J+K
. Again, there is a zero eigenvalue

coming from the global phase degree of freedom. For almost all
cases, we have empirically observed that the second eigenvalue
has a negative real part, but also −Im( J+3K

H
) > 0, and hence

the third and fourth eigenvalues are unstable. However, there
are pathological cases where the gain profile D0(x) can be
chosen (e.g., in terms of 4� delta functions) so that J =
−K , upon which the third eigenvalue is stable, and the last
eigenvalue is zero. This zero eigenvalue turns out to become
positive (unstable) for physical, finite-sized gain regions, as
discussed further in Appendix C.

Finally, we have the E+ ± iE− solutions for the n = 4�

case in Eq. (21). The eigenvalues are

σ1 = 0,

σ1 = 2 Im

(
2I + J − K

H

)
|a|2,

σ1 =
[

Im

(
3K − J

H

)
+ η

]
|a|2, (35)

σ1 =
[

Im

(
3K − J

H

)
− η

]
|a|2,

η ≡
√

Im

(
J + K

H

)2

+ 8 Re

(
K

H

)
Re

(
J − K

H

)
,

where |a|2 ≡ ω1H+GD

2I+J−K
. Again, in most cases we have empir-

ically found that the second eigenvalue is stable while the
third and fourth are unstable. However, there are pathological
delta-function cases where the external pump profile D0(x)
can be chosen in a specific way (different from that for the
E+ ± E− solutions) such that J = K , and the third eigenvalue
is stable while the fourth is zero. Again, this zero eigenvalue
becomes positive (unstable) for finite-size gain regions, and so
this marginal case is unlikely to be of practical importance.

We note that the absence of a positive value for σ1 for
the circulating lasing mode does not guarantee that the true
eigenvalue σ [Eq. (28)] will remain below the real axis
for all d. Indeed, Ref. [7] (Fig. 1 in the reference) found
an instance of a 1D uniform ring laser where, for certain
regimes, the circulating mode actually becomes unstable
above a certain dcutoff . The instability comes from one of
the four Maxwell-Bloch stability eigenvalues associated with
the degenerate threshold pair [whose first-order coefficients
are given in Eq. (32)] going above the real axis. However,
the onset of the instability depends on the value of γ‖, the
relaxation rate of the inversion, and the eigenvalues in Eq. (32)
are independent of that parameter, so the effect must come
from higher orders. Closer inspection of the data in the ring
laser of Ref. [7] shows that for very small γ‖, the cutoff pump
strength dcutoff is linear with γ‖; that is, the circulating mode
is stable for d < z0γ‖, where z0 is a constant independent of d

and γ‖. In Appendix C, we rigorously explain this criterion by
extending the perturbation theory used to obtain σ1 and finding
the γ‖ dependence to all orders in d [Eq. (C50)].

C. Threshold perturbation examples

Now, we illustrate the ideas of threshold perturbation theory
with an example of a symmetric geometry with degeneracies:
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FIG. 4. The incorrect (left) intensity pattern, correct (center)
intensity pattern for the pair of low-Q dielectric square modes,
slightly above threshold (the pattern remains essentially the same
even for much higher pump strengths), and degenerate passive mode
of opposite chirality (right) of low-Q dielectric square for lasing very
high above threshold (D0 = 100Dt). The left intensity pattern was
obtained by solving two-mode SALT without any interference effects,
while the center pattern was obtained by constructing the stable linear
combination predicted by symmetry and perturbation theory and then
solving single-mode SALT. The correct pattern clearly has a chirality,
which the incorrect pattern lacks. The profile on the right is not simply
a mirror flip of the lasing mode, but is in fact degenerate with it, as
explained in Appendix B.

a dielectric square. Unlike in a metal square (with Dirichlet
boundary conditions), the equation for the electric field is not
separable in the x and y directions. The modes E1 and E2

are shown in the middle panel of Fig. 1. The stable linear
combination is the circulating mode predicted by Sec. III B.
As a consequence of including interference between the two
standing-wave modes Eeven and Eodd, this intensity pattern
|Eeven ± iEodd| is chiral (with C4 symmetry) while a naive
summation of the individual intensities |Eeven|2 + |Eodd|2
would still yield a C4v pattern, as shown in Fig. 4. Because
Cn symmetry groups have no 2D irreps, one would normally
not expect there to be a degeneracy. However, a key point is
that the degeneracy indeed persists even when Cnv symmetry
becomes Cn, as a consequence of electromagnetic reciprocity
[13], as explained in Appendix B. Since this degeneracy does
not come from geometric symmetry alone, there is no simple
symmetry operation that takes the lasing mode (center panel
of Fig. 4) to its degenerate partner (right panel), e.g., they are
not mirror flips. However, there is still an exact degeneracy.

IV. EFFECTS OF CHIRALITY

In this section, we discuss the effects of chirality. So far, we
have worked with Cnv geometries, which are symmetric under
n-fold rotations and flip operations across the mirror planes
[5,21]. However, if the mirror symmetry is broken, then we no
longer have Cnv symmetry: while there is still symmetry under
n-fold rotations, the geometry acquires a certain “handedness,”
as in the last two panels of Fig. 4. These symmetry groups are
known as Cn and have different consequences for lasing modes
arising from these geometries, as we discuss below.

There are two ways for mirror symmetry to be broken: first,
for a Cnv-symmetric geometry [dielectric function ε(x) and
gain profile D0(x)], the intensity patterns of the circulating
modes [given in Eq. (16), and which we have observed
are always the only stable modes] turn out to have Cn

symmetry as opposed to Cnv symmetry, leading to spontaneous
breaking of mirror symmetry as soon as the mode starts

lasing (the only exception to this rule is for a C∞v system,
in which the circulating lasing modes have an intensity pattern
|E|2 ∝ |ei�φ|2 = 1, and hence still have mirror symmetry).
We have also observed that circulating lasing modes in lossy
Cnv-symmetric cavities (such as that in Fig. 4), those with low
quality factor [33] Q ≡ −Re ω′/Im ω′, where ω′ is the passive
(zero pump) pole in the Green’s function, tend to have greater
chirality than circulating modes in cavities with high Q (such
as that in Fig. 12). Second, the geometry itself can already have
Cn symmetry, e.g., the dielectric and gain functions themselves
have chirality. Whether the chirality is due to the intensity
pattern of a lasing mode or due to the geometry itself, the
effects are similar.

First, the presence of chirality affects the nature of the
degeneracy between the lasing mode and its passive pole, e.g.,
the solution to Eq. (6). For a laser with Cnv symmetry at
threshold, the two chiral circulating modes, Eq. (16) are exactly
related to each other by a mirror-flip operation. As soon as E+
starts lasing, the mirror symmetry is broken (for n �= ∞) and
the passive pole, which we denote as Ẽ−, will move further
and further away from being the mirror flip of E+ (as seen in
the right panel of Fig. 4). It is important to note that if E− were
to lase instead of E+, then the lasing mode E− will be an exact
mirror flip of E+, while the eigenfunction of its passive pole
Ẽ+ will be an exact mirror flip of Ẽ−, due to the Cnv symmetry
at threshold. The lasing frequency ω will also be independent
of whether E+ or E− lases, as confirmed by Eq. (18). On the
other hand, if the laser already had Cn symmetry at threshold
(either due to chirality in a previously lasing mode or in the
dielectric or gain functions), then the threshold eigenfunctions
E± are no longer mirror flips of each other, even though their
threshold frequencies are both the same ωt (as an interesting
consequence of Lorentz reciprocity of Maxwell’s equations,
as reviewed in Appendix A). The fact that E+ and E− are
not mirror flips of each other causes a splitting between the
overlap integrals I+ and I−, as well as in J± and H±. As a
consequence, the expressions for the amplitude |a| and the
frequency shift ω1 in Eq. (18) will have I+ if E+ lases, and I−
if E− lases. Hence, if the symmetry is only Cn at threshold,
the clockwise and counterclockwise lasing modes would also
have different amplitudes and frequencies, in addition to not
being related to each other by a mirror-flip operation. These
facts allow us to imagine a situation in which there is a “binary
tree” of allowed possibilities, e.g., the first degenerate pair
lases in clockwise mode, the second in counterclockwise, and
so on, and each branch of the tree has distinct lasing amplitudes
and frequencies.

Second, the presence of chirality affects the perturbation
theory results for standing-mode lasing solutions in Sec. III.
When the threshold symmetry is Cnv, there exist standing-
mode solutions of the form E ∝ E+ + eiθ E− [Eq. (19)] when
n �= 4�, and standing-wave modes of the form E ∝ E+ ± E−
and E+ ± iE− when n = 4�. However, when the threshold
symmetry is Cn, there are no longer any standing-mode
lasing solutions for the n �= 4� case. In the n = 4� case,
however, we have found empirically that the standing-mode
solutions E+ ± E− and E+ ± iE− still exist (provided that
the correct normalization and overall phase of E− is chosen
appropriately). However, because of the splitting in the values
of the overlap integrals I±, J±, and K± for the Cn case,
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the stability eigenvalues (Sec. III B) for these standing-mode
solutions will no longer be given by the simple expressions
in Eqs. (34) and (35), and will have to be numerically
computed (nevertheless, we have empirically found that these
standing-mode solutions are still unstable).

Multimode lasing

So far, the discussion and examples in this paper have dealt
with the case in which only one pair of degenerate modes
are lasing. The generalization to the case of multimode lasing
(i.e., multiple nondegenerate and degenerate lasing modes all
lasing simultaneously) is straightforward. Since our method
combines degenerate pairs into a single mode that is the
stable linear combination (as given by the perturbation theory
in Sec. III, the multimode treatment is exactly the same as
for SALT without degeneracies), the degenerate pairs are
always treated as a single mode. As in previous work on
SALT [8,12,14], all lasing modes are solved simultaneously
at first, and there the collective effect of their spatial hole
burning is used to track the passive modes and add any mode
(degenerate or nondegenerate) that crosses threshold to the
list of lasing modes. As in the case of nondegenerate SALT,
the spacing between modes with different frequencies must
remain much larger than γ‖ in order for the stationary inversion
approximation to remain valid (usually, lasing frequencies do
not appreciably deviate from their threshold values, so this
condition is often safely satisfied). The only aspects of our
method requiring generalization are the threshold perturbation
theory of Sec. III and the quadratic program [34] (QP) method
of Sec. V A. For both aspects, we describe small tweaks to the
methods presented in those sections that make them valid for
the case of multimode lasing.

A general situation in which multimode lasing is occurring
can be described by Eq. (4) [8,12], where there are M lasing
modes (μ = 1,2, . . . ,M). If we start with Cnv symmetry
and have lasing modes that are either circulating modes (as
in Sec. III B) or nondegenerate modes (partners of real 1D
irreps without a corresponding complex-conjugate irrep of the
opposite chirality), then each of the |Eν |2 terms has at least Cn

symmetry, so the full stationary inversion D(x), which includes
the effects of spatial hole burning, has Cn symmetry. Suppose
that the pump strength is at the threshold of mode M so that
this mode has just started lasing, and that only modes 1 through
M − 1 contribute to the spatial hole burning. Then, all results
in Sec. III still hold, except with gain profile D0(x) replaced by
D(x). While the gain profile is now Cn symmetric rather than
Cnv, the presence of chiral degenerate pairs (which requires
only Cn symmetry and Lorentz reciprocity, as explained in
Appendix B) still remains, as explained in Sec. III B [the
arguments in that section do not assume Cnv symmetry, so
they still hold even if D0(x) is replaced by a function with only
Cn symmetry].

V. Cnv SYMMETRY BROKEN BY DISCRETIZATION

In many cases, the Cnv-symmetric geometry we are trying
to solve has a degeneracy that is broken when the geometry is
approximated by a discretized grid for numerical solution on
a computer [14,35,36] since the grid may no longer have the

original Cnv symmetry. For linear equations, this unphysical
splitting is not an issue because it is usually straightforward
to tell whether a pair of modes is “really” degenerate by how
it corresponds to the eigenfunctions of the “real” symmetry
group, and since all linear superpositions solve the equation
in the infinite-resolution limit, we can construct arbitrary
superpositions as needed after solving for both of the modes.
However, for SALT (which is nonlinear), the coefficients of
the superposition are physical quantities that must be found by
our solution method, as explained in Sec. III B. As explained
in Ref. [14], the process for solving for lasing modes begins
with the linear problem for the passive poles. Because both
the real and imaginary parts of the passive poles are split by
the discretization error, the modes will lase at different pump
strengths, and even after both modes lase we cannot construct
a linear combination of them because the two modes satisfy
equations with different real eigenfrequencies.

When the pump strength is sufficiently high above thresh-
old, however, the two near-degenerate modes can interact with
each other via the nonlinear spatial hole-burning interaction
to form a single stable laser mode. This effect is commonly
known as cooperative frequency locking [19,20]. For example,
Ref. [7] found instances where intentionally breaking a
degeneracy, such as by introducing a wedge at a single location
on the rim of a ring laser, can result in the circulating mode
not existing near threshold as expected, but coming back
into existence (once the pump strength is high enough above
threshold and the nonlinearity is strong enough) as a modified
version that is nearly the degenerate circulating mode. We have
found similar results in hexagonal (C6v) structures without
artificially introduced defects, in which the degeneracy is
broken by discretization alone. There, a circulating single-
mode lasing solution starts existing above a certain pump
strength (somewhat higher than threshold), even though there
is no degeneracy at threshold. The reason the circulating
lasing mode requires a minimum pump strength is that the
nonlinearity must be strong enough to counteract the broken
degeneracy and to lock the two modes to a single frequency. In
many cases such as these, numerically solving the single-mode
problem, using an artificially constructed circulating solution
as an initial guess, results in the solver correctly converging
to a circulating lasing mode. However, this effect is not
yet completely understood, and it is not entirely predictable
under what circumstances such a circulating mode exists.
Furthermore, the pump window between the original lasing
threshold and the threshold at which the stable circular mode
emerges can not be described with SALT as the electric field
no longer shows a multiperiodic time dependency [19,20].
Moreover, a discretization-induced error and a physical pertur-
bation breaking the degeneracy are two distinct effects (even
if their consequences are mathematically similar), and it is
useful to be able to study them independently. When one is
studying a physical symmetry-breaking defect, one does not
want to accidentally observe an artificial effect of discretiza-
tion instead. To eliminate numerical symmetry breaking at
arbitrary pump strengths, we therefore devised a solution: we
construct a minimal perturbation to the dielectric function
that restores the degeneracy in both the pump strengths
and the frequencies at threshold. We discuss this method
below.
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FIG. 5. Splitting in degeneracy due to discretization error for
even-� modes of dielectric cylinder versus the resolution 1/h of
the discretization, where h is the distance between adjacent grid
points. The oscillations, which are due to the discontinuous interfaces
between dielectric and air that “jump” when the resolution is
changed, could in principle be smoothed by using subpixel averaging
techniques for the discretization [37].

A. Restoring degeneracy by minimal perturbations

The basic idea is that we construct an artificial perturbation
δε(x) to the dielectric permittivity that forces the degeneracy
in both the frequency and threshold, and then we solve the
perturbed single-mode SALT equation. There are infinitely
many possible functions that can achieve this goal, so we look
for the one with the smallest L2 norm ‖δε(x)‖2

2 = ∫ |δε(x)|2.
This is a good choice because in the limit of infinite resolution,
the perturbation δε(x) approaches zero. We construct δε(x) by
solving a quadratic program [34] (QP) with linear constraints
that we obtain using perturbation theory. Not only does this
uniquely (and cheaply) determine δε, as described below, but it
also guarantees convergence to the solution of the unperturbed
(physical) single-mode SALT equation in the limit of infinite
resolution. The reason it guarantees convergence is that the
frequency splitting vanishes in the limit of infinite resolution,
as shown in Fig. 5, and so the minimum norm δε to force
a degeneracy also vanishes in the limit of infinite resolution,
recovering the unperturbed SALT.

It turns out that determining the minimum norm δε requires
only that we solve a sequence of QP problems: minimizing a
convex quadratic function (‖δε‖2

2) of δε subject to a linear
constraint on δε. QPs are convex optimization problems
with a unique global minimum that can be efficiently found
simply by solving a system of linear equations [34]. In
particular, the linear constraint [Eq. (D7)], which coalesces the
eigenvalues, can be derived from perturbation theory. Because
the perturbation theory is only first order, however, the δε that
we find by solving the QP only approximately eliminates the
splitting, but we can simply resolve SALT and solve a new QP,
iterating the process a few times (twice is typically enough)
to force a degeneracy to machine precision. The full details of
the procedure are given in Appendix D.

The resulting δε of this procedure applied to the even-�
threshold modes in Fig. 6 is shown in Fig. 7, and the

FIG. 6. � = 8 threshold modes [Re(Ee,o)] for a cylinder with
uniform dielectric ε = 5 and radius r = 1. Unlike in the odd-� case
(Fig. 1), however, the discretized modes are not π

2 rotations from
each other. Consequently, there is an unphysical splitting, due to
discretization, of 0.11% in Re(ω1 − ω2) (for a resolution of 14 pixels
per wavelength) and 11.5% in Im(ω1 − ω2) at zero pump strength [the
latter being larger only because these are high-Q modes and Im(ωμ) is
already very small at zero pump strength]. A difference in imaginary
parts also means a splitting in the threshold pump strength Dt.

convergence of the splitting to zero is shown in Fig. 8.
As verified in Fig. 9, the L2 norm of δε(x) decreases
with resolution, satisfying our requirement that the dielectric
perturbation should go to zero in the continuum limit. In
principle, one must resolve for δε at each pump strength,
since the hole-burning term changes the problem. However,
in practice we have found changes in δε with pump strength to
be negligible, as in Fig. 10, and one can typically use the same
δε for all pump strengths. In Appendix D, we give a method
that forces the degeneracy for pump strengths above threshold,
if a machine precision degeneracy is desired.

B. Example with C6v symmetry

An example of a hexagonal cavity is shown in Fig. 1. This
geometry was adapted from an infinite lattice of period a

with air holes of radius 0.3a. A single hole in the middle
has a reduced radius 0.2a to create a defect in the band
gap. The dielectric is εc = 11.56 everywhere except in the
holes, where there is air. A perfectly matched layer (PML) is
added to the boundaries to simulate the radiation loss, and the
axes of the hexagon have been aligned with the diagonals
rather than the x and y axes because the finite-difference

FIG. 7. Dielectric perturbation δε obtained by solving QP for
threshold modes with � = 8. The real part (left) has a dependence
cos(2�φ), while the imaginary part (right) is a more complicated
function.
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FIG. 8. Relative splitting in threshold pump strength Dt and
frequency ωt for even-� cylinder modes after QP iterations. The
relative splitting in frequency is defined in the usual way as 2| ω1−ω2

ω1+ω2
|,

and similarly for the pump strength. Only two iterations of QP were
required reduce the splitting in both the threshold frequency ωt and
the threshold pump strength Dt to 10−10 or smaller.

Yee discretization [36] happens to only have mirror symmetry
along the diagonals. Here, the lasing modes are TE (electric
field in plane and magnetic field out of plane), and there is
a pair of degenerate threshold modes from the hexagon’s C6v

symmetry, as shown in Fig. 1. For a 100 × 100 finite-difference
discretization, there is about a 1.5% splitting between the
threshold eigenvalues, so again we must use the QP procedure
to force the threshold degeneracy. Since these are TE modes,
we now have two components of the electric field, and
consequently we may treat δε as a tensor, as in Eq. (D4). We
only consider the diagonal components δεxx and δεyy here for

10 1 10 2
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air

FIG. 9. L2 norm of resulting δε(x) function obtained from QP
procedure versus discretization resolution 1/h for nearly degenerate
even-� modes of the cylinder, where h is the spacing between adjacent
grid points. The same resolutions as in Fig. 5 were used, and the
oscillations resemble the curve for splitting very closely. This is
because the larger the splitting ω2 − ω1, the larger the δε(x) function
needed to enforce the degeneracy. The fact that ‖δε‖2

2 appears to
be going to zero as the resolution increases indicates that our QP
procedure is convergent.
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FIG. 10. Above-threshold splitting in real and imaginary parts of
δω′ after performing QP procedure for even-� modes. The magnitude
is very small because the intensity profile is very close to rotationally
symmetric.

simplicity. Only two iterations of QP are necessary to force the
degeneracy down to machine precision, and the perturbation
used to force the degeneracy is shown in Fig. 11. We then use
Eq. (16) as an initial guess for our numerical solver, and the
intensity pattern of the resulting circulating solution is shown
in Fig. 12.

C. Multimode case

Now, we consider how to treat the problem of discretization-
broken symmetry (Sec. V) in the case of multimode lasing.
The method of Sec. V A gives a δε(x) that forces the
threshold degeneracy for a single-mode pair. When there are
multiple pairs of nearly degenerate modes, the generalization
is straightforward: we allow each pair to have its own δεμ,
so that their degeneracies can be forced independently. As a
result, the dielectric for each pair in Eq. (4) will become

εμ(x) = ε(x) + δεμ(x) + D0(x)	(ωμ)

1 + γ −1
‖

∑ |	νEν(x)|2 . (36)

Since our QP method finds the δεμ with the lowest L2 norm
(as described in Sec. V A) and the splitting decreases with
resolution as seen in Fig. 5, each δεμ will independently go to

FIG. 11. Dielectric perturbation obtained from QP procedure for
hexagonal cavity. Since the mode is TE (E = Eevenx̂ + Eoddŷ), we
have allowed the perturbation to be a diagonally anisotropic tensor,
as in Eq. (D4). Shown here are the real (left) and imaginary (right)
parts of δεxx . The δεyy looks similar except rotated by 60◦.
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FIG. 12. Intensity pattern for stable lasing mode for hexagonal
cavity. The pattern appears to be sixfold symmetric, which is
expected. Unlike in the right panel of Fig. 4, however, the chirality is
not significant enough to be visible since the hexagonal cavity is not
as lossy as the square cavity in Fig. 4. In the ideal system, the second
pole δω′ stays degenerate with the lasing eigenvalue δω, and this linear
combination stays stable for all pump strengths above threshold. In
the discretized system, there is not a true C6v symmetry, so there is
a small splitting similar to that of the even-� cylinder modes. Again,
this splitting is too small to affect physically meaningful results of the
simulation, but can be removed using the QP procedure if desired.

zero as we increase the resolution, so this generalized method
is also convergent: the unphysical frequency dependent δεμ

vanishes with increasing resolution.

VI. CONCLUDING REMARKS

In this paper, we have reduced the problem of identifying
the stable lasing modes of a degenerate laser from the full
nonlinear Maxwell-Bloch equations to a small semianalytical
solution evaluated in terms of integrals of the threshold modes
(solutions to the linear Maxwell partial-differential equation).
Our perturbative solution near threshold confirms an ansatz in
the earlier degenerate SALT work [7], in which the circulating
and standing-wave solutions were guessed as starting points
for a SALT solver and it was conjectured that the resulting
four solutions were the only possibilities. Furthermore, we
have presented an efficient numerical scheme to track these
solutions far above threshold via numerical SALT solvers [14]
combined with a simple technique to correct for numerical
symmetry breaking. And finally, we have shown that the
degeneracy of the Cn group Sec. IV means that circulating
lasing modes will retain a degenerate passive pole even far
above threshold, where the hole-burning term breaks mirror
symmetry. In addition, our work poses some intriguing open
questions for future research.

First, although we have reduced the question of stability of
circulating modes near threshold to a simple semianalytical
criterion (checking whether a certain integral expression is
positive), one would like to additionally have a fully analytical
proof that the circulating modes are stable or, alternatively, a
counterexample of a Cnv-symmetric problem with a degenerate
lasing threshold in which the circulating mode is unstable.
Since Ref. [7] found that circulating modes can become
unstable at higher pump strengths, one might naively hope that
the technique of Ref. [38] (in which a lasing SALT solution
at some pump strength above threshold is transformed into
a threshold SALT solution by designing the pump profile

at threshold to match the hole-burning term at the higher
pump strength) could be used to translate these into an
unstable threshold circulating mode. However, the technique
of Ref. [38] only translates one SALT solution into another,
and does not translate the full Maxwell-Bloch solutions since
it does not keep track of γ‖. Because the exact Maxwell-
Bloch stability eigenvalue σ depends on γ‖, as explained in
Appendix C 4 (only the first-order term σ1 is independent),
and SALT solutions do not, this method of translating a
hole-burning term to an artificially designed pump profile at a
higher threshold does not account for the effects of γ‖.

Second, it would be interesting to extend this sort of
perturbative SALT and stability analysis to other lasing
systems aside from Cn and Cnv symmetries. For example,
in a 3D photonic-crystal cavity [33] one could have cubic
symmetry and threefold degeneracies, or one could have even
greater degeneracies in spherical resonators. Alternatively, in
a surface-emitting distributed feedback [39–42] or photonic-
crystal laser [43–46], one might have lasing occur at a “band
edge” [47] in the dispersion relation. While a band edge
may or may not be degenerate per se, it coincides with a
singularity in the density of states [48] where a continuum
of resonances occurs in a small neighborhood of the lasing
resonance, and perturbative analysis might be very helpful in
understanding its stability. Finally, it would be interesting to
apply semianalytical perturbative stability analysis to cases
where a small imperfection slightly splits the degeneracy,
which was studied numerically in Ref. [7].
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APPENDIX A: DEGENERACY IN Cn

We review the result, given in Ref. [13], of the fact that
there are twofold degeneracies (due to Lorentz reciprocity) in
geometries with Cn but not Cnv symmetry, even though there
are only one-dimensional irreps. We give a slightly simpler
and more general proof by exploiting the differential form
of Maxwell’s equations, as opposed to the integral form in
Ref. [13].

Consider a field E+ that satisfies the equation L̂(ω+)E+ =
0, where we define the linear operator (as in Ref. [49])

L̂(ω) ≡ −∇ × 1

μ(x,ω)
∇ × +ω2ε(x,ω), (A1)
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where ω is the eigenfrequency and ε and μ have Cn symmetry:
that is, RnεR

−1
n = ε, where Rn is an n-fold rotation and Rn

n =
1, the identity operator. Suppose that the field transforms like
one of the chiral irreps of Cn: that is, RnE+ = exp (− 2πim

n
)E+,

with 0 < |m| � floor( n−1
2 ). We want to show that there exists

some other function E− that transforms according to the irrep
of the opposite chirality and has the same eigenfrequency: that
is, RnE− = exp ( 2πim

n
)E− and L̂(ω+)E− = 0.

The key step is to use the right basis: we could find the
Maxwell eigenfrequencies (Green’s-function poles) by solving
the nonlinear (in ω) eigenvalue problem L̂(ω)E = 0. However,
these make a poor basis because they diagonalize different
operators L̂(ω) with ω �= ω+. Instead, we fix ω = ω+ and
examine the set of eigenfunctions E−

j that satisfy L̂(ω+)E−
j =

λj E−
j and that transform as the exp ( 2πim

n
) irrep. A similar

strategy was employed in Ref. [12] to introduce the threshold
constant-flux (TCF) states basis. (The TCF approach is slightly
different, for it assumes that the eigenvalues λj are followed
by a spatial function that specifies the pump profile.) Note that
λj are not squared eigenfrequencies and E−

j are not Maxwell
solutions, except for λj = 0. Because this set is a complete
basis for functions of this chirality, the function (E+)� (which
transforms in the same way as E−

j because the rotation operator
Rn is real) can be expanded in this basis:

(E+)� =
∑

bj E−
j , (A2)

assuming that L̂(ω+) is diagonalizable (which is generically
true for matrices except at exceptional points; the situation
for infinite-dimensional operators is more complicated, but
diagonalizability is typically assumed there too in physics).
We will now show that at least one of these E−

j is exactly the

E− satisfying L̂(ω+)E− = 0 that we are looking for.
First, we define the unconjugated inner product (f,g) ≡∫

d3x f · g. Then, for appropriate boundary conditions, L̂(ω+)
is complex symmetric, that is, (f,L̂g) = (L̂f,g) for reciprocal
materials ε = εT , μ = μT , and this is known as Lorentz
reciprocity [33]. Because L̂(ω+) is complex symmetric, its
eigenfunctions with distinct eigenvalues are orthogonal; that
is: (E−

i ,E−
j ) = 0 for λi �= λj . Now, write

∫
d3x |E+|2 =

∑
bj (E+,E−

j ). (A3)

If all E−
j had λj �= 0, then (E+ · E−

j ) = 0 for all j . However,
the left-hand side is obviously positive, so at least one term in
the sum on the right-hand side must be nonvanishing. Hence,
this term has the eigenvalue λj = 0, and it is precisely the E−
that is degenerate to E+.

APPENDIX B: ALLOWED LASING MODES

In this Appendix, we show that the only allowed lasing
modes for Cnv geometries above threshold are the circulating
modes E± and standing-wave modes E+ + eiθ E−, with θ an
arbitrary angle for n �= 4� (where � is the order of the 2D
irrep that the degenerate modes transform as), and θ an integer
multiple of π

2 for n = 4�. We begin by writing D0 = Dt(1 + d)
and inserting into Eq. (12). We expand to lowest order in d

and the mode intensity, and we have

∇ × ∇ × E = ω2[ε + Dt	(1 + d − γ −1
‖ |	E|2)]E. (B1)

Comparing with Eq. (13) at threshold, we conclude that E =
O(

√
d), and that the profile should be some linear combination

of the threshold modes E1,2, as in Eq. (14). Inserting Eq. (14)
into Eq. (B1), noting that the zeroth-order terms vanish due to
Eq. (13), we obtain[∇ × ∇ × − ω2

t (ε + Dt	t)
]
δE

=
{
ω1

∂

∂ωt

[
ω2

t (ε + Dt	t)
] + ω2

t Dt	t(1 − |f|2)

}
f, (B2)

where f ≡ a1E1 + a2E2. Now, multiply by E1,2 and integrate
over all space, and we obtain Eq. (15), where we have used the
fact that∫

d3x E1,2 · [∇ × ∇ × − ω2
t (ε + Dt	t)

]
δE = 0 (B3)

because the threshold Maxwell operator is complex symmetric
[33,50,51] so that it acts to the left and annihilates E1,2. (The
fact that the ∇ × ∇× operator acts to the left can be understood
using integration by parts, with the boundary terms vanishing
due to the limiting-absorption principle [52].) Now, choose
E1 = E+ and E2 = E−, where E± is defined in Eq. (16). For
generality, we assume that the geometry [i.e. the functions
ε(x) and Dt(x)] has at least Cn symmetry. In Eq. (15), we see
that

∫
d3x ε(x)E+ · E+ vanishes because it is the conjugated

inner product of E+ and E�
+, which transform as the clockwise

and counterclockwise 1D irreps in the Cn group, and from the
great orthogonality theorem [5,21], conjugated inner products
between functions belonging to different irreps always vanish
[e.g., for circulating modes on a uniform ring, the integral∫

dφ ei�φ(e−i�φ)� vanishes]. Also, the integral over Dt(x) is
the same because it also has at least Cn symmetry. Excluding
the intensity term in Eq. (15), the rest of the terms become

a∓(ω1H + GD), (B4)

where we have defined

Gε ≡
∫

d3x ε(x)E+ · E−,

GD ≡
∫

d3x Dt(x)E+ · E−, (B5)

H ≡ (
ω2

t 	t
)−1 ∂

∂ωt

{
ω2

t (Gε + GD	t)
}
.

For the intensity term, we have
∫

d3x DtE± · f|f|2. We note
that the quantities |E±|2 and E+ · E− have Cn symmetry, so
by symmetry arguments, the only surviving integrals are

I± =
∫

d3x Dt|E±|2E+ · E−,

J± =
∫

d3x Dt(E�
± · E∓)E± · E±, (B6)

K± =
∫

d3x Dt(E�
∓ · E±)E± · E±.

Additionally, note that for Cnv, we have I+ = I−, and the same
for J and K . Further, for TM modes (E± = E±ẑ), we have
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I± = J±. Finally, K± is only nonvanishing for n = 4� since
in that special case, E+ picks up a factor of i under fourfold
rotation, as seen in Eq. (16). With these definitions, Eq. (15)
straightforwardly reduces to Eq. (17).

To solve for the coefficients a± and the frequency shift ω1,
first consider the case a− = 0. Dividing Eq. (17) (with the
bottom sign) by a+ then yields

|a+|2 = ω1H + GD

I+
. (B7)

Taking the imaginary part of both sides, and noting that ω1 is
real, we obtain

0 = ω1Im

(
H

I+

)
+ Im

(
GD

I+

)
, (B8)

which leads to the circulating solution. [Equation (18) holds
for Cnv; the same expression with I replaced by I± also holds
for Cn. In this case I+ �= I−, so the two circulating lasing
modes will actually have slightly different amplitudes and
frequencies.] Note that the fact that |a+|2 must be a positive
number also gives a cutoff condition

Re(GD/I±) >
Im(GD/I±)

Im(H/I±)
Re(H/I±). (B9)

Next, we consider the case that both a± are nonzero. Write
a± = |a±|eiθ± and define the relative phase z = ei(θ−−θ+).
Divide Eq. (17) by a∓, and we obtain

|a∓|2I∓ + |a±|2(I± + J± + z∓2K±) = ω1H + GD. (B10)

Solving this linear equation for the unknowns |a±|2, we obtain

|a±|2 = (ω1H + GD)T±, (B11)

where

T± = J∓ + z±2K∓
(I+ + J+ + z−2K+)(I− + J− + z2K−) − I+I−

.

(B12)

Again, since |a±|2 and ω1 are real, we have

ω1 = − Im(GDT+)

Im(HT+)
= − Im(GDT−)

Im(HT−)
. (B13)

The second equality here is a constraint that must be satisfied.
For Cnv with n �= 4�, we have I+,J+ = I−,J− and K± = 0
(as explained previously), so T+ = T− and the constraint is
automatically satisfied, indicating that z is free to have any
phase, and yielding the solution in Eq. (19). For Cn with n �=
4�, we again have K± = 0, but there is no mirror symmetry
so I+,J+ �= I−,J−, and no choice of z will allow Eq. (B13) to
be satisfied. Hence, there are no standing lasing modes for this
case.

For Cnv with n = 4�, we again have I+,J+ = I−,J−, but
we also have K+ = K− �= 0. Hence, for T+ = T− to be true,
we must have z2 = z−2 = ±1. Hence, there are two cases,
z = ±1, for which the solution is given in Eq. (20), and z = ±i,
for which the solution is given in Eq. (21). For Cn with n = 4�,
we now have I+,J+ �= I−,J−, and K+ �= K−, with both K±
nonzero. Empirically, we have found that Eq. (B13) still has
solutions (which must be obtained by solving the equation
numerically) at four allowed phases z, with angles separated

by π
2 , just as in the C4�v case. Of course, it is straightforward

to choose the overall normalization and phase of the threshold
basis E± such that the standing modes are still E+ ± E− and
E+ ± iE−, just as in the C4�v case.

APPENDIX C: STABILITY CALCULATIONS

In this Appendix, we provide details for the derivation of the
stability eigenvalues given in Sec. III B. Comparing Eqs. (23)
and (24), we see that the matrices are

A =

⎛
⎜⎜⎜⎝

� −εIω
2 ω2 0 0

εIω
2 � 0 ω2 0

γ⊥D 0 ωa − ω γ⊥ γ⊥ER

0 γ⊥D −γ⊥ ωa − ω γ⊥EI

−PI PR EI −ER γ‖

⎞
⎟⎟⎟⎠, (C1)

where � = εRω2 − ∇ × ∇×, ER ≡ Re(E), and EI ≡ Im(E),

B =

⎛
⎜⎜⎜⎝

−2εIω −2εRω 0 −2ω 0
2εRω −2εIω 2ω 0 0

0 0 0 1 0
0 0 −1 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎠, (C2)

and

C =

⎛
⎜⎜⎜⎝

−εR εI −1 0 0
−εI −εR 0 −1 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎠. (C3)

We expand the matrices in powers of
√

d, as in Eq. (27),
by noting that ω = ωt + ω1d + O(d2), D0 = Dt(1 + d), and
E,P = O(

√
d), according to Eq. (14). Now, expand Eq. (25)

and keep track of terms order by order using Eq. (28).

1. Zeroth and lowest (d1/2) orders

At zeroth order, we have(
Cσ 2

0 + B0σ0 + A0
)
x0 = 0, (C4)

which turns out to be equivalent to the SALT equation at
threshold, Eq. (13). The solution is easily seen to be any
linear combination of the threshold modes (with the associated
polarizations), given in Eq. (30). Because these modes already
solve the SALT equation, they necessarily have σ0 = 0. [There
are other solutions to Eq. (C4), corresponding to the below-
threshold modes. However, by definition, they are stable, so
we are not concerned with them.] Note that there are now four
linearly independent eigenvectors [from Eq. (30)], even though
we only have a double degeneracy in the threshold modes.
This is because we have separated the problem into real and
imaginary parts, and this separation will become significant at
higher orders in

√
d, when the nonanalyticity appears in the

equations.
Inserting these results into Eq. (25) at order

√
d, we have

(B0σ1/2 + A1/2)
∑

bkvk + A0x1/2 = 0. (C5)
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We now define the vectors

wj =

⎛
⎜⎜⎜⎜⎝

Reej

−Imej

ω2
t Re(ej	t)/γ⊥

−ω2
t Im(ej	t)/γ⊥

0

⎞
⎟⎟⎟⎟⎠, (C6)

where ek forms the four-component complex basis defined
in Eq. (30). It is straightforward to show that AT

0 wj = 0.
Additionally, due to the nonzero pattern of A1/2, it is easy to
see that A1/2vk has all zero elements except the last, and hence
wT

j A1/2vk = 0. Acting on Eq. (C5) with wT
j , we then obtain

σ1/2
∑

(wT
j B0vk)bk = 0. The matrix wT

j B0vk is nonsingular,
which we will see later after we explicitly compute it in
Eq. (C19). Hence, we conclude that σ1/2 = 0.

Next, we compute A1/2vk . Since the only nonzero element
of A1/2vk is the last, we define this element, after straightfor-
ward evaluation, as

gk ≡ 2Dt|	t|√γ‖Re[e�
k · (a+E+ + a−E−)]. (C7)

Inserting the result σ1/2 = 0 into Eq. (C5), we obtain

A0x1/2 = −A1/2

∑
bkvk =

⎛
⎜⎜⎜⎝

0
0
0
0

−∑
bkgk

⎞
⎟⎟⎟⎠. (C8)

The vector x1/2 must also have this same nonzero pattern
because if it had any nonzero elements in the first four, they
must be annihilated by A0 and hence must be some linear
combination of vk (which is already accounted for in x0 and
would be redundant). Hence, we immediately conclude by
inspection of A0 that

x1/2 =

⎛
⎜⎜⎜⎜⎝

0
0
0
0

−γ −1
‖

∑
bkgk

⎞
⎟⎟⎟⎟⎠. (C9)

2. First order

At the next order, O(d), Eq. (25) is

(B0σ1 + A1)
∑

bkvk + A1/2x1/2 + A0x1 = 0. (C10)

[Note that without the A1/2x1/2 term, Eq. (C10) would yield
identical results to finding the two passive poles of the SALT
equation that come from the threshold degenerate lasing
modes.] Again, act on this equation with wT

j . By direct
evaluation, we have

wT
j A1vk = Re

[
ω1

∂

∂ωt
ω2

t

∫
d3x ej · (ε + 	tDt)ek

]

+ Re

[
ω2

t 	t

∫
d3x Dtej · (1 − |f|2)ek

]
(C11)

and

wT
j B0vk = −Im

[
∂

∂ωt
ω2

t

∫
d3x ej · (ε + 	tDt)ek

]
. (C12)

By the same symmetry arguments used to evaluate the integrals
in Appendix B, it is straightforward to show that

∂

∂ωt
ω2

t

∫
d3x ej · (ε + 	tDt)ek = ω2

t 	tH

(
X iX
iX −X

)
jk

,

(C13)

where H is given in Eq. (B5) and

X ≡
(

0 1
1 0

)
. (C14)

Next, we have∫
d3x Dtej · |f|2ek

=
(

M iM
iM −M

)
jk

+ (|a+|2I+ + |a−|2I−)

(
X iX
iX −X

)
jk

,

(C15)

where

M ≡
(

a�
+a−J+ + a+a�

−K+ 0
0 a�

+a−K− + a+a�
−J−

)
. (C16)

Putting these results together, we have

wT
j A1vk = ω2

t Re

[
	tW

(
X iX
iX −X

)
jk

− 	t

(
M iM
iM −M

)
jk

]
,

(C17)

where

W ≡ ω1H + GD − |a+|2I+ − |a−|2I− (C18)

and

wT
j B0vk = −ω2

t Im

[
	tH

(
X iX
iX −X

)
jk

]
. (C19)

Next, by straightforward computation, we obtain

wT
j A1/2x1/2 = −

∑
k

bk

∫
d3x ω2

t Dt

× Re[	t(f · ej )(f · e�
k + f� · ek). (C20)

Again, by straightforward computation, we see that∫
d3x Dt(f · ej )(f · e�

k) =
(

Q −iQ
iQ Q

)
jk

,

(C21)∫
d3x Dt(f · ej )(f� · ek) =

(
P iP
iP −P

)
jk

,

where

Q ≡
(

a+a−(I+ + J+) a2
−I− + a2

+K+
a2

+I+ + a2
−K− a+a−(I− + J−)

)
,

(C22)

P ≡
(

a−a�
+I+ + a+a�

−K+ |a−|2I− + |a+|2J+
|a+|2I+ + |a−|2J− a+a�

−I− + a−a�
+K−

)
.

Putting this together, Eq. (C20) then becomes

wT
j A1/2x1/2

= −
∑

k

bkω
2
t Re

[
	t

(
Q + P i(P − Q)

i(P + Q) Q − P

)
jk

]
. (C23)
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Combining this with Eqs. (C17) and (C19), defining P̃ ≡ P +
M − WX, and evaluating the real and imaginary components,
Eq. (C10) becomes

(
Re[	t(Q + P̃)] Im[	t(Q − P̃)]

−Im[	t(Q + P̃)] Re[	t(Q − P̃)]

)
b

= −σ1

(
Im(	tH )X Re(	tH )X
Re(	tH )X −Im(	tH )X

)
b. (C24)

Using the fact that X is its own inverse, we multiply this
equation by the matrix on the right-hand side, and obtain

(
Im

[
X(Q + P̃)/H

] −Re[X(Q − P̃)/H ]
−Re

[
X(Q + P̃)/H

] −Im[X(Q − P̃)/H ]

)
b = σ1b,

(C25)
which is a 4 × 4 linear eigenvalue problem for σ1.

3. Closed-form stability eigenvalues

We now diagonalize Eq. (C25) for each of the lasing mode
solutions in Sec. III.

a. Circulating lasing mode

For the circulating solution in Eq. (18), we have a− = 0,
leading to W = 0 and P̃ = P. The matrix in Eq. (C25) then
becomes

⎛
⎜⎜⎜⎜⎝

2 Im
(

I+
H

)
0 0 0

0 Im
(

K++J+
H

)
0 −Re

(
K+−J+

H

)
−2 Re

(
I+
H

)
0 0 0

0 −Re
(

K++J+
H

)
0 −Im

(
K+−J+

H

)

⎞
⎟⎟⎟⎟⎠|a+|2,

(C26)
where |a+|2 ≡ ω1H+GD

I+
. By inspection, there is an eigenpair

with

σ1 = 0, b =

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠. (C27)

Since the third component of the basis is e3 = iE+, this
eigenvector corresponds to a global phase rotation E+ →
(1 + iδ)E+, which is a continuous symmetry of the original
Maxwell-Bloch equations. A second eigenpair is

σ1 = 2|a+|2Im

(
I+
H

)
, b =

⎛
⎜⎜⎜⎜⎝

Im
(

I+
H

)
0

−Re
(

I+
H

)
0

⎞
⎟⎟⎟⎟⎠. (C28)

The remaining two eigenvalues are

σ1 =
⎡
⎣Im

(
J+
H

)
±

√∣∣∣∣K+
H

∣∣∣∣
2

− Re

(
J+
H

)2
⎤
⎦|a+|2, (C29)

with

b =

⎛
⎜⎜⎜⎝

0
Re

(
K+−J+

H

)
0

Im
(

K+
H

) ∓
√∣∣K+

H

∣∣2 − Re
(

J+
H

)2

⎞
⎟⎟⎟⎠. (C30)

b. Standing-wave modes, n �= 4�

We now diagonalize Eq. (C25) for the standing-wave
modes. First, for n �= 4�, standing-wave modes only occur
in Cnv, as discussed in Appendix B. In this case, all K± = 0,
and I+,J+ = I−,J−. The matrix in Eq. (C25) then becomes
2|a|2×⎛
⎜⎜⎜⎜⎝

Im
(

I
H

)
Re(z)Im

(
I+J
H

)
0 Im(z)Im

(
I+J
H

)
Im

[
z
(

I+J
H

)]
Re(z)Im

(
Iz
H

)
0 Im(z)Im

(
Iz
H

)
−Re

(
I
H

) −Re(z)Re
(

I+J
H

)
0 −Im(z)Re

(
I+J
H

)
−Re

[
z
(

I+J
H

)] −Re(z)Re
(

Iz
H

)
0 −Im(z)Re

(
Iz
H

)

⎞
⎟⎟⎟⎟⎠,

(C31)

where |a|2 = ω1H+GD

2I+J
. This matrix has two zero eigenvectors

that have σ1 = 0:

b =

⎛
⎜⎜⎜⎜⎝

0

0

1

0

⎞
⎟⎟⎟⎟⎠, b =

⎛
⎜⎜⎜⎜⎝

0

Im(z)

0

Re(z)

⎞
⎟⎟⎟⎟⎠, (C32)

which comes from the two continuous degrees of freedom in
the solution: the overall global phase freedom, as well as the
relative phase z in Eq. (19). It is straightforward to find the
other two eigenpairs, which are

σ1 = 2 Im

(
2I + J

H

)
|a|2, b =

⎛
⎜⎜⎜⎜⎝

1

Re(z)

0

Im(z)

⎞
⎟⎟⎟⎟⎠ (C33)

and

σ1 = −2 Im

(
J

H

)
|a|2, b =

⎛
⎜⎜⎜⎜⎝

−1

Re(z)

0

Im(z)

⎞
⎟⎟⎟⎟⎠. (C34)

c. Standing-wave modes, n = 4�

Next, we examine the case Cnv for n = 4� [standing-wave
modes also exist here in the Cn case, but Eq. (C25) must be
diagonalized numerically]. For the case of a E+ ± E− lasing
mode [Eq. (20)], the matrix in Eq. (C25) is 2|a|2×⎛
⎜⎜⎜⎜⎝

Im
(

I
H

) ±Im
(

I+J+K
H

) −Re
(

K
H

) ±Re
(

K
H

)
±Im

(
I+J+K

H

)
Im

(
I
H

) ±Re
(

K
H

) −Re
(

K
H

)
−Re

(
I
H

) ∓Re
(

I+J+K
H

) −Im
(

K
H

) ±Im
(

K
H

)
∓Re

(
I+J+K

H

) −Re
(

I
H

) ±Im
(

K
H

) −Im
(

K
H

)

⎞
⎟⎟⎟⎟⎠,

(C35)
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where |a|2 = ω1H+GD

2I+J+K
, and the ± symbols correspond to z =

±1. There is a single zero eigenvalue:

σ1 = 0, b =

⎛
⎜⎜⎜⎜⎝

0

0

1

±1

⎞
⎟⎟⎟⎟⎠. (C36)

A second eigenpair is

σ1 = 2|a|2Im

(
2I + J + K

H

)
, b =

⎛
⎜⎜⎜⎜⎝

1

±1

0

0

⎞
⎟⎟⎟⎟⎠. (C37)

Empirically, we have found that this eigenvalue is always
stable. The final two eigenvalues are

σ1 = −|a|2Im

(
J + 3K

H

)

± |a|2
√

Im

(
J − K

H

)2

− 8 Re

(
K

H

)
Re

(
J + K

H

)
(C38)

(the eigenvectors can be written in closed form, but are tedious
and not illuminating). Empirically, we have found that at least
one of these two eigenvalues is unstable (except for an isolated
case, that we explain below). Next, for the case of a E+ ± iE−
lasing mode [Eq. (21)], the matrix in Eq. (C25) is 2|a|2×
⎛
⎜⎜⎜⎜⎝

Im
(

I
H

) ±Re
(

K
H

)
Re

(
K
H

) ±Im
(

I+J−K
H

)
±Re

(
I+J−K

H

)
Im

(
K
H

) ±Im
(

K
H

)
Re

(
I
H

)
−Re

(
I
H

) ±Im
(

K
H

)
Im

(
K
H

) ∓Re
(

I+J−K
H

)
±Im

(
I+J−K

H

) −Re
(

K
H

) ∓Re
(

K
H

)
Im

(
I
H

)

⎞
⎟⎟⎟⎟⎠,

(C39)

where |a|2 = ω1H+GD

2I+J−K
, and the ± signs correspond to z = ±i.

There is an eigenpair with zero eigenvalue:

σ1 = 0, b =

⎛
⎜⎜⎜⎜⎝

0

1

∓1

0

⎞
⎟⎟⎟⎟⎠ (C40)

and another eigenpair

σ1 = 2|a|2Im

(
2I + J − K

H

)
, b =

⎛
⎜⎜⎜⎜⎝

±1

0

0

1

⎞
⎟⎟⎟⎟⎠. (C41)

Empirically, we have found that this eigenvalue is always
stable. Finally, the remaining two eigenvalues are

σ1 = |a|2Im

(
3K − J

H

)

± |a|2
√

Im

(
J + K

H

)2

+ 8 Re

(
K

H

)
Re

(
J − K

H

)
(C42)

(the eigenvectors can be written in closed form, but are tedious
and not illuminating). Empirically, we have found that at least
one of these two eigenvalues is unstable, except for an isolated
case that we will now explain.

We note that for the previous two cases, where n = 4�, it is
possible to choose the shape of the gain profile Dt(x) such that
J = ±K , in which case the one of the two pairs E+ ± E− and
E+ ± iE− actually becomes stable. To see this, we consider a
Cnv geometry with n = 4�. Equation (16) then becomes

E± =
n∑

b=1

(±i)bRb/nEeven. (C43)

The specific choice of geometry requires that we place radially
symmetric lines of gain on the faces or diagonals of the Cnv

geometry, which preserves the Cnv symmetry. We can write
this as

Dt(x) =
n∑

a=1

G(r)δ(θ − θa), (C44)

where θa = 2πa
n

for the faces, and θa = (2a + 1)π
n

for the
diagonals. For a TM geometry, we then have the overlap
integrals [Eq. (B6)]

J =
n∑

a=1

∫
r dr G(r)|E+(r,θa)|2E−(r,θa)E+(r,θa),

(C45)

K =
n∑

a=1

∫
r dr G(r)E+(r,θa)�E−(r,θa)3.

It can be shown that depending on the choice of θa being the
faces or diagonals, we will have either K = J or K = −J .
For K = J , the eigenvalues in Eq. (C42) of the E+ ± iE−
standing-wave modes become 0 and a stable eigenvalue. For
K = −J , the same happens for those in Eq. (C38) of the
E+ ± E− standing-wave modes.

4. Region of validity in small-γ‖ limit

In this section, we work out the γ‖ dependence of higher-
order terms in the perturbation theory and demonstrate that
the regime of validity of the perturbation theory depends on d

being small compared to a constant multiple of γ‖. We show
that the exact expansion of σ/d to all orders in d only contains
terms of the form d�/γ

j

‖ with � � j , and that in the limit
where γ‖,d → 0, with d vanishing at least as rapidly as γ‖,
the terms with � > j vanish and the stability eigenvalue takes
the asymptotic functional form σ/d = f (d/γ‖). Here, f (0) is
exactly the first-order stability eigenvalue σ1. For circulating
modes that have Re(σ1) < 0, the smallest positive solution z0
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of the equation Re[f (z)] = 0 gives a boundary of stability,
for which a circulating lasing mode becomes unstable for
d > γ‖z0, as seen in the ring-laser example in Ref. [7].

First, since we have already obtained closed-form expres-
sions for σ1 and the coefficients bk of x0, Eq. (C10) can be
solved for x1: x1 = A−1

0 [(B0σ1 + A1)x0 + A1/2x1/2]. Next, at
order d3/2, we have

A3/2x0 + A1x1/2 + A1/2x1 + A0x3/2

= −B0σ3/2x0 − B0σ1x1/2. (C46)

The first three terms on the left-hand side as well as the very
last term on the right all have the same nonzero pattern as
x1/2. Hence, multiplying both sides by xT

0 (which is now
known after having solved the degenerate problem at order
d), we obtain 0 = σ3/2xT

0 B0x0, which leads to σ3/2 = 0. The
only remaining unknown is then x3/2. By the same arguments
leading to Eq. (C9), we have A0x3/2 = γ‖x3/2, which yields
x3/2 = −γ −1

‖ f3/2, where

f3/2 ≡ A3/2x0 + A1x1/2 + A1/2x1 + B0σ1x1/2, (C47)

and f3/2 is O(1) with respect to γ‖, i.e., it goes to a constant as
γ‖ → 0. Moving onto order d2, we have

Cσ 2
1 x0 + B0(σ2x0 + σ1x1) + B1σ1x0

= −
4∑

k=0

Ak/2x2− k
2
. (C48)

Multiplying both sides by xT
0 annihilates the k = 0 term,

leaving only a single unknown σ2 and a single term of O(γ −1
‖ ):

−A1/2x3/2 = γ −1
‖ A1/2f3/2. We then have

γ‖σ2 = xT
0 A1/2f3/2

xT
0 B0x0

+ O(γ‖). (C49)

Carrying on to the next order results in σ5/2 = 0 and x5/2 =
−γ −1

‖ f5/2, where now f5/2 = O(γ −1
‖ ) due to it including terms

with σ2 and x2. By continuing this process, we find that
σm+ 1

2
= 0, and xm+ 1

2
, σm+1, and xm+1 are all O(γ −m

‖ ). This
is made possible by the fact that the only place γ‖ occurs
in the entire problem is the very last matrix element of A0

in Eq. (C1), as well as the fact that the xm+ 1
2

and xm have
predictable nonzero patterns, due to the nonzero patterns of
Am+ 1

2
being different from those of all the other matrices.

Defining sm+1 ≡ γ m
‖ σm+1 = O(1), we obtain a full expansion

for the exact Maxwell-Bloch eigenvalue [Eq. (28)]

σ ≈ d

∞∑
k=1

(
d

γ‖

)k−1

sk, (C50)

where the ≈ comes from the fact that we have thrown away
terms of the form d�/γ

j

‖ with � > j , which are negligible
compared to (d/γ‖)k and vanish in the limit d,γ‖ → 0
(provided that γ‖ does not go zero more rapidly than d). In
this limit, we can then infer a generic functional form of σ :

lim
γ‖,d→0

σ

d
= f

(
d

γ‖

)
, (C51)

where f is a complex-valued function (with a real argument)
whose Taylor expansion is the sum in Eq. (C50). For an

eigenvalue σ of the Maxwell-Bloch equation linearized about
a circulating mode, we have f (0) = σ1 having a negative real
part. The smallest positive zero z0 of Ref then gives the
equation for a boundary of stability d = γ‖z0. Hence, in the
limit that both γ‖ and d go to zero, the region of stability for a
circulating mode is given by d < γ‖z0, where z0 is a constant
independent of γ‖ and d.

APPENDIX D: DETERMINING THE DIELECTRIC
PERTURBATION δε

In this Appendix, we describe the process used to force a
degeneracy in a geometry whose symmetry has been broken by
the discretization scheme (e.g., a C6v geometry discretized into
a rectangular grid). We first analyze the effect of a small δε on
the eigenfrequencies (of the lasing mode and the passive pole)
by well-known first-order perturbation theory for Maxwell’s
equations [33] (some modification is required to handle
the nonlinearity of the hole-burning term above threshold).
However, we first force the degeneracy below threshold
(repeating as needed as the pump strength is increased), so that
both passive poles reach threshold simultaneously. (In practice,
we achieved the fastest convergence by allowing passive poles
to have positive imaginary parts, and then setting the pump
strength so that the two poles “straddle” the real axis; this
way, when they meet in the middle they are both exactly at
threshold.) Below threshold, the eigenproblem is linear in the
eigenvector E (the nonlinearity in ω is still present but easy to
deal with using standard methods), and we can apply standard
perturbation theory (albeit for a complex-symmetric operator,
not a Hermitian operator) as follows.

Consider two nonlasing modes that satisfy

0 = −∇ × ∇ × Eμ + ω2
μεμEμ,

(D1)
εμ ≡ εc + Dt	(ωμ).

Adding a perturbation to the dielectric δε will result in
corresponding responses δEμ and δωμ. As in the threshold
perturbation theory, we multiply both sides by Eμ and keep
only first-order terms. Terms involving δEμ again vanish
because the operators act to the left, and we are left with
[49,53,54]

δωμ = −
∫

d3x Eμ · δεEμ∫
d3x Eμ · ( 2εμ

ωμ
+ ∂εμ

∂ωμ

)
Eμ

. (D2)

We write this frequency shift as an inner product

δωμ = −pT
μδε. (D3)

As an aside, while it is fine to use a scalar δε function for
this procedure, in the case when the Eμ are TE modes or fully
vectorial fields, then it is also possible to allow δε(x) to be a
diagonally anisotropic tensor

←→
δε (x) =

⎛
⎝δεxx(x) 0 0

0 δεyy(x) 0
0 0 δεzz(x)

⎞
⎠. (D4)

The column-vector form of δε in Eq. (D3) would then have as
its elements all the real and imaginary components of

←→
δε (x)

at each Yee point [36] [δεxx(x), δεyy(x), and δεzz(x) for all

023835-19



DAVID LIU et al. PHYSICAL REVIEW A 95, 023835 (2017)

the grid points x], while the row vector pT
μ would have as its

elements the real and imaginary parts of Ex(x)2, Ey(x)2, and
Ez(x)2 at all the grid points. If we take this option, then the
norm we minimize would be

‖δε‖2
2 =

∫
d3x ‖←→δε (x)‖2

F , (D5)

where the Frobenius norm [55] at each point x is defined as

‖←→δε (x)‖2
F ≡ |δεxx(x)|2 + |δεyy(x)|2 + |δεzz(x)|2. (D6)

Whether we take δε to be a scalar or a tensor, the degeneracy-
forcing condition ω1 + δω1 = ω2 + δω2 then becomes

(p2 − p1)T δε = ω2 − ω1. (D7)

It turns out that the solution of a quadratic program with
equality constraints can be obtained directly by solving a linear
dual problem [34], which in this case is⎛
⎜⎜⎝

1 0 qR qI

0 1 −qI qR

(qR)T −(qI )T 0 0
(qI )T (qR)T 0 0

⎞
⎟⎟⎠
⎛
⎜⎝

δεR

δεI

λ1

λ2

⎞
⎟⎠ =

⎛
⎜⎜⎝

0
0

ωR
2 − ωR

1
ωI

2 − ωI
1

⎞
⎟⎟⎠.

(D8)

Here, the superscripts R and I denote real and imaginary parts,
and we have defined q ≡ p2 − p1, and the λ1,2 are Lagrange
multipliers that are not needed. When ω2 is very close to ω1,
we can improve the condition number of the matrix by freely
multiplying the second-to-last row and column of the matrix
by a constant factor, provided that the second-to-last element
of the right-hand side is divided by the same factor. The same
can be done for the last row and column, with the last element
of the right-hand side.

Note that even after the thresholds and threshold fre-
quencies have been made exactly degenerate using the QP
procedure illustrated above, we are still in principle forcing
the degeneracy. Above threshold, the delicate balance created
by δε to force the frequencies together is slightly broken. This

results in an approximate degeneracy that is maintained very
far above threshold, as shown in Fig. 10, with only a 10−8

splitting for pump strengths up to 100 times threshold. In
practice, these results are already accurate enough to give all
the desired physical information about the degenerate pair. If
we wanted to be absolutely correct and force the degeneracy
to machine precision (as it was in the exactly symmetric case
for odd-� modes), we could simply perform QP again at some
given d > 0 to force δω and δω′ back together. One extra
caveat in this case is that δω is now a lasing pole, so the spatial
hole-burning term needs to be accounted for in the perturbation
theory (δω′ is still a passive pole, so the previous perturbation
theory still applies), and instead of Eq. (D2) we now have

δω = −
∫

d3x E · [δε + Dt	(ωμ)δH ]E∫
d3x E · ( 2ε

ω
+ ∂ε

∂ω

)
E

,

ε ≡ εc + Dt	(ω)H, (D9)

δH ≡ 1

1 + |E + δE|2 − 1

1 + |E|2 .

Here, δH is the change in the spatial-hole-burning term arising
from the dielectric perturbation δε. However, since there is
no easy way to determine δE without numerically solving
the full problem, δH is hard to determine semianalytically.
A simple workaround is to set δH = 0 above, which makes
this procedure no longer a true first-order perturbation theory.
However, since the splitting is already so small as shown in
Fig. 10, the δε needed is also extremely small, so δH is also
negligible. Although δω is not zero to first order, the δH = 0
approximation is enough to find a δε that greatly decreases δω.
We find empirically that it usually takes one iteration of this
above-threshold QP procedure to restore the degeneracy of the
lasing pole ω and its passive mode ω′ to machine precision
since δω is already very small. Practically speaking, this entire
extra step is rarely needed since the solutions obtained from
δε for the linear problem below threshold are already close
enough for most pump strengths of physical interest.
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