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Scattering-free pulse propagation through invisible non-Hermitian media
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We demonstrate a design principle for unidirectionally invisible non-Hermitian structures that are invisible
not only for one specific wavelength but rather for a broad frequency range. Our idea is based on the concept
of constant-intensity waves, which can propagate even through highly disordered media without backscattering
or intensity variations. In contrast to already existing invisibility studies, our design principle requires neither
a specific symmetry (like PT symmetry) nor periodicity and can thus be applied in a much wider context.
This generality combined with broadband frequency stability allows a pulse to propagate through a disordered
medium as if the medium were entirely uniform.
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I. INTRODUCTION

The idea to confer new properties on materials by adding
an appropriate distribution of gain and loss to them has
recently received considerable attention [1–4]. At first glance
one may expect that mixing loss with gain just results in
a mutual cancellation of the effects of these components.
The physics observed in such scenarios is, however, very
rich and full of surprises. One particular case that has been
studied extensively is that of synthetic materials obeying a
so-called parity-time (PT ) symmetry [5–7]. In the framework
of photonics, PT symmetry has served as a new design prin-
ciple for engineering composite structures with gain and loss
[1–4,8–12] that feature a plethora of remarkable characteris-
tics like power oscillations [10,13], nonreciprocal transport
[14–16], loss-induced transparency [9], perfect absorption
[17–19], and loss-induced lasing [20–22].

One of the most successful concepts that has emerged
from the field of PT -symmetric optics so far is the idea to
make periodic gratings unidirectionally invisible by adding
loss and gain to them in a well-controlled fashion [23]. In
such systems, the reflection from one end of the structure is
zero, while it is increased from the other end. Moreover, the
transmission from both sides is perfect, and the accumulated
phases along the two propagation directions are the same
as in the absence of the structure. The first theoretical pro-
posal for such unidirectionally invisible structures [23] drew
considerable attention and was successfully implemented by
several experimental groups [24–26]. It was soon shown
that the invisibility of such structures breaks down for long
systems, which, however, can be fixed by a modification of
the potential [27,28]. The idea was later extended to non-
PT -symmetric potentials, which, however, are restricted to
layered and periodic systems [29,30] or which have to be
analytic in one half of the complex position plane (in terms
of spatial Kramers-Kronig relations) [31–33]. In spite of the
intense research activities related to this novel approach, the
question of whether this concept can also be generalized

to aperiodic, non-PT -symmetric, and nonanalytic potentials
remains to be answered.

Here, we propose such a general design principle for uni-
directionally invisible structures that are unrestricted in their
spatial shape. In fact, we can even make disordered structures
unidirectionally invisible, which are known to produce strong
scattering [34–38] or even Anderson localization [39–42].
Our approach works not only for one specific wavelength
but rather for a broad frequency range. In this way a pulse
can propagate through the disordered medium like through
uniform space. Moreover, we show that the unidirectional
invisible Bragg grating proposed in Ref. [23] coincides with
one example of our family of invisible structures at specific
parameter configurations. When moving away from these
parameter values, the PT -symmetric Bragg grating loses its
invisibility property, whereas our system stays invisible.

The design principle we introduce here for creating uni-
directionally invisible structures is based on the concept of
so-called constant-intensity (CI) waves [43,44] that was also
recently realized experimentally with an acoustic setup [45].
These CI waves have the remarkable feature that they are per-
fectly transmitted even through strongly disordered structures
[44]. The only signature that they carry from the disordered
potential is an extra phase compared to propagation through
free space. Since a phase measurement can thus reveal the
presence of such CI scattering potentials, they are, in general,
not invisible (only perfectly transmitting). Here, we present a
way to eliminate the possibility of detecting such potentials
even through phase measurements. Moreover, we show that
the invisibility obtained with our approach is a broadband
feature that can even be used for sending pulses across these
potentials which maintain their spatial profile during the entire
transmission process.

II. METHOD

The starting point for our investigation is the Helmholtz
equation that describes the stationary scattering state of a
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FIG. 1. (a) and (b) Real (gray) and imaginary (red: gain, green:
loss) parts of the refractive index for a CI system that is invisible from
the left. The system follows Eq. (2) with W (x) = n0 + f (x), where
f (x) is the superposition of 12 randomly placed Gaussians, with six
of them having a positive amplitude and six of them having a negative
amplitude, as is dictated by Eq. (4). The asymptotic refractive index
is n0 = 2, and the wave number k0 = 2π/0.2. (c) Intensity of the
scattering state for a plane wave with wave number k0 and ampli-
tude A = 1 injected from the left into the system for the structure
including gain and loss (magenta line) and without gain and loss
(blue line). As we can see, the non-Hermitian components make the
wave perfectly transmitting without any intensity variations.

linearly polarized electric field ψ (x) in a one-dimensional
slab, [

∂2
x + n2(x)k2

0

]
ψ (x) = 0. (1)

Here, n(x) = nR(x) + inI (x) is the complex refractive in-
dex and k0 = 2π/λ0 is the vacuum wave number, with λ0

being the vacuum wavelength. nR(x) describes the real in-
dex variations, whereas nI (x) describes the gain-loss profile.
Such one-dimensional refractive index distribution is shown
in Fig. 1, where nR(x) is depicted in gray [see Fig. 1(a)] and
nI (x) is depicted in red (gain) and green [loss; see Fig. 1(b)].
In general, when an incident plane wave propagates through
a spatially varying distribution n(x), the interference between
forward- and backward-propagating waves leads to a complex
intensity pattern. These intensity variations can, however, be
entirely eliminated in a certain class [43,44] of nonuniform
complex index distributions [46–49], resulting in a perfectly
transmitted wave with the same CI in all of space. To observe
these special wave states, the real and imaginary parts of the
refractive index have to satisfy

n2(x) = [nR(x) + inI (x)]2 = W 2(x) − i

k0
∂xW (x), (2)

with W (x) being an arbitrary real-valued function related
physically to the Poynting vector power flow [43]. We note
that Eq. (2) has a close link to supersymmetric optics for
the special case of purely imaginary superpotentials [50,51].
The CI solution of the Helmholtz equation (1) with a re-
fractive index in Eq. (2) is a right-propagating wave ψ (x) =
A eik0

∫ x
−L W (x′ )dx′

, where −L and L are the left and right borders

of the scattering region of width 2L and A is a constant
amplitude. The unique feature of this solution is that it has
a constant intensity inside the scattering region, i.e., I =
|ψ (x)|2 = |A|2, despite the fact that the index of refraction
in Eq. (2) is nonuniform. The real-valued function W (x) can
be chosen arbitrarily and serves as a “generating” function to
produce CI refractive indices via Eq. (2). Radiation boundary
conditions of the electric field that ensure perfect transmission
impose the following condition for W (x): W (−L) = W (L) =
n0, where n0 is the refractive index of the asymptotic regions.
In this way a plane wave with wave number k0 incident from
the left asymptotic region x < −L will feature a constant
intensity inside the nonuniform scattering region in the range
−L < x < L. While it will also be perfectly transmitted to
the right asymptotic region x > L, the scattering potential still
imprints information on its shape onto the transmission phase
φt = k0

∫ L
−L W (x)dx of the outgoing plane wave.

Here, we show that we can tune this transmission phase
φt in such a way that the outgoing plane wave carries no
information on the scattering region at all. In other words, we
demonstrate how to make scattering potentials as described
by Eq. (2) unidirectionally invisible. We start by choosing the
generating function to be of the form

W (x) = n0 + f (x), (3)

where n0 is the refractive index of the asymptotic regions
|x| > L and f (x) is an arbitrary real-valued function that
should satisfy ∫ L

−L
f (x)dx = 0. (4)

This function f (x) describes the phase the CI wave accu-
mulates in addition to the propagation through a uniform
medium with index n0. Thus, enforcing Eq. (4) is equivalent
to demanding that this additional accumulated phase vanishes.
To be more precise, the transmission phase of a CI wave
with a generating function satisfying Eq. (4) takes the value
φt = k0

∫ L
−L[n0 + f (x)]dx = 2k0Ln0, which is equal to the

phase a wave would accumulate by propagating through a
scattering region of width 2L with the same uniform index
of refraction n0 as in the asymptotic regions. Neither the
transmitted intensity nor the transmitted phase then reveals
whether the refractive index is uniform with n0 or an in-
homogeneous refractive index distribution. As we will show
explicitly below, the broadband stability of the CI waves we
create in this way naturally also gives rises to the same time
delay τ = dφt/dk as obtained in the uniform system, not only
at the target wave number k0 but, rather, in a sizable frequency
window. In other words, even time-resolved measurements on
wave packets closely centered around the design frequency k0

will not be able to detect the presence of the unidirectionally
invisible medium we propose here.

III. EXAMPLES OF UNIDIRECTIONALLY
INVISIBLE MEDIA

In order to test these predictions and their broad ap-
plicability, we now investigate several interesting examples
numerically. Consider first the refractive index distribution
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FIG. 2. (a) Transmission spectrum of the Hermitian (blue line)
and invisible CI (magenta line) systems shown in Fig. 1 as a function
of the wave number detuning δ = k − k0. (b) Phase of the transmis-
sion φt minus the phase that the wave would accumulate in a uniform
material φ0 = 2Lkn0 for the Hermitian and invisible CI systems.
(c) Difference between the corresponding time delays τt − τ0 =
dφt/dk − dφ0/dk. For the invisible CI system the transmittance in
(a) is close to unity, and the other two quantities in (b) and (c) are
close to zero in a broad interval. The reference values of perfect
transmittance, zero phase difference, and zero time delay, which are
necessary for a system to be perfectly invisible, are indicated by the
horizontal dashed lines. The small deviations from perfect invisibility
(see horizontal dashed lines) turn out to be around two orders of
magnitude smaller for the CI system than for the Hermitian system
(see Appendix A). The relative width of the invisibility window
between δ = −2 and δ = 2 is 	δ/k0 ≈ 4/31.42 ≈ 0.13; that is, a
wave number detuning of around 6% from k0 in both directions still
allows for perfect transmission and zero accumulated phase.

as provided in Eq. (3), where f (x) consists of 12 randomly
placed Gaussians with the same height and the same width but
with six of them having a positive amplitude and six of them
having a negative amplitude, thus enforcing the condition
shown in Eq. (4). The corresponding complex refractive index
calculated with Eq. (2) is shown in Figs. 1(a) and 1(b). To
highlight that our theory does not rely on a smooth potential
(which is necessary for applying a semiclassical approxima-
tion), we consider here the case where the wavelength λ0 =
2π/k0 is larger than the variations of the refractive index. In
Fig. 1(c) we display the intensity of the scattering state at the
target wave number k0 for the two cases with the gain and
loss distribution added (magenta line) and without it (blue
line). We can clearly see that the wave’s intensity shows
strong variations in the Hermitian case, whereas the intensity
is constant for the system including gain and loss. The next
step is to show that this CI system features unidirectional
invisibility. In Fig. 2(a) we show the transmission spectrum,
i.e., the transmittance T = |t |2 as a function of the wave
number detuning δ = k − k0, for the Hermitian system (blue
line) and for the CI system (magenta line) shown in Fig. 1.
We see, first of all, that the CI system is close to perfectly
transmitting not only at k = k0 (i.e., δ = 0) but also in a
broad frequency range around k0 (between δ = −2 and δ=2),
whereas the Hermitian system strongly deviates from unit
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FIG. 3. (a) and (b) Real (gray) and imaginary (red: gain, green:
loss) parts of the refractive index for a strongly disordered CI
system. We use Eq. (2) with W (x) = n0 + f (x), where f (x) is a
superposition of N = 3000 Gaussian functions with different widths
(σ is uniformly distributed between 0.04λ0 and 0.05λ0), heights
(uniformly distributed between 0 and 0.22), and positions, satisfying
the invisibility condition in Eq. (4). The asymptotic refractive index
is n0 = 2, and the wave number k0 = 2π/0.2. (c) Intensity of the
scattering state for a plane wave with wave number k0 and ampli-
tude A = 1 injected from the left into the system for the structure
including gain and loss (magenta line) and without gain and loss
(blue line). As can be seen, the non-Hermitian components make the
wave perfectly transmitting and free of any intensity variations.

transmittance. Figure 2(b) shows the difference between the
transmission phase φt of a wave propagating through the Her-
mitian or through the CI system compared to the transmission
phase of a wave propagating through a uniform material,
φ0 = 2Lkn0. We see that for the CI system the difference
is close to zero in a broad frequency interval. In Fig. 2(c)
we also show the difference between the corresponding time
delay τt compared to the time delay of a wave propagating
through a uniform material τ0 = dφ0/dk. Also, here, the CI
system yields the same values as the corresponding uniform
system. Figure 2 thus clearly shows that the CI system in
Fig. 1 cannot be distinguished from a uniform system; in other
words, it is indeed invisible from the left around the target
frequency k0.

While this simple system already provides a first exam-
ple to illustrate our protocol, we will now demonstrate its
general applicability. Our starting point will be a disordered
system whose strong variations in the refractive index lead
to Anderson localization. The corresponding index profile
follows the generating function in Eq. (3), with f (x) being
a superposition of N = 3000 Gaussians with random width,
height, and position, satisfying the invisibility condition in
Eq. (4). The choice of using partially overlapping Gaussians
is just for convenience here: any other arbitrary, but smooth,
function f (x) satisfying Eq. (4) can also be used. In analogy
to Fig. 1, we display the real and imaginary parts of the
refractive index in Figs. 3(a) and 3(b), respectively, and the
corresponding scattering states in Fig. 3(c). In Appendix B
we calculate the localization length of the Hermitian system in
Fig. 3(a), which turns out to be ξ ≈ 20λ0; that is, the system
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FIG. 4. (a) Transmittance, (b) difference between the transmis-
sion phase, and (c) difference between the time delay of the Hermi-
tian (blue line) and invisible CI (magenta line) system shown in Fig. 3
as a function of the detuning δ = k − k0. All quantities indicate that
even such a disordered system is invisible for left-incident waves
in a broad frequency range between δ = −0.5 and δ = 0.5. The
deviations of the invisible CI system from perfect invisibility (see
horizontal dashed lines) are around two orders of magnitude smaller
than for the Hermitian system (see Appendix A). The relative width
of the invisibility window is 	δ/k0 ≈ 1/31.42 ≈ 0.03; that is, a
wave number detuning of around 1.5% from k0 in both directions
still allows for perfect transmission and zero accumulated phase,
which is significantly broader than a resonance in the Hermitian
system.

has a width of approximately 3ξ and is thus deeply in the
localized regime. As a consequence, the wave gets hardly
transmitted (blue line) in the Hermitian system, whereas in the
non-Hermitian case (magenta line) its transmission is perfect,
featuring constant intensity. We show now that even such a
strongly disordered system is unidirectionally invisible. As
displayed in Fig. 4, the CI system yields not only the same
transmittance [see Fig. 4(a)] but also the same transmission
phase [see Fig. 4(b)] and the same time delay [see Fig. 4(c)]
as the corresponding uniform system. We may thus conclude
that the disordered structure in Fig. 3, which in the absence of
gain and loss is in the regime of Anderson localization, can
be made completely invisible by adding the correct gain-loss
refractive index distribution to it.

IV. SCATTERING-FREE PULSE PROPAGATION

The absence of any intensity variations in CI waves is due
to the absence of back reflections even inside the disordered
medium. As such, CI waves are not a resonance phenomenon
with a sharp frequency dependence, but they depend, instead,
only weakly on frequency detuning (see Fig. 4). We will
now make use of this broadband stability to test whether we
can even launch pulses through our unidirectionally invisible
potentials that feature the same time delay as a pulse propa-
gating through the corresponding uniform structure. We first
show in Fig. 5(a) the propagation of a pulse through the same
disordered Hermitian system as in Fig. 3 at three different time
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FIG. 5. Pulse propagating through (a) the disordered Hermitian
system of Fig. 3, (b) the corresponding invisible CI system, and (c) a
uniform system at three different time steps, t1 < t2 < t3. Whereas
the pulse gets reflected almost entirely at the Hermitian structure
[see (a)], it gets perfectly transmitted through the CI system [see
(b)] while maintaining its initial shape. Moreover, the pulse takes the
same time to propagate through the structure as through a uniform
system [see (c)]. The Fourier spectrum of the pulse is Gaussian
shaped with a standard deviation of σ ≈ 0.045k0.

steps (t1 < t2 < t3). As expected, for the Hermitian system in
the Anderson localization regime the pulse diffracts already
considerably before reaching the other end of the structure. In
stark contrast, we observe that the pulse in the corresponding
invisible CI system [see Fig. 5(b)] propagates through the
system while maintaining its initial shape throughout the en-
tire transmission process. Comparing this situation to a pulse
propagating through a uniform system with the asymptotic
index value n0 = 2 [see Fig. 5(c)], we see that both pulses
arrive at the end of the structure in the same shape and
at the same time (as indicated by the vertical dashed line).
Adding the appropriate gain-loss distribution to a disordered
structure thus allows us to make the system not only perfectly
transmitting for pulses but even completely invisible for them.

This approach for designing invisible structures that re-
quire neither periodicity nor any other symmetry (like
PT symmetry) provides a significant step forward com-
pared to the concept presented in Ref. [23]. The PT -
symmetric Bragg grating presented there with n(x) = n0 +
n1 cos(2βx) + in2 sin(2βx), where β is the spatial frequency
of the grating, n0 is the asymptotic refractive index, and n1 and
n2 are the amplitudes of the index variations, was shown to be
unidirectionally invisible around the Bragg point (β = k0) and
with n1 = n2. The asymptotic refractive index was assumed
to be n0 = 1, and the index variations were small, n1 = n2 =
10−3. We show in Appendix C that this Bragg structure with
the above-listed parameters coincides with an invisible CI
system derived from the generating function W (x) = n0 +
n′ cos(2β ′x) if (i) the system is at the Bragg point β ′ = k0

and (ii) the index variations are small, n′ = 10−3. This finding
explains why in an experimental realization of such a Bragg
grating with only loss elements [25] the wave intensity was
found to be a pure exponential decay, which is the coun-
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terpart of a constant intensity in effective PT -symmetric
systems without gain [9]. When moving away from the Bragg
point (β �= k0) and considering larger index variations (n1 =
n2 ≈ 10−1), the Bragg grating from Ref. [23] is no longer
unidirectionally invisible, whereas the corresponding invisi-
ble CI system maintains its invisibility even away from the
Bragg point and also for arbitrarily large index variations n′
(see Appendix C).

V. SUMMARY

To conclude, we show that the interplay of gain and loss
allows for a class of unidirectionally invisible systems that
are very robust with respect to frequency variations and do
not satisfy any spatial symmetries. Our approach constitutes a
broadly applicable generalization of earlier concepts restricted
to periodic, layered, or to potentials that are analytic in one
half of the complex position plane. Even disordered systems,
which, in the absence of gain and loss, give rise to Anderson
localization, can be made unidirectionally invisible using our
approach. The key concept to arrive at these results is that
of constant-intensity waves, whose frequency stability even
allows us to create pulses that propagate through disorder
as through a uniform system. We are confident that these
exciting predictions can be implemented in a number of
experiments where the spatial engineering of gain and loss
has recently been achieved successfully [8,24–26,45,52–55].
A logical next step for this line of research would be to
extend the concept of constant-intensity waves to more than
one dimension [56] with possible applications like invisibility
cloaks that would guide light through a given object without
noticeable distortions.
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APPENDIX A: DEVIATION FROM
PERFECT INVISIBILITY

In order to quantify how close the invisible CI systems
shown in Figs. 2 and 4 of the main text are to perfect
invisibility, we evaluate the following three quantities within
the invisibility window (as defined in the captions of Figs. 2
and 4): (i) the mean square deviation (MSD) of the trans-
mittance from perfect transmission (T = 1), (ii) the mean
square deviation of the phase difference from zero extra
phase (φt − φ0 = 0), and (iii) the mean square deviation of
the time-delay difference from zero extra time delay (τt −
τ0 = 0). In order to get reference values, we evaluate all
deviations for the corresponding Hermitian systems as well.
For the system shown in Fig. 2, we get the following results:
(i) MSD(T )Herm ≈ 5.01 × 10−2, MSD(T )CI ≈ 6.9 × 10−4;

10 20 30 40 50 60
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FIG. 6. Logarithmic transmittance averaged over 1000 random
configurations of the system shown in Fig. 3(a) as a function of
the system’s width W = 2L. We fit the data to the black line
−2W/ξ , whose slope we can use to estimate the localization length
ξ ≈ 20λ0.

(ii) MSD(φt − φ0)Herm ≈ 6.72 × 10−3, MSD(φt − φ0)CI ≈
1.98 × 10−5; and (iii) MSD(τt − τ0)Herm ≈ 1.34 × 10−6,
MSD(τt − τ0)CI ≈ 1.37 × 10−8. For the disordered system
shown in Fig. 4, we obtain (i) MSD(T )Herm ≈ 9.43 × 10−1,
MSD(T )CI ≈ 1.29 × 10−2; (ii) MSD(φt − φ0)Herm ≈ 3.94,
MSD(φt − φ0)CI≈1.9×10−3; and (iii) MSD(τt−τ0)Herm≈
8.32 × 10−5, MSD(τt − τ0)CI ≈ 2.94 × 10−8. These results
clearly demonstrate that the deviations of our invisible CI sys-
tems from perfect invisibility are negligibly small and around
two orders of magnitude smaller than for the corresponding
Hermitian system.

APPENDIX B: LOCALIZATION LENGTH
OF DISORDERED STRUCTURE

Here, we show that the disordered structure in Fig. 3(a)
gives rise to Anderson localization in the absence of gain and
loss. To prove this explicitly, we determine its localization
length ξ , which quantifies the exponential decrease of the
transmittance T = |t |2 as a function of the system’s width
W = 2L. To be more precise, the localization length ξ can
be estimated by ξ = −2W 〈ln[T (W )]〉−1, where the brackets
〈· · · 〉 denote the average value over 1000 random configura-
tions at a given system width W . In Fig. 6 we plot the quantity
〈ln[T (W )]〉 as a function of W , from which we can estimate
the localization length ξ through a fit with −2W/ξ (black
line). We find that the localization length is ξ ≈ 20λ0; that
is, the disordered structure in Fig. 3(a) is around three times
wider than the localization length ξ and therefore deep in the
localized regime.

APPENDIX C: CONNECTION TO UNIDIRECTIONALLY
INVISIBLE BRAGG GRATING

The unidirectionally invisible Bragg grating introduced in
Ref. [23] follows a PT -symmetric and periodic refractive
index modulation:

n(x) = n0 + n1 cos(2βx) + in2 sin(2βx), (C1)

with β being the spatial periodicity of the grating. At the
Bragg point (β = k0) and with n1 = n2 = 10−3 and n0 = 1,
the structure becomes unidirectionally invisible for
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left-incident waves and strongly reflecting for waves
incident from the right. Whereas in [23] this phenomenon
of unidirectional invisibility was directly associated with
the PT nature of this periodic structure, we show now that
the structure in Eq. (C1) coincides with one example of our
class of unidirectionally invisible systems at one specific
parameter configuration. We start with a generating function
W (x) = n0 + f (x) featuring f (x) = n′ cos(2β ′x), which
satisfies the invisibility condition in Eq. (4), and calculate the
corresponding CI refractive index from Eq. (2):

n(x) =
√

W 2(x) − i

k0

dW (x)

dx

= n0

√
1 + n′2

n2
0

cos2(2β ′x)

+ 2n′

n0
cos(2β ′x) + i

2β ′n′

k0n2
0

sin(2β ′x). (C2)

Assuming that n′ = 10−3 (in analogy to Ref. [23]), we can
neglect in Eq. (C2) the term which is proportional to n′2
and consider the other two terms, which are proportional
to n′, to be small, allowing us to approximate the square
root

√
1 + x ≈ 1 + x/2 for small x [with x = 2n′

n0
cos(2β ′x) +

i 2β ′n′

k0n2
0

sin(2β ′x)]. We end up with n(x) ≈ n0 + n′ cos(2β ′x) +
i β ′n′

k0n0
sin(2β ′x), which turns out to match exactly the structure

in Eq. (C1) if n′ = n1 = n2 = 10−3, n0 = 1, and β ′ = β =
k0. Our findings thus strongly indicate that the unidirectionally
invisible Bragg grating in Ref. [23] is, in fact, a refractive in-
dex that supports CI waves which also satisfies the invisibility
condition in Eq. (4).

What makes the CI structure in Eq. (C2) superior, however,
is the fact that it is invisible for all values of β ′, n0, and
n′; that is, it is restricted neither to the Bragg point β ′ =
k0 nor to small index variations n′. To prove our statement
numerically, we perform the same calculations as in Figs. 2
and 4 of the main text, but now for two different systems: the
first one (see Fig. 7, blue lines) is the Bragg grating defined
in Eq. (C1) away from the Bragg point, β = 0.7k0, and for
larger index variations n1 = n2 = 0.5, whereas the second one

1

1.7

Bragg grating Invisible CI

0

0.3

-3 -2 -1 0 1 2 3
-0.01

0

0.01

δ

FIG. 7. (a) Transmittance, (b) difference between the transmis-
sion phase, and (c) difference between the time delay of the unidirec-
tionally invisible Bragg structure [Eq. (C1); blue line] with different
parameters for n0, n1, n2, β, as in Ref. [23], and of the CI system
[Eq. (C2); magenta line] as a function of the detuning δ = k − k0,
with the following parameters: n0 = 2, n′ = n1 = n2 = 0.5, β ′ =
β = 0.7k0, and k0 = 2π/0.2. The system’s width is ≈7λ0. All quan-
tities indicate that the CI system is unidirectionally invisible in a
broad frequency window, whereas the Bragg grating from Eq. (C1)
can already be detected by measuring the (frequency-dependent)
transmittance. The relative width of the invisibility window between
δ = −2 and δ = 2 is 	δ/k0 ≈ 4/31.42 ≈ 0.13; that is, a wave
number detuning of around 6% from k0 in both directions still allows
for perfect transmission and zero accumulated phase.

(see Fig. 7, magenta lines) is our invisible CI refractive index
in Eq. (C2) with the same parameters (β ′ = β, n′ = n1 = n2).
From Fig. 7(a) we can already see that the Bragg grating
can be detected already by measuring the transmittance at
different frequencies, whereas the CI system has unit trans-
mittance in a broad frequency window. Also the transmission
phase [see Fig. 7(b)] and the time delay [see Fig. 7(c)]
indicate that the CI system is invisible, quite in contrast to
the Bragg grating. The results shown in Fig. 7 demonstrate
that the CI system in Eq. (C2) is invisible per construction
for arbitrary parameters n0, n′, and β ′, whereas the Bragg
grating in Eq. (C1) is invisible only for the parameters used
in Ref. [23].
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