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Mesoscopic spin ensembles coupled to a cavity offer the exciting prospect of observing complex
nonclassical phenomena that pool the microscopic features from a few spins with those of macroscopic spin
ensembles. Here, we demonstrate how the collective interactions in an ensemble of as many as a hundred
spins can be harnessed to obtain a periodic pulse train of nonclassical light. To unravel the full quantum
dynamics and photon statistics, we develop a time-adaptive variational renormalization group method that
accurately captures the underlying Lindbladian dynamics of the mesoscopic spin-cavity system.
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Introduction.—In the past decade, there has been con-
siderable interest in the development of hybrid quantum
systems [1,2], where the interactions between spins or
emitters with the modes of an electromagnetic field offer a
cumulative advantage in designing quantum protocols,
ranging from quantum many-body simulations [3,4] to
the processing and storage of quantum information [5–8].
The majority of theoretical and experimental studies on
such hybrid systems have focused on two very distinct
regimes. On the one hand, macroscopic spin ensembles
(SEs) and their collective properties have been investigated
in the context of superradiance [9,10], amplitude bistability
[11,12], spectral engineering [13,14], quantum memories
[15–17], and suppression of decoherence through the
cavity protection effect [18–20]. In this macroscopic limit,
however, the light-matter interaction can be treated already
on a semiclassical level [21], with possible quantum
corrections [22,23]. On the other hand, in the microscopic
limit, where a single or just a few spins couple to a cavity,
this interaction demands full quantum solutions due to the
anharmonicities of the excitations [24], resulting in exotic
nonclassical phenomena such as antibunching [25], photon
blockade [26], and single-photon emission [27]. Here we
will explore the largely uncharted mesoscopic regime that
offers the unique possibility to synergistically combine
collective with nonclassical features that are otherwise
restricted to the two separate regimes mentioned above.
First signatures in this direction are already starting to
emerge, such as through the observation of unconventional
photon blockade [28–32], superbunching [33], and non-
classical photon bundles [34].
While experimental implementations of mesoscopic SEs

are already within reach, especially using superconducting
qubits [35], quantum dots [36], NV centers [37], rare-earth
ensembles [38], and atomic gases [39,40], theoretical studies
for such systems have been restricted to very specific

regimes, as the exponential growth of the Hilbert space
limits any complete solution beyond a few spins. Most
commonly, one is limited to either very weak excitations
[41–43], few spin systems [44,45], or to ensembles without
any inhomogeneous broadening [46–51]. Although these
limits have already provided valuable insights into meso-
scopic systems, they represent only the tip of the iceberg.
There is definitely more to explore when going beyond these
restrictions by taking into account the complex interplay
between quantum effects, inhomogeneity, and nonlinearity
due to excitations.
In this Letter, we formulate a powerful approach to

investigate the full quantum dynamics of an inhomo-
geneous mesoscopic ensemble of as many as a hundred
spins inside a quantum cavity, driven by a short coherent
field. The spins are arranged such that their transition
frequencies form a spectral frequency comb [52–54]. We
demonstrate that the temporal evolution of such a comb-
shaped ensemble results in a periodic and long-lived pulse
train of nonclassical photons in the cavity. Here, the
mesoscopic limit allows us to profit from an enhanced
collective spin-cavity coupling, while also creating sub-
Poissonian light fields due to the anharmonic nature of the
excitations. In particular, the synergy of anharmonic and
collective properties gives rise to periodic photon pulses
operating close to the single-photon regime, which pro-
vides a valuable resource for quantum protocols such as
linear optical quantum computing [55], single-photon
cryptography [56], and low-light imaging [57]. In intervals
between two photon pulses, the field also exhibits the
exotic phenomenon of superbunching, which is often
associated with correlations in the spin ensemble [33] or
in the gain medium of quantum-dot microlasers [58].
Moreover, the strong driving in this regime also provides
the exciting prospect of creating relatively high cavity
photon numbers with nonclassical statistics. In turn,
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however, the corresponding spin-cavity dynamics cannot
be analyzed using known theoretical approaches. We thus
develop a time-adaptive variational renormalization group
method [59–61] that efficiently describes the Lindbladian
dynamics of the mesoscopic spin-cavity system. For a
coherent reading, we begin with a description of our model
and the resulting physics before presenting our method.
Model.—An ensemble of N two-level emitters or spins

inside a cavity, see Fig. 1(a), can be modeled using the
Tavis-Cummings Hamiltonian [62], which under the dipole
and rotating wave approximations reads

H ¼ 1

2

XN

k¼1

ω0
kσ

z
k þ ωcâ

†
câc þ i

XN

k¼1

gkðσþk âc − σ−k â
†
cÞ

þ i½ηðtÞâ†ce−iωpt − η�ðtÞâceiωpt�; ð1Þ
where we take ℏ ¼ 1. Here, ωc is the resonance frequency
of the cavity field âc, andω0

k, gk are the transition frequency
and coupling strength for the kth spin (a spatial dependence
of the spins can be included, but is not considered here).
Furthermore, σzk, σþk , and σ−k are the spin-1=2 Pauli
operators. The quantum cavity is coherently driven with
frequency ωp and intensity ηðtÞ. In general, the cavity and
the spins in the mesoscopic ensemble are lossy, and the
open dynamics is governed by the Lindblad equation,
dρ=dt ¼ L½ρ� ¼ −i½H; ρ� þ κLâc ½ρ� þ

P
kγkLσ−k

½ρ�, where
Lx̂½ρ� ¼ x̂ρx̂† − 1

2
fx̂†x̂; ρg for x̂ ¼ âc and σ−k . The radiative

losses of the cavity and spins are given by κ and γk. For
macroscopic SEs, the spins and the cavity can both be
treated semiclassically, and the expectation values are
solved using the Maxwell-Bloch equations [21], and
quantum corrections thereof [22,23]. However, to capture
all the complex features of the quantum dynamics in

mesoscopic systems, the Lindblad equation needs to be
solved exactly.
Nonclassical light in mesoscopic ensembles.—To dem-

onstrate the complex nonclassical phenomena associated
with mesoscopic spin-cavity interactions, we consider
ensembles with up to N ¼ 105 spins arranged in a finite
spectral comb, with transition frequencies spaced at equi-
distant intervals. Such frequency combs have already been
engineered in macroscopic ensembles, where the collective
interactions result in long coherence times suitable for
efficient quantum memory protocols [52,53] and long-lived
pulses of classical light [54]. We demonstrate now
explicitly that moving to a mesoscopic SE allows us to
harness the quantum effects of light-matter interactions,
thus making the pulses emitted from the mesoscopic SE
nonclassical. Specifically, we propose a protocol for
creating a periodic pulse train of antibunched light
with sub-Poissonian photon statistics. The transition
frequencies (ω0

k) of the spins in the spectral comb are
arranged around the cavity frequency ωc, with m (odd)
distinct frequencies given by ωj ¼ ωc þ jΔω for j ¼
f−ðm − 1Þ=2;…; ðm − 1Þ=2g, as shown in Fig. 1(b). For
an N-spin ensemble inside the cavity, each frequency ωj in
the spectral comb corresponds to a subensemble of N0 ¼
N=m spins. The coupling constants for each of the
subensembles and the cavity follow a Gaussian distribu-
tion, Ωj ¼ Ω0 exp ½−ðωc − ωjÞ2=2λ2�, where Ω0 is the
coupling strength for the central subensemble, which is
resonant with the cavity, and λ is the standard deviation of
the distribution. Assuming that within each of the alto-
gether m ¼ 7 subensembles all the spins have the same
coupling strength, i.e., Ω2

j ¼
P

N0
k g2j;k ¼ N0g2j , the collec-

tive coupling of the total spin ensemble is given by Ω2 ¼P
kΩ2

k. We drive this hybrid quantum system resonantly
with a short coherent pulse of intensity, ηðtÞ ¼ η ∈ Re, for
0≤ t≤ t0, and ηðtÞ ¼ 0, otherwise. Before the pulse arrives,
the initial spin-cavity system is unexcited and the cavity is
in the vacuum state. The coupling strengths and character-
istic width of the comb are chosen as Ω0=2π ¼ 30 MHz,
λ=2π ¼ 150 MHz, and Δω=2π ¼ 40 MHz. The cavity
and spin loss terms are taken as κ=2π ¼ 0.4 MHz and
γ ¼ κ=40, respectively, with η ¼ 40κ. The driving pulse
duration t0 is 1=5 of the characteristic timescale 2π=Δω.
The first important feature of our mesoscopic frequency

comb is the periodic pulse train of light it emits, exhibited
by sharp revivals of the average cavity photon number
hâ†câci, as shown in Fig. 2. Here, the peaks correspond to
the collective transfer of excitations from the spin ensemble
to the cavity, as evident from the sharp decrease in the spin
excitation hσþi σ−i iωi¼ωc

at the revivals. The periodic
pulses result from the constructive rephasing of spins in
different subensembles of the comb, with the time interval
between subsequent peaks commensurate with the inverse
of the spectral width, Δτ ≈ 2.2π=Δω ¼ 173 ns. This is a

FIG. 1. (a) A mesoscopic spin ensemble interacting with a
cavity, resonant at frequency ωc. The cavity is driven by a
coherent pulse of strength η and frequency ωp. The cavity and
spin losses are given by κ and γk. (b) The spin transition
frequencies ωj in the ensemble form a spectral frequency comb,
with collective coupling strength Ω. (c) The spin-cavity system
can be considered as a central body system.
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hallmark of the collective behavior of the spins in the
spectral frequency comb [63]. We note that during the
transfer of energy from the cavity to the ensemble, larger
ensembles, i.e., larger N, not only lead to enhanced
coupling but also produce more stable and sharper photon
pulses as excitations are distributed over more spins. In
contrast, for few spins, significant photon excitations may
also exist between the peaks, as observed in Fig. 2(b).
The second important, and in fact, central feature of

these periodic light pulses is their distinct nonclassical
character as inherent in their photon statistics. Using the
equal-time second-order correlation function at time t,
defined as g2ðtÞ ¼ hâ†2c ðtÞâ2cðtÞi=hâ†cðtÞâcðtÞi2, we observe
in Fig. 3 that at times where the photon pulse arrives, the
field is distinctly sub-Poissonian, i.e., g2ðtÞ < 1. While for
all classical sources g2ðtÞ ≥ 1 (unity for coherent light),
sub-Poissonian light with g2ðtÞ < 1 is explicitly nonclass-
ical. Here, we observe that such nonclassicality of the pulse
train persists even for ensembles containing more than
a hundred spins, as evidenced by gmin

2 < 1 in Fig. 3(c).
Therefore, a relatively large mesoscopic ensemble can be
used to generate a high-quality, nonclassical pulse train of
photons. We note that there are interesting demarcations in
the nonclassical nature of the photon pulse. To be specific,
while the pulses are sub-Poissonian and distinctly non-
classical at all times (for all N), the unambiguous single-
photon regime, gmin

2 ≪ 1, is achieved only after a finite
evolution time (which is shorter for smaller N).
We also explicitly checked that higher-order correlation

functions, up to order n ¼ 4, are also less than unity; i.e.,

gnðtÞ ¼ hâ†nc ðtÞâncðtÞi=hâ†cðtÞâcðtÞin < 1. Interestingly, at
t > 45Δτ, very low values of gnðtÞ (n ¼ 2, 3, 4) are
attained even for N ¼ 105 (see Fig. 1 of the
Supplemental Material [64]). In an experimental setting,
such a suppression of multiphoton detection is consid-
ered to be a distinctive characteristic of single-photon
emitters [68], making our system an interesting candidate
for the design of quantum protocols [55–57]. An impor-
tant feature is the persistent periodicity Δτ of the non-
classical pulse, which can be modulated by tuning the
peak spacing Δω in the spectral frequency comb. We
note that this periodicity is present even for larger
ensembles where antibunching is weak. For hybrid
quantum systems, such a periodicity may allow for a
temporal synchronization of the nonclassical light during
an experimental phase, which is crucial for quantum
memory protocols [16]. Another interesting cooperative
behavior we observe is superbunching of the cavity field
in intervals between the peaks, where g2ðtÞ ≫ 1. This
phenomenon has previously been related to superra-
diance arising from spin correlations in the ensemble
[33,69]. Here, the low photon number in the super-
bunched emission is characteristic of the superradiant
excitation being collectively stored in the spins rather
than in the cavity. Such effects have also been reported in
bimodal quantum-dot microlasers, where superbunching
is induced by correlations in the gain medium [58] or
irregular mode switching [70].
Renormalization for the Lindbladian dynamics.—To

arrive at the above results we take advantage of the fact

FIG. 2. Temporal evolution of the mesoscopic spin-cavity
system. The figures show the cavity photon number hâ†câci in
(a) linear and (b) log scale, and (c) the spin excitation at resonance
hσþi σ−i iωi¼ωc

, varying with time, and for ensembles containing
N ¼ 7, 21, 35, 49, 70, and 105 spins, shown with colors varying
from blue to red. The shaded region at times 0 ≤ t ≤ t0 indicates
the short rectangular driving pulse and Δτ is the interval between
the periodic revivals.

FIG. 3. Photon statistics of the transient cavity field (all
parameters and color codings are the same as in Fig. 2).
(a) Equal-time second-order correlation function g2ðtÞ in com-
parison with the cavity photon number hâ†câci, for N ¼ 7.
(b) Temporal evolution of g2ðtÞ for N ¼ 7 and 105. (c) Minimum
value of g2ðtÞ close to a pulse revival gmin

2 , for N ¼ 7, 21, 35, 49,
70, and 105. The horizontal black dashed line in (a) and
(b) corresponds to g2ðtÞ ¼ 1 for coherent light.
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that several exotic phenomena in spin-ensemble-cavity
systems arise from Lindbladian dynamics that does not
necessarily generate large correlations between the spins.
This allows us to apply a time-adaptive variational renorm-
alization group method [59–61], which efficiently maps
the transient dynamics to a highly reduced vector space
[71–74]. To set up this approach, we first map the system
to a higher-dimensional complex vector space, such that
a d × d density matrix ρ is vectorized to a d2 superket,
jρi ¼ vecðρÞ. Also, a d × d operator Ô, which acts on ρ, is
given by the higher-dimensional d2 × d2 superoperator Ô,
which now acts on jρi: ρ → jρi, Ôρ → ðÔ ⊗ IÞjρi ¼ Ôjρi,
and ρÔ → ðI ⊗ ÔTÞjρi ¼ Ô0jρi. The Lindblad equation in
such a superoperator space is then given by djρi=dt ¼
L̃jρi, where

L̃ ¼ −iðH ⊗ I − I ⊗ HTÞ þ κL̃0
âc þ

X

k

γkL̃0
σ−k
; ð2Þ

with L̃0
x̂ ¼ x̂ ⊗ x̂� − 1

2
x̂†x̂ ⊗ I − 1

2
I ⊗ x̂T x̂�. We note that

in contrast to low-dimensional quantum spin systems with
short-range interactions, all spins in the mesoscopic SE
interact only with the cavity. Therefore, we can map the
renormalization of the hybrid spin-cavity system to a
central body problem [75], as illustrated in Fig. 1(c), albeit
in a higher-dimensional superoperator space. Here, the
cavity acts as the central quantum object that couples to
each of the spins in the ensemble, which behaves like a bath
in the superoperator space. The terms in H and L̃0

x̂ [see
Eq. (2)] can thus be written as a sum of individual spin-
cavity terms, such that L̃ ¼ P

kL̃k. A description of the
mapping to the superoperator space is provided in Sec. I A
of the Supplemental Material [64].
The two key steps in implementing the variational

renormalization group for the Linbladian dynamics are
(i) the variational search for a truncated superoperator
space and (ii) a time-adaptive Lindbladian evolution of
the spin-cavity system. The former is obtained using the
Schmidt decomposition, jρi ¼ PK

k̃¼1
αk̃jk̃Aijk̃Bi, where the

system is divided into blocks, A and B, as done during a
renormalization method [60]. Here, fαk̃g are the Schmidt
coefficients in descending order, and jk̃Ai and jk̃Bi are the
eigenvectors of the reduced superoperators of jρi. K is
bounded from above by r¼min½dRA

;dRB
�, and is a measure

of the total bipartite correlations [76]. Importantly, for
several open systems αk̃ decays rapidly with k̃ [71].
Thus, by retaining only the D highest values of αk̃, we
can approximate jρi and renormalize it to a significantly
reduced dimension, i.e., jρ̃i ¼ PD

k̃¼1
αk̃jk̃Aijk̃Bi, where

D ≪ r. The accuracy of the renormalization depends on
the choice of D and is exact for weakly or uncorrelated
systems. For very high correlations, large values ofD need to
be considered and the method is less efficient. To implement
the Lindbladian evolution, we consider the dynamics

governed by djρi=dt ¼ P
kL̃kjρi. The superoperator space

of the system is numerically renormalized and truncated at
each step in a time-adaptive manner, using the Suzuki-
Trotter decomposition [77]. This approach is comparable
to a time-evolving block decimation [78,79] or a time-
dependent density matrix renormalization group [80,81]. A
detailed description of our method, error analysis, and a
benchmark against exact solutions for few spins is provided
in Secs. I–IV of the Supplemental Material [64].
For mesoscopic SEs in a cavity, solutions for the

quantum dynamics have so far been achieved only for a
few limited cases, such as for very weak excitations, where
only a couple of low-excitation states are considered [41].
Alternatively, L½ρ� can be approximated by an effective
Hamiltonian [42,43] in the weak excitation regime where
quantum jumps are neglected. In turn, quantum trajectories
include jumps but are limited to few spins [44,45]. Other
methods involve direct solutions of L½ρ�, using permutation
symmetry for ensembles of identical spins [50,51], cumu-
lant expansions for weakly correlated homogeneous
ensembles [48,49], or approximate semiclassical solutions
[46,47]. For the renormalization method we develop, the
evolution is decomposed and exactly solved at the level of
individual spin-cavity terms. This allows us to work in an
extended parameter regime, with far more spins, higher
number of excitations, and with inhomogeneous ensem-
bles, which are typically not accessible using one of the
above methods. Moreover, being based on the seminal
Lindblad equation, our approach is distinct from those
tensor-network methods that study open dynamics by
simulating the unitary evolution of the larger system-
environment states [82–84]. In particular, our approach
does not require any additional restrictions on the envi-
ronment beyond the master equation formalism. Our
method is thus a powerful tool to obtain the transient or
steady states of mesoscopic spin-cavity systems.
Conclusion and outlook.—We demonstrate that meso-

scopic ensembles of spins coupled to a quantum cavity
provide an interesting new platform for studying and
tailoring nonclassical light fields. Based on recent exper-
imental progress [1,2], implementing the proposed comb-
shaped ensemble should be readily possible and an attrac-
tive option for creating a pulsed quantum source of light.
These results provide just a first glimpse into the complex
quantum dynamics of mesoscopic spin-cavity systems now
accessible with the numerical method we introduce here.
Our approach is based on the key insight that variational
renormalization group and tensor network methods that
have recently been successfully applied to low-dimensional
quantum many-body systems [59–61] can be adapted to
efficiently treat open spin-cavity systems. We thereby
bridge a gap in the theoretical understanding of mesoscopic
spin ensembles, and open up new directions to investigate
complex parameter regimes that have remained out of
reach so far.
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