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S1. EP PARAMETER VALUES

Here we state the parameter values used for the calcula-
tions reported in each of the figures. Bold type indicates
parameters that were used in tuning to the EP.

TABLE I. EP Parameters for Fig 1 (bold indicates fine-tuned)

Fig. a-c Fig. d-f Fig. g-i

Grating high index 2 2 2

Grating low index 1.5 1.5 1.5

L1 1.2500 1.2560 1.2566

L2 1.4 1.2566 1.2566

n′

1 2 2 1.9981

in′′

1 0.0382i 0.0043i 0.0037i

n′

2 2 2 2

in′′

2 0.0192i 0.0472i 0.0609i

EP frequency ω0 5.0199 5.0012 5.0022

TABLE II. EP Parameters for Fig 2 (bold indicates fine-
tuned)

Index of disk 1.5+0.0021i

Radius of disk 1

Index of scatterers 1.5

Radius of scatterers 0.05

Distance of scatter 1 0.04

Distance of scatter 2 0.0454

Angle between scatterers 156.30◦

EP frequency ω0 15.126

S2. SELF-ORTHOGONALITY AND INTEGRAL

RELATION FOR HELMHOLTZ EP

In this section we discuss biorthogonality and self-
orthogonal EPs in open problems, and derive a
previously-noted [1–3] relation between the unconjugated
inner product of the wave operator eigenfunctions and
the unconjugated “norm” of the S-matrix eigenvectors.
For simplicity, we focus on the scalar Helmholtz operator
in one dimension (c = 1, ω = k), over a domain of length

TABLE III. EP Parameters for Fig 3 (bold indicates fine-
tuned)

Disk index 2

WGM mode number q 15

Grating real index high 2.0149

Grating imag index high 0.0153

Grating width φ 2◦

Offset angle χ 8.9400◦

Grating periodicity P 30 = 2q

Disk radius 1

Waveguide width 0.08

Waveguide distance 0.16

EP frequency ω0 9.3230

2L, and with purely incoming boundary conditions (ap-
propriate for CPA):

{

∇2 + ε(x)ω2
m

}

ψm = 0 [∇ψm = ∓iωmψm]±L . (1)

The equivalent closed system, say with Dirichlet condi-
tions ψ(±L) = 0, defines an ordinary eigenvalue problem
Âψm = −k2mψm, where Â ≡ ε−1∇2. If we define the
inner product as

(ψ, φ) ≡

∫ L

−L

dxψ ε φ, (2)

then Â is symmetric, in the sense that (ψ, Âφ) = (Âψ, φ)
for any ψ, φ satisfying the boundary conditions. The
biorthogonality relation between eigenfunctions follows,
(ψm, ψn) ∝ δmn, which guarantees that in a closed sys-
tem EPs are self-orthogonal. On the other hand, the CPA
problem is not an eigenvalue problem in the usual way, as
the boundary conditions depend on the frequency ω, so
that the problem is defined self-consistently in its eigen-
value. Consequently (ψ, Âφ) 6= (Âψ, φ), biorthogonality
does not hold with respect to the usual inner product,
and we do not have EP self-orthogonality.

To see this explicitly, begin with two (nearby) solutions
of the wave equation ψ1,2 with eigenvalues ω1,2 and with
incoming boundary conditions. Consider the integral

(ψ2, {∇
2 + εω2

1}ψ1) = 0. (S1)
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By integrating by parts twice, applying the boundary
conditions, and dividing by a common factor of (ω2−ω1)
we have

c0ŝ1 · ŝ2 = −i(ω2 + ω1)

∫

dxψ2 ε ψ1, (S2)

where c20 = [ψ2
1(−L) + ψ2

1(L)][ψ
2
2(−L) + ψ2

2(L)], and
ŝ1,2 ∝ (ψ1,2(−L), ψ1,2(L)) are the normalized S-matrix
eigenvectors at ω1,2 with eigenvalue equal to zero.
The dielectric function can be parametrically deformed

to bring about an accidental degeneracy (EP), so that
ω2 → ω1 ≡ ω0, and ψ2 → ψ1 ≡ ψ0, in which case

c0ŝ0 · ŝ0 = −2iω0

∫

dxψ0 ε ψ0. (S3)

This is the identity used in Eq. 2 of the main text.
One may recover biorthogonality in open systems, and

therefore EP self-orthogonality, by modifying the usual
inner-product. For example, the new inner product de-
fined by the subtraction of the two sides of Eq. (S2):

((ψ2, ψ1)) ≡

∫ L

−L

dxψ2 ε ψ1 −
ic0ŝ2 · ŝ1
ω2 + ω1

, (3)

makes eigenstates biorthogonal by construction, and EP
self-orthogonality follows. This is the procedure followed
in [1–3]. Alternatively, any field or coordinate transfor-
mation which suppresses the boundary terms of Eq. (S2)
also leads to biorthogonality with respect to the ordinary
inner product, provided the transformation is appropri-
ately applied to ε, as is done in [4, 5] through perfectly
matched layers or the complex scaling technique. In this
way one may still speak of biorthogonal resonant or CPA
states, and self-orthogonal EPs, but this is not a useful
convention to adopt here: it obscures the important point
that an EP of the wave operator is generally not an EP
of S.

S3. COINCIDENCE OF EPS OF S AND H IN

TCMT FOR SYMMETRIC OUTCOUPLING

In TCMT, the S-matrix is related to an effective Hamil-
tonian H (not necessarily hermitian) by

S = [1− 2iW † 1

ω − (H − iWW †)
W ]S0, (S4)

where S0 is the “background” scattering matrix, i.e. S in
the absence of resonances, andWij is a matrix of coupling
coefficients between mode i and asymptotic channel j.
In the case where there are as many modes as there

are asymptotic channels, W is square. Additionally, if
each mode couples to exactly one distinct channel, and
all outcoupling rates are identical, then W =

√

γ/2 I.
Then equation (S4) reduces to

SS−1
0 = 1−

iγ

(ω + iγ/2)−H
, (S5)

Now we apply a perturbation which tunes H to a non-
hermitian degeneracy. Then we can generally write H =
ΩEP + N , where ΩEP is the perturbed frequency, still
degenerate, and N is nilpotent: N 6= 0 but N2 = 0. We
can expand the denominator as a geometric series, which
truncates at N2:
[

I−
N

(ω − ΩEP + iγ/2)

]−1

= I+
N

(ω − ΩEP + iγ/2)
(S6)

so that

SS−1
0 = D −

iγ

(ω − ΩEP + iγ/2)2
N, (S7)

whereD is some diagonal matrix. This makes SS−1
0 man-

ifestly exceptional.
For one-dimensional structures, such as the structures

in Fig. 1 in the main text, there is no non-resonant cou-
pling of left and right channels, and S0 ∝ I, so that if
SS−1

0 has an EP, then so too must S. Therefore in the
geometry of Fig. 1g-i, with symmetric outcoupling, an
EP of the wave operator (in the TCMT approximation
this means an EP of H) implies a simultaneous EP of S.

S4. CALCULATION OF SCATTERING

AMPLITUDES AT CPA EP

A. TCMT for azimuthal perturbation

In this section we derive the scattering coefficients for
the waveguide-coupled microdisk at CPA EP using the
coupled-mode framework.
First we consider a pair of degenerate modes of the

unperturbed disk, clockwise (CW) and counterclockwise
(CCW), which have angular momentum quantum num-
bers −q and q, respectively. The degenerate complex
frequency of the modes is Ω0. Additionally, each mode
couples to one asymptotic channel of the waveguide with
the same rate γ: CW to the right channel, and CCW
to the left, so that in Eq. (S4), W = diag(

√

γ/2,
√

γ/2).
The waveguide is perfectly transmitting in the absence
of the pair of resonances, so the non-resonant scattering
matrix is

S0 =

(

0 1

1 0

)

.

Upon right-multiplying both sides of Eq. (S4) by S0,
we get a relation for the scattering amplitudes:
(

t rL
rR t

)

= 1−
iγ

ω − (H − iγ/2)
=
ω − (H + iγ/2)

ω − (H − iγ/2)
.

(S8)
Since we have not yet specifiedH , this applies to both the
disk with and without the grating perturbation, though
with different Hamiltonians.
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If we bring H to an EP by tuning parameters, we can
apply Eq. (S6) so that

(

t rL
rR t

)

=
δ − i(γ − Γ)/2

δ + i(γ + Γ)/2
−

iγ

(δ + i(γ + Γ)/2)2
N (S9)

where δ is the detuning, and Γ the overall loss rate:

δ = ω − Re{ΩEP} Γ/2 = −Im{ΩEP}.

Eq. (S9) fully characterizes the reflection and transmis-
sion coefficients as functions of frequency near a CPA EP,
in terms of the nilpotent matrix N .
We now turn our attention to the calculation of this ma-

trix in terms of a perturbation applied to the microdisk.
Under a perturbation V the eigenvalues of a degener-
ate effective Hamiltonian H shift by δΩ: H → H + V ,
Ω0 → Ω0+δΩ. On the other hand, when the wave opera-
tor Â = −ε−1∇2 is perturbed by δÂ, its spectrum shifts
as Ω2

0 → (Ω0 + δΩ)2 ≃ Ω2
0 +2Ω0δΩ. It follows that small

perturbations in the effective Hamiltonian and the wave
operator are related by V = δÂ/2Ω0.
For the case of the microdisk, we will first limit our-

selves to separable perturbations ε → [1 + ρ(r)τ(θ)]ε,
for which δÂ = −ρ(r)τ(θ)Â. The perturbation V , in
the basis of the unperturbed Hamiltonian, and using the
original eigenvalue equation Âψ = −Ω2

0ψ, is

Vmn =
Ω0

2

∫

d2x φm(x)ρ(r)τ(θ)ψn(x). (S10)

The operator Â is symmetric, therefore the sets of
left and right eigenfunctions ({φ}, {ψ}, respectively) are
equal and biorthogonal with weight ε, i.e.

∫

d2x φi ε ψj ∝
δij , usually written (φj , ψi) = δij . The eigenfunctions

of Â for the unperturbed microdisk are ψm(r, θ) =
Rm(r) exp(imθ), and so by biorthogonality φm = ψ−m.
The matrix elements given by Eq. (S10) can be evaluated
in terms of the Fourier components of τ(θ):

Vmn = Ω0Cmnτm−n, (S11)

where Cmn = π
∫∞

0
dr r RmR−nρ and τ(θ) =

∑

n τne
inθ.

The effective Hamiltonian of the perturbed disk, in the
degenerate CW/CCW basis, is therefore

Hmn = Ω0δmn +Ω0Cmnτm−n. (S12)

To relate this to S in Eq. (S9), we make the assignment
ΩEP = Ω0(1 + Cτ0), and Nmn = (1 − δmn)Ω0Cmnτm−n.
For the disk, the radial functions Rm are given by Bessel
functions of integer order, so that Rm and R−m are re-
lated by a phase factor, and therefore so too are Cm,m

and C−m,−m. Therefore the C’s cannot be used to make
N2 = 0 with N 6= 0. To achieve this, it is instead
necessary that exactly one of τ±2q = 0. This requires
that τ(θ) /∈ R, otherwise τm = τ∗−m and both τ ’s would

vanish. This is where non-hermiticity is important for
EP. Without loss of generality, take τ−2q = 0, so that
Nq,−q = τ2q 6= 0, with all other elements of N vanishing.
Plugging this into Eq. (S9) and requiring CPA (γ = Γ),
we determine the lineshapes of the reflection and trans-
mission coefficients at CPA EP:

t(δ) =
δ

δ + iΓ
, rL(δ) = 0

rR(δ) =
i

Γ

Ω0Cqqτ2q
(1 − iδ/Γ)2

=
r(0)

(1− iδ/Γ)2
(S13)

where Γ = −2Im{Ω0(1 + Cqqτ0)}. The amplitudes for
transmission and reflection in the “correct” direction van-
ish exactly as they would for CPA or critical coupling in
the absence of an EP. The remaining reflection amplitude
for the “wrong” direction of incidence, at the CPA EP
frequency (δ = 0), is

rR(0) = −
i

2

Cqqτ2q(2 + iQ−1
0 )

2Im{Cqqτ0}+Q−1
0 (1 + Re{Cqqτ0})

. (S14)

Q0 is the quality factor of the bare disk, without grating
or waveguide: Q0 = −Re{Ω0}/2Im{Ω0}. In the limit
where the bare disk resonances have Q0 ≫ 1 (which is
typical for WGMs), we can neglect the Q−1

0 terms. In
this limit we also approximate the radial integral Cqq to
be real. Hence the nontrival reflection amplitude in the
high-Q limit takes the remarkably simple form

|rR(0)|
2 =

1

4

|τ2q |
2

Im{τ0}2
. (S15)

The overall gain/loss added to the system is encoded in
τ0, which is therefore determined by the critical coupling
condition.
The analysis can be extended to include non-separable

perturbations, so long as they can be decomposed into
separable pieces: δε(r, θ) = ε

∑

j ρ
j(r)τ j(θ). The nilpo-

tent matrix becomes Nmn = (1 − δmn)Ω0

∑

j C
j
mnτ

j
m−n,

where Cj
mn = π

∫∞

0
dr r RmR−nρ

j and τ j(θ) =
∑

n τ
j
ne

inθ. The condition for N nilpotent is that only

one of N±q,∓q vanish, say N−q,q:
∑

j C
j
−q,qτ

j
−2q = 0, but

∑

j C
j
q,−qτ

j
2q 6= 0. In this case we no longer need a non-

hermitian perturbation to achieve EP, though we must
rely on the radial integrals (C’s) being complex. The
point scatterers used in Fig. 2 exemplify this: a purely
real, (approximately) separable set of perturbations that
support EP.

B. Engineering for maximal asymmetry of reflection

and absorption

It is evident from Eq. (S15) that scattering from the
waveguide-disk system is entirely characterized by the
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two Fourier components of the perturbation τ0 and τ2q,
which suggests that the appropriate design to consider
is a non-hermitian grating. We consider only gratings
with no gain, with alternating regions of loss and no loss.
The simplest experimentally feasible azimuthal grating
of this type is piecewise constant, whose real and imagi-
nary parts have the same angular width φ and periodicity
2π/P (P ∈ Z), and an angular offset χ between them:

τ(θ) = f(θ) + if(θ − χ), (S16)

where f(0 < θ < φ) = c, f(φ < θ < 2π/P ) = 0, and
f(θ + 2π/P ) = f(θ), for some constant c. The angular
offset χ is determined from τ−2q = (1 + ie2iqχ)f2q = 0,
which implies

χ = (M − 1/4)π/q. (S17)

Of course had we demanded the +2q component to van-
ish, this would be χ = (M + 1/4)π/q.
We can express the reflection from the “incorrect”

side in terms of fm according to Eq. (S15), and using
Eq. (S17):

rR(0) =

∣

∣

∣

∣

f2q
f0

∣

∣

∣

∣

2

(S18)

The Fourier components of f vanish for m not equal to
a multiple of P ; the non-vanishing components satisfy

fn·P = c
P

2π

∫ φ

0

dθe−inPθ = e−inPφ/2 c

nπ
sin

nPφ

2
.

Plugging this into Eq. (S18) gives

rR(0) =

∣

∣

∣

∣

sin qφ

qφ

∣

∣

∣

∣

2

, (S19)

so long as NP = 2q, where N is the order of the grating
that we are using to couple the ±q modes.
We see that the asymmetry of the reflection, and there-

fore of the absorption, achieves its maximal value, unity,
for thin gratings (φ → 0). The intuition is that the
lossy regions can be “hidden” in the nodes of the back-
scattered field when excited from the non-CPA side, and
the thinner they are, the better they are hidden. Since
the field is a running wave when excited from the CPA
side, the material loss is just as effective regardless of how
narrow its spatial distribution. This is evident in Fig. 3.
A more general type of grating has different widths,

contrasts, and periodicities for its real and imaginary
parts. If the real part has contrast a, periodicity L, width
φ, while the imaginary part has (b, P , ψ), the conditions
for CPA EP are

∣

∣

∣

∣

sin qφ

sin qψ

∣

∣

∣

∣

=
b

a

P

L
,

L and P must both divide 2q, and the offset is

χ = (M − 1/4)π/q + (φ− ψ)/2.

In this case, the asymmetric reflection is

rR(0) =

∣

∣

∣

∣

sin qφ

qφ

∣

∣

∣

∣

2

cos2(q[φ − ψ]),

which shows that the more restrictive grating analyzed
earlier (φ = ψ) is optimal.
It is worth noting that gauged PT -symmetry cor-

responds to φ = π/P , which yields |rR(0)|
2 =

sinc2(Nπ/2) < 41%.

S5. FREE SPACE LOSS AND CHIRAL CPA EP

The disk plus waveguide does not admit CPA solutions
which only propagate in on the waveguide; the exact CPA
solutions will require some small flux to excite the disk
from free space, just as the corresponding laser would
radiate weakly into those free space channels. If we sim-
ply take the system at the CPA EP solution parame-
ters but excite solely through the waveguide, we then do
not expect to find 100% absorption or zero transmission
along the fiber; and indeed when we implemented this
procedure we found a small, but measurable transmis-
sion. Since we are interested in a chiral absorber without
free-space excitation we hence adjusted the waveguide pa-
rameters in order to minimize this transmission, moving
away from the exact CPA EP point.
Qualitatively we expect free-space channels to act as

a small additional loss with respect to the guided chan-
nels. Therefore we increased the coupling to the fiber by
a few percent until the transmission in the fiber was min-
imized, while otherwise maintaining the same structure,
and found that the transmission became negligible. Since
we are no longer solving the exact CPA problem we are
no longer guaranteed that all the flux will be absorbed
in the disk with grating, some will be lost to free space
radiation. This is the reason why in Fig. 3 the absorption
from the CPA EP is not unity, but it is still greater than
97%.
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