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WKB analysis. Expanding the function 
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, and inserting it into the Helmholtz Eq. (1) to leading order, we can show that in the limit of 
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. Setting 
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 and collecting terms with the same power of 
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, we can write down the two dominant terms, namely 
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. To each of these terms a corresponding equation is found: 
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The exactness requirement of our ansatz necessitates that all terms 
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 are zero and the demand for constant intensity of 
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 calls for a real-valued 
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. Both conditions can be fulfilled by choosing 
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 such that the term 
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 moves from Eq. (0.1) to Eq. (0.2), leading to 
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. As a result 
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 and all higher terms are constant as well.
Setting 
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, we finally obtain the non-Hermitian dielectric function (relative permittivity), as shown in Eq. (2).
Iteration technique for determination of the gain-loss profile given the 
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 distribution. Given the function 
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, the dielectric distribution 
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 and the corresponding refractive index distribution can be directly determined and vice versa. The same is, however, not true if, as a starting point, the real part of the refractive index 
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 is known instead (typical situation in many realistic cases). The reason is that by adding an imaginary part of the refractive index 
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 (e.g., by pumping), one not only changes 
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. In other words, by adding gain and loss to a material, the real part of the dielectric function changes as well. In order to overcome such a problem, we employ an iterative technique, that is based on the following expressions between 
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 and the complex index of refraction: 
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. To identify 
[image: image32.emf]n,(x)









n

I

(x)

 and 
[image: image33.emf]W(x)









W(x)

 required for CI-states (that correspond to a specific and given 
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 distribution), we applied an iterative numerical scheme that allows to determine these unknown distributions, by starting with a reasonable guess function for 
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. In particular, at the 
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 step of iteration the equations read: 

[image: image37.emf])
'/ (2kn,,
‘(m
+1) - _W

n,









n

I

(

m

+

1)

=-

W'(

m

)

/(2

kn

R

)





 (0.3)

[image: image38.emf](m+1) 2 2(m+1)1/2
WY =[ny—n; "]









W(

m

+

1)

=

[

n2

R

-

n

I

2(

m

+

1)

]

1/2

,



 (0.4)
where 
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 is the given wavenumber of the incident plane wave. We explicitly checked that the method converges and leads to the desired results.
Effects of gain saturation. We prove here that the constant-intensity state can be a scattering eigenstate mode under perfect transmission boundary conditions in a medium with gain saturation1.  The corresponding nonlinear Helmholtz equation is: 
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where 
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 describes the material loss in the cavity, 
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the pump, and 
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 the saturation coefficient. We are looking for constant-intensity states of the form 

[image: image44.emf]U(x)= Aeika(x‘) dx'









U

(

x

)

=

A

e

ikW

ò(

x

')

dx

'

,



 (0.6)
where the amplitude 
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 of the solution plays an important role now. The nonlinear Eq. (0.5) can be written in the form of Eq. (1) with an effective complex permittivity 
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By substitution of Eq. (0.7) into Eq. (0.5) we obtain the following equations: 
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Given the auxiliary function 
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 the real part of the permittivity can be easily determined by the above Eq. (0.8). Regarding the imaginary part of the permittivity, and, the pump profile 
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, these can be determined as follows: 
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