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Abstract When waves propagate through a non-uniform potential landscape their
interference typically gives rise to a complex intensity pattern. In this chapter we
review our work on how to entirely suppress these intensity variations by adding
system-specific gain and loss components to the potential. The resulting constant-
intensity (CI) waves are entirely free of interference fringes and get perfectly
transmitted across any such non-Hermitian scattering landscape that is put in their
way. We discuss how to generalize this concept to more than one dimension and
to the non-linear regime where these special wave states open up the way to study
the phenomenon of modulation instability in non-uniform potentials. Experimental
implementations of these unique wave states are envisioned not just in optics, but
also in other fields of wave physics such as in acoustics.

1 Introduction

Waves play an important role in many fields of science and in all of them the
plane wave solution is the one that solves the corresponding wave equation in the
most straightforward way. When placing a spatially varying potential in the way
of such a plane wave, however, the problem becomes immediately less trivial as
potentials typically reflect and scatter the wave, leading to interference and a non-
uniform wave intensity that is strongly position-dependent. Such a potential could
be an electrostatic field for an electronic matter wave, a non-uniform distribution
of a dielectric medium for an electromagnetic wave or a wall that reflects an
acoustic pressure wave. All of these cases lead to diffraction and wave interference,
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resulting in the highly complex variation of a wave’s spatial profile that we are
all very familiar with. Engineering these effects at one’s will is a challenging task
– think here, e.g., of the search for a cloaking device [1] or of the entire field of
adaptive optics [2]. New strategies in this direction are thus in high demand and
could establish a fertile ground in many of the different disciplines of science and
technology in which wave propagation is a key element.

The starting point for our endeavor is the insight, that very unconventional
phenomena arise in the situation where waves propagate and diffract in a suitably
chosen spatial refractive index distribution that combines both gain and loss [3].
Such non-Hermitian potential regions [4, 5], which serve as sources and sinks
for waves, respectively, can give rise to novel wave effects that are impossible to
realize with conventional, Hermitian potentials. Examples of this kind, that were
meanwhile also realized experimentally [6–10], are the uni-directional invisibility
of a gain-loss potential [11], devices that can simultaneously act as a laser and
as a perfect absorber [12–14] and resonant structures with unusual features like
non-reciprocal light transmission [10] or loss-induced lasing [15–17]. In particular,
systems with a PT -symmetry [18], where gain and loss are carefully balanced,
have recently attracted enormous interest [19–24]. All these activities that were ini-
tially driven by the introduction of the counter-intuitive concept of PT -symmetry
[18] in the realm of waveguide optics theoretically [19, 20] and experimentally
[6, 7], opened a new area of research, that of non-Hermitian photonics or parity-
time symmetric optics.

In the research presented below we extend the above concepts in a significant
way. Specifically, we show here that for a general class of potentials that spatially
combine gain and loss, it is possible to eliminate the intensity variations in wave
scattering entirely, and create constant-intensity waves [25–28]. In particular, we
present new solutions for a whole class of waves that have constant intensity even
in the presence of a very irregular potential landscape. Quite surprisingly, these
waves are solutions to both the paraxial equation of diffraction, the discrete and
continuous non-linear Schrödinger equation, and the scalar Helmholtz scattering
wave equation. In the linear regime, such constant-intensity waves resemble Bessel
beams in free space [29] in that they carry infinite energy and propagate without
distortion (depending on the truncation). In the non-linear regime, they provide
the only background where the best known symmetry breaking instability, the so-
called modulational instability (MI) [30–35] can be analyzed for the first time in
inhomogeneous non-Hermitian potentials. Using these solutions for studying the
phenomenon of MI, we find that, in the self-defocusing case, unstable finite size
and periodic modes appear and cause the wave to disintegrate and to generate a
train of complex solitons.

This book chapter follows in part our previously published manuscripts on the
above subjects – see, in particular, the following three references [25, 26, 28] where
also more details can be found.
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2 Constant-Intensity Waves and Modulation Instability in
Inhomogeneous Continuous Media

Following [25], we start from the well known non-linear Schrödinger equation
(NLSE). This scalar wave equation encompasses both the physics of matter waves
as well as many aspects of optical wave propagation. Specifically, we will consider
the NLSE with a general, non-Hermitian potential V (x) and a Kerr non-linearity,

i∂zψ + ∂2
xψ + V (x)ψ + σ |ψ |2ψ = 0 . (1)

The scalar, complex valued function ψ(x, z) describes the wave function of a matter
wave as it evolves in time or the electric field envelope along a scaled propagation
distance z. The non-linearity can either be self-focusing or de-focusing, depending
on the sign of σ . For this general setting, we now introduce a whole family of
potentials V (x) which are determined by the following simple relation,

V (x) = W 2(x) + i
dW(x)

dx
, (2)

where W(x) is a given real generating function to which no further constraints
apply (apart from smoothness). In the special case where W(x) is an even function
of x, the actual optical potential V (x) turns out to be PT -symmetric, since
V (x) = V ∗(−x). We emphasize, however, that our analysis is valid for all confined
or periodic functions W(x), which do not necessarily lead to a PT -symmetric
form of V (x). Rather, we can prove for the entire non-Hermitian family of potentials
that are determined by Eq. (2), that the following analytical and stationary constant-
intensity wave is a solution to the NLSE in Eq. (1),

ψ(x, z) = AeiσA2z+i
∫

W(x)dx, (3)

with a notably constant and real amplitude A. We emphasize here the surprising
fact, that this family of solutions exists in the linear regime (σ = 0) as well as for
arbitrary strength of non-linearity (σ = ±1). An interesting point to observe is that
the above solutions exist only for non-Hermitian potentials, since for W(x) → 0
we also have V (x) → 0 . Therefore, these families of counterintuitive solutions are
the direct outcome of the non-Hermitian nature of the involved potential V (x) and
as such exist only for these complex structures.

In order to better understand and highlight the properties of such constant-
intensity solutions we consider one-dimensional potentials that are generated by
Hermite polynomials choosing W(x) = Hn(x)e−Bx2

. The results for vanishing non-
linearity (σ = 0) are illustrated in Fig. 1. Here, the localized optical potential V (x)

is not PT -symmetric (see Fig. 1a) and corresponds physically to a waveguide-
coupler with lossy arms and optical gain in the evanescent region. If the initial beam
is not designed to have the correct phase (as given by Eq. (3)), then the light diffracts
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Fig. 1 (a) Real part (green line) and imaginary part (black line) of the complex potential V (x)

satisfying Eq. (2) (blue filled regions depict loss, whereas the red one depicts gain). (b) Evolution
of a constant amplitude without the correct phase at the input at z = 0. (c, d) Spatial diffraction
of the truncated constant-intensity solution satisfying the correct phase relation of Eq. (3). Two
different input truncations are shown for comparison. The lines in the x − z planes of (b, c, d)
around x = 0 depict the real refractive index of the potential as shown in (a). Note the different
vertical axis scale in (b)

fast to the gain region as we can see in Fig. 1b. The effects of truncation of the
constant-intensity solution are shown in Figs. 1c, d. Similar to the diffraction-free
beams [29], we find that the wider the width of the truncation aperture is, the larger
is the propagation distance after which the beam starts to diffract. In the case of
no truncation (i.e., infinitely wide aperture) diffraction is fully suppressed for an
infinitely long propagation distance.

In a next step we demonstrate that the above concepts are not restricted to a
single spatial dimension x (apart from the propagation distance z), but can easily be
generalized to two spatial dimensions x, y. The family of these complex potentials
V (x, y) and the corresponding constant-intensity solutions ψ(x, y, z) of the two-

dimensional NLSE i
∂ψ
∂z

+ ∂2ψ

∂x2 + ∂2ψ

∂y2 + V (x, y)ψ + σ |ψ |2ψ = 0 are given as
follows:
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V (x, y) = |W|2 − i∇ · W , (4)

∇ × W = 0 , (5)

ψ(x, y, z) = AeiσA2z+i
∫
C Wdx , (6)

where W = xWx + yWy with Wx , Wy being real functions of x, y and C being
any smooth open curve connecting an arbitrary point (a, b) to any different point
(x, y). As in the one-dimensional case, these solutions are valid in both linear
and non-linear domains. For the particular case of Wx = cos(x)sin(y), Wy =
cos(y)sin(x), the resulting periodic potential V (x, y) is that of an optical lattice
with alternating gain and loss waveguides. The imaginary part of such a lattice is
illustrated in Fig. 2a. In Fig. 2b, we display the diffraction of a constant-intensity
beam with the correct phase (as in Eq. (6)) launched onto such a linear lattice
(σ = 0) through a circular aperture. As we can see, the beam maintains its constant
intensity over a remarkably long distance. The transverse Poynting vector defined
as S = (i/2)(ψ∇ψ∗ − ψ∗∇ψ), is presented in Fig. 2c and the light always flows
following complicated stream line patterns from the gain regions to the loss regions
in a symmetric fashion. Once the finite beam starts to diffract this balanced flow is
disturbed and all the light is concentrated only in the gain regions.

These unique diffraction-free and constant-intensity waves are also solutions of
the NLSE for both the self-focusing and defocusing cases. As a result, we can
study now for the first time their modulation instability under small perturbations. In
other words, we want to investigate how perturbations of the exact CI solutions get
reinforced by the non-linearity leading to a break up of the waveform into a complex
pattern. Specifically, we are interested in understanding the linear stability of the
solutions of Eq. (1) of the form ψ(x, z) = [A+εFλ(x)eiλz +εG∗

λ(x)e−iλ∗z]eiθ(x,z),
where the phase function is θ(x, z) = σA2z + ∫

W(x)dx. Here, Fλ(x) and
Gλ(x) are the perturbation eigenfunctions with ε � 1 and the imaginary part
of λ measures the instability growth rate of the perturbation. To leading order
in ε, we obtain the following linear eigenvalue problem for the two-component
perturbation eigenmodes ϕλ(x) ≡ [Fλ(x)Gλ(x)]T , the eigenvalues of which are λ,

i.e.,
←→
M (L̂±) ·ϕλ(x) = λϕλ(x) . The operator matrix

←→
M is defined by the following

expression:

←→
M (L̂±) =

(
L̂+ σA2

−σA2 −L̂−

)

. (7)

Here the appearing linear operators are defined by the following relationships:

L̂± = L̂0 ± iL̂1 (8)

L̂0 = σA2 + d2/dx2 (9)

L̂1 = 2W(x)d/dx (10)
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Fig. 2 Imaginary part of the complex potential V (x, y) discussed in the text. Red and blue regions
correspond to gain and loss, respectively. (b) Iso-contour of the beam intensity launched onto the
potential in (a) through a circular aperture of radius ∼ 40λ0, where λ0 is the free space wavelength.
Also shown are three transverse intensity plots (from bottom to top) at z = 0, z = 5, z = 10. (c)
Transverse power flow pattern (indicated by arrows) of the beam at z = 5

So far the above discussion is general and applies to any smooth function W

(periodic or not) that is real. The eigenspectrum analysis of the above eigenvalue
problem determines whether the constant-intensity solution is stable (λ ∈ R) or
unstable (λ ∈ C). We now apply this analysis to study the modulation instability of
constant-intensity waves in PT -symmetric optical lattices [19, 20] assuming that
W(x) is a periodic potential with period α. In particular, we consider the example of
a PT -symmetric photonic lattice where W(x) = V0

2 + V1 cos(x) and the resulting

optical potential is V (x) = [V 2
0
4 + V 2

1 cos2(x) + V0V1 cos(x)] + iV1 sin(x). The
corresponding constant-intensity solution, whose modulation instability we want to
study is given by ψ(x, z) = A exp[iσA2z + i

V0x
2 + iV1 sin(x)]. In order for this

constant-intensity solution to be periodic in x with the same period as the lattice,
the constant term V0 must be quantized, namely V0 = 0,±2,±4, . . .. For all the
subsequent results we will always assume that V0 = 4 and V1 = 0.2 (without loss
of generality). It is important to note here, that for our PT -lattice V(x) is in the
so-called ‘unbroken PT -symmetric phase’ with only real propagation constants.
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Fig. 3 (a, b) Modulation instability growth rate as a function of the Bloch momentum (half of
first Brillouin zone), for (a) self-focusing non-linearity (σ = 1) and amplitude A = 1, and
for (b) defocusing non-linearity (σ = −1) and amplitude A = 2. Different colors in (a), (b)
denote different instability bands. (c, d) Numerical results for the intensity evolution of a constant-
intensity wave for (c) a self-focusing non-linearity with parameters k = 0, A = 1, ε = 0.01, and
(d) for a defocusing non-linearity with parameters k = 0.22, A = 2, ε = 0.001. The peak values
are indicated on the vertical axes and match very well with the results of our perturbation analysis

In the broken phase some of these eigenvalues are complex and the instabilities
are physically expected. Since W(x) is periodic we can expand the perturbation
eigenvectors ϕλ(x) in a Fourier series and construct numerically the bandstructure
of the stability problem. So at this point we have to distinguish between the
physical band-structure of the problem and the perturbation band-structure of the
stability problem. Based on the above, the Floquet-Bloch theorem implies that
the eigenfunctions ϕλ(x) can be written in the form φλ(x) = φ(x, k)eikx , where
φ(x, k) = φ(x + α, k) with k being the Bloch momentum of the stability problem.
The results are illustrated in the following Fig. 3a for a self-focusing non-linearity
(σ = 1) and for the amplitude A = 1. More specifically, we show the instability
growth rate |Im{λ(k)}| as a function of the perturbation eigenvector k in the first
half Brillouin zone, and we can see that the constant-intensity waves are linearly
unstable for any value of Bloch momenta of the imposed perturbation.
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The situation is different for the defocusing case (σ = −1) where the results
are presented in Fig. 3b. For some values of k the constant-intensity solutions are
linearly stable and their instability dependence forms bands reminiscent of the bands
appearing in conventional MI results for bulk or periodic potentials [30, 33, 34], but
quite different and profoundly more complex. In order to understand the physical
outcome of such instabilities and how they lead to filament formation, we have
performed direct numerical simulations for the dynamics of the constant-intensity
solutions against specific perturbations. The results are presented in Fig. 3c, d. More
specifically, we examine the intensity evolution of a constant-intensity solution
when it is perturbed by a specific Floquet-Bloch mode. In other words, at the input of
the lattice at z = 0, we have ψ(x, z = 0) = [A+ εFλ(x)+ εG∗

λ(x)]eiθ(x,0), and we
are interested to see if the linear stability analysis captures the exponential growth
of the imposed perturbations. For the considered PT -lattice with self-focusing
non-linearity, we examine the non-linear dynamics of the constant-intensity solution
and the result is presented in Fig. 3c. For a perturbation eigenmode with Bloch
momentum k = 0 and A = 1, ε = 0.01, we can see from Fig. 3a that Im{λ(0)} ∼ 1.
Therefore, we can estimate the growth for a propagation distance of z = 5 to be
around |1+0.01·e1·5|2 ∼ 6.1, which agrees very well with the dynamical simulation
of Fig. 3c. Similarly, for the defocusing non-linearity, and for parameters k = 0.22
and A = 2, ε = 0.001, we estimate the growth for a propagation distance z = 35 to
be around |2+0.001·e0.046·35|2 ∼ 4.02, which matches exactly with the propagation
dynamics result of Fig. 3d.

We would like to mention here that the above MI analysis can be extended
to vectorial non-linear Schrödinger equations for which multi-component constant
intensity solutions exist [27].

3 CI-Waves in Discrete Disordered Lattices

Engineering a continuous distribution of gain and loss that perfectly matches the
requirements of our theoretical analysis is a challenging task experimentally. To
facilitate an experimental implementation, we thus also study whether our concepts
can be applied to discrete rather than to continuous potential landscapes (see Fig.
4a,b for an illustration of these two cases). Consider, for this purpose, a lattice of
coupled non-Hermitian single-mode waveguides as depicted in Fig. 4a extending
along the positive z-direction. The propagation of light in such a lattice can be
described using coupled mode theory. Specifically, the beam evolution is governed
by the following normalized paraxial equation of diffraction for N coupled optical
elements (waveguides or cavities),

i
dUn

dz
+ c(Un+1 + Un−1) + (βn + igγn)Un = 0 , (11)
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Fig. 4 (a) Schematics of a non-Hermitian lattice of coupled optical waveguides, that supports
constant-intensity modes. The waveguides form a ring, corresponding to periodic boundary
conditions. The labels D, L, G, c stand for a dielectric, loss, gain element, and for the coupling
constant, respectively. (b) One of the envisioned goals to realize constant-intensity waves: by
shining light through a spatial light modulator from the top, one can non-uniformly pump the gain
medium inside a material to obtain a spatially varying gain-loss profile that makes the medium
invisible for an incident wave from one side

where Un(z) represents the amplitude of the electric field envelope, z is the
propagation distance, c is the coupling between adjacent neighbors (here taken to
be equal to one, without any loss of generality) and n = 1, . . . N the waveguide
index. Each channel is characterized by either gain (γn < 0) or loss (γn > 0)

and by its real refractive index βn. The gain-loss amplitude is described by the
parameter g. For g = 0 the system is obviously Hermitian. The main question
we will address for the case of an optical non-Hermitian lattice is if and under
which conditions constant-intensity waves exist [26]. Specifically, we are looking
for stationary constant-intensity solutions of the form:

Un(z) = eiθneiλz , (12)

where θn is a given phase distribution over all waveguide channels and λ is the
propagation eigenvalue. It is important to understand that in order for such CI-modes
to exist, periodic boundary conditions must be imposed at the end points of the
lattice. In particular, the Born-Von Karman periodic boundary conditions must be
valid for the field, namely:

U0 = UN,UN+1 = U1 . (13)

We can see that the complex refractive index must satisfy (for any given phase
distribution):

βn = λ − cos(θn+1 − θn) − cos(θn−1 − θn) , (14)

γn = − sin(θn+1 − θn) − sin(θn−1 − θn) . (15)
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Since the constant-intensity wave of Eq. (12) must satisfy the periodic boundary
conditions, it is also true that the phase distribution must satisfy the relations:

θ0 = θN , θN+1 = θ1 . (16)

Physically speaking, the periodic boundary conditions correspond to an optical
ring-lattice of coupled optical elements (waveguides or cavities), as schematically
depicted in Fig. 4a. The given phase distribution θn determines the real and imagi-
nary parts of the refractive index (through Eqs. (14) and (15)) and the eigenvalue
λ (which can be removed by a gauge transformation) affects only the real part
of the index of refraction. An important difference between the solutions found
in the continuum case studied in the previous chapter and those found here is
the following: The CI-waves in the continuous and infinite case are radiation
eigenmodes, while in the discrete and periodic problem at hand they are true
eigenmodes (more precisely supermodes) of the entire system. We have also to note
that for λ = 0, the CI-mode is unidirectionally invisible, since the wave propagates
without any additional phase change and only in one propagation direction (for the
opposite direction the complex conjugate potential must be used).

We have thus found that for system configurations satisfying Eq. (11) the
complex refractive index can always be engineered to yield a CI solution. This
is particularly remarkable in view of the fact that disordered waveguide lattices
without any gain and loss give rise to Anderson localization – a well-studied
phenomenon in condensed matter physics [36–40]. The existence and properties
of localized modes in linear random systems has meanwhile been thoroughly
investigated. The majority of the theoretical and experimental studies have, however,
been concentrated on Hermitian media (with the exception of the random laser
literature) where Anderson localization is now well understood. Adding gain and
loss to the medium makes the fundamental question of localization generally more
complicated [41]. In this context our results now provide the interesting insight that
any disordered medium that gives rise to Anderson localization (without gain and
loss) can also produce extended modes of uniform intensity (CI-supermodes) when
a suitable combination of gain and loss is added.

In Fig. 5 such a random system of 100 coupled waveguides is considered. The
real and imaginary part of the refractive index distribution is depicted for a particular
realization of the lattice in Fig. 5a, b, respectively. As we can see, adding gain and
loss to such a system alters the Anderson localized modes of the Hermitian lattice
to extended delocalized modes, one of which is a CI-supermode (Fig. 5c) with a real
eigenvalue (Fig. 5d).
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phase. In particular, (a) real part and imaginary parts of the refractive index per waveguide, (b)
gain and loss per channel, (c) the amplitude and phase of the CI-supermode, and (d) eigenvalue
spectrum in the complex plane. The eigenvalue of the CI-supermode is denoted with a blue circle

4 CI-Waves in the Scattering Regime

In all of the above considerations, the variation of the refractive index or of
the potential was considered only in the direction transverse to the propagation
direction. The question we want to address in the following is, whether CI waves
also exist for the case that the potential variation occurs in the direction along which
a wave is propagating. In particular, it would be very exciting to see if we can create
in this way a “scattering state” that perfectly penetrates a disordered medium with
constant intensity. The scattering of waves through disordered media has, in fact,
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captured the interest of various communities for quite some time now [42–44].
While much work has been invested into understanding the statistical properties of
the corresponding wave transport [45] there has recently been a surge of interest in
controlling the scattering of waves through individual systems for specific purposes
such as detection, imaging, and efficient transmission across disordered materials
[46, 47]. Remarkable progress in these endeavors has recently been made in the
optical domain, largely due to the availability of spatial light modulators and new
concepts for how to apply them on turbid media [48, 49]. In a first generation
of corresponding experiments the focus was laid on shaping the input wave front
impinging on an immutable disordered sample such as to achieve a desired output,
like a spatial or temporal focus behind the medium [50–53]. More recent studies
concentrated instead on controlling the medium itself, e.g., through the material
fabrication process [54] or through a spatially modulated pumping [55], leading,
e.g., to a versatile control of random and micro-cavity lasers [56–60].

Here we will build on these advances and shall combine them with our insights
on how to construct CI waves [28]. Specifically, we show that for a general
disordered medium, given by a distribution of the real part of the refractive index
nR(x), a corresponding distribution of its imaginary part nI (x) can be found, such
that a wave propagating through this continuous medium will feature a constant
intensity throughout the entire non-uniform scattering landscape. In other words,
we demonstrate that adding a judiciously chosen distribution of gain and loss to
a disordered medium will make waves lose all their interference fringes including
perfect transmission through the disorder.

The solution strategy that we explore for this purpose is based on the one-
dimensional normalized Helmholtz equation that describes time-independent scat-
tering of a linearly polarized electric field ψ(x) both in forward and in backward
direction,

[
∂2
x + ε(x) k2

]
ψ(x) = 0 . (17)

Here ε(x) is the dielectric function varying along the spatial coordinate x and
k = 2π/λ is the wavenumber (with λ being the wavelength). The dielectric function
is complex thus ε(x) = [nR(x) + inI (x)]2, where nR(x), nI (x) denote the real and
imaginary parts of the refractive index. In general, when a plane wave is incident on
a spatially varying distribution ε(x), interference takes place between the waves
propagating forward and backward. As a result, a complex interference pattern
is produced with fringes on its intensity. As we will now show, this fundamental
physical picture can be quite different in the case of non-Hermitian media with loss
and/or gain.

To jump right to the heart of the matter, we start with an ansatz for a constant-
intensity (CI) wave with unit amplitude, ψ(x) = exp[iS(x)], where S(x) is
a real valued function. Due to the obvious relation to WKB-theory [61], we
will derive the CI solution of the Helmholtz Eq. (17) in the bulk, by demanding
that the ansatz ψ(x) = exp[iS(x)] has to be exact in the first order WKB-
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approximation. Expanding the function S(x) in powers of a small parameter δ,

S(x) = 1
δ

∞∑
n=0

δnSn(x), and inserting it into the Helmholtz Eq. (17) to leading order,

we can show that in the limit of δ → 0, δ scales with 1/k. Setting δ = 1/k and
collecting terms with the same power of k, we can write down the two dominant
terms:

k2 = 1
δ2 : Re[ε(x)] + i Im[ε(x)] − [S′

0(x)]2 = 0 (18)

k1 = 1
δ1 : i S′′

0 (x) − 2 S′
0(x) S′

1(x) = 0 (19)

The exactness requirement of our ansatz necessitates that all terms Sn>0 are zero
and the demand for constant intensity of ψ(x) calls for a real-valued S0(x). Both
conditions can be fulfilled by choosing Im[ε(x)] = −S′′

0 (x)/k such that the term
Im[ε(x)] moves from Eqs. (18) to (19) leading to Re[ε(x)] = [S′

0(x)]2 and S′
1(x) =

0. As a result S1(x) = const. and all higher terms are constant as well. Setting
S′

0(x) = W(x), we finally obtain the non-Hermitian dielectric function (relative
permittivity),

ε(x) = W 2(x) − i

k
∂xW(x) , (20)

with a corresponding CI solution ψ(x) = exp[ik ∫
W(x′)dx′] that is an exact

solution of the Helmholtz equation and valid for the whole bulk space and all
wavelengths. In other words, we identify a general class of refractive index
distributions where real and imaginary parts are connected through the generating
function W(x), for which the fringes in the interference pattern vanish entirely. The
fact that W(x) can be chosen arbitrarily, with no limitations on its spatial complexity
(apart from smoothness), is a key asset of this approach, making it very generally
applicable. For the special case that the generating function is left-right symmetric,
W(x) = W(−x), the dielectric function is PT -symmetric since ε(x) = ε∗(−x).
Independently, however, of whether ε(x) is PT -symmetric or not it can be shown
that CI waves can also be found for all dielectric functions that are described by
Eq. (20) in a finite domain x ∈ [−D,D], bordering on free space for x < −D and
x > D. In this case, the scalar Helmholtz equation (17) admits the following exact
CI wave solutions ψ(x):

exp[ik (x + D)], x < −D , (21)

exp[ik
∫ x

−D

W(x′)dx′], −D ≤ x ≤ D , (22)

exp[ik (x − D + c)], x > D , (23)

with c being a constant that is determined by the definite integral of W over the
entire scattering region, in order for the field continuity relations to be satisfied.
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Most importantly, the above solution does not only feature a constant intensity
|ψ(x)|2 = 1 in the asymptotic regions x ≤ −D and x ≥ D, where ε(x) = 1
and simple plane wave propagation is realized, but also inside the finite region
of length 2D in which the dielectric function varies and the phase-evolution is
non-trivial. Regarding the appropriate boundary conditions at x = ±D, it can
be shown that the perfect transmission boundary conditions (zero reflection) [24]
∂xψ(±D) = ikψ(±D) imply the following conditions for the generating function,
W(±D) = 1. From this result it is also clear that for vanishing imaginary part, the
dielectric function, as defined in Eq. (20), reduces to ε(x) = 1, in which limit our
CI wave solution is just a plane wave in free space.

It is also important to note that the wavenumber k appearing in the dielectric
function ε(x) of Eq. (20) is the same as the wavenumber k in the CI wave solution
given in Eq. (21). In other words, for any value of k for which a CI scattering
state is desired, the dielectric function ε(x) has to be engineered correspondingly.
Once ε(x) is fixed and plane waves with varying values of k are impinging on this
dielectric structure, a perfectly transmitting CI solution in general only occurs at the
predetermined k value inherent in the design of ε(x), whereby no issue arises with
the Kramers-Kronig relations.

To elucidate the above ideas, we consider now one specific example of an
index distribution and study the CI-waves it gives rise to. We assume W(x)

to be a parabolic function modulated with a cosine, namely W(x) = [1 −
0.2 cos(15πx/2)](2 −x2). The corresponding real part of the refractive index
distribution nR(x) is shown as the gray shaded area in Fig. 6. A wave impinging
on this dielectric structure composed of only nR(x) is partly reflected and features
a highly oscillatory profile, see Fig. 6a. Quite in contrast, when adding also the
gain and loss inherent in the imaginary index component nI (x) derived from
W(x) (see green and red regions in Fig. 6b), the resulting scattering state is fully

-1 0 1

0

1

2 | |
2

-1 0 1

gain
0

1

2 | |
2(a) (b)

x

nR nR

x

loss

Fig. 6 (a) Scattering wave function intensity (blue line) in a Hermitian refractive index dis-
tribution for an incident plane wave (from the left) with a specific normalized wavenumber
k = 2π/0.26 = 24.15. (b) Intensity of the CI-wave for the corresponding non-Hermitian refractive
index n(x) and the same incident plane wave. The real part of the refractive index is shown in gray,
whereas its imaginary part is colored in green (loss) and red (gain). For illustration purposes the
imaginary part in (b) was multiplied by a factor of 2. The calculations were performed using the
transfer matrix approach
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transmitted and features a constant intensity. Because of the boundary conditions,
W(x) must be symmetric at the end points of the cavity, resulting in an anti-
symmetric distribution of nI (x). Our example shows that for a plane wave at an
arbitrary incident wavenumber k, we can find the corresponding gain-loss landscape
(from Eq. (20)), such that this wave will fully penetrate the scattering medium
without forming any spatial variations in its intensity pattern.

Fixing a refractive index through Eq. (20) that leads to a CI wave at the specific
wavenumber k0, one can ask the question what happens to incident plane waves
with detuned wavenumbers k �= k0. Naively, one may expect that the emergence
of CI waves is a sharp resonance phenomenon, so that waves with a slight
detuning in the wavenumber k should show a completely different behavior as,
e.g., around a resonance in a Fabry-Perot interferometer [62]. This picture turns
out to be misleading on several levels: Since the CI wave function at position x,
ψ(x) = exp[ik ∫ x

−D
W(x′)dx′], only depends on the generating function W(x′)

evaluated at values x′ < x, one can easily truncate the system at any point x

and still get a CI wave – provided one continues the system for all x′ > x with
a constant generating function that has the same value as at the point of truncation.
This behavior indicates that a refractive index profile that supports CI waves is
not only reflectionless in total, but also unidirectional at any point inside a given
structure. Perfect transmission in such systems is thus not a resonance phenomenon,
suggesting that CI waves are stable against changes of the incident wavelength. To
check this explicitly, we numerically calculated the average resonance width of the
transmission spectrum |t (k)| of the Hermitian system in Fig. 6, 〈ΔkHerm〉 = 0.84,
in an interval k ∈ [ 2π

0.5 − 3, 2π
0.5 + 3], with minimum transmission |t (k)min| = 0.77.

The transmission of the corresponding CI system (that of Fig. 6 but for the slighlty
different wavenumber k0 = 2π

0.5 ) stays larger than 0.9 over the entire k-interval (not
shown), confirming our prediction.

Another important point to make is that one can easily achieve a transmission
equal to one in a non-Hermitian system just by adding enough gain to it. In a CI
system, however, the net average amplification is zero, since

∫ D

−D
Im[ε(x)]dx = 0

and the intensity is equally distributed everywhere. Additionally, the material gain
corresponding to the potentials examined for λ = 1.5µm is around a realistic value
of 80 cm−1 for max(nI ) = 10−3. Moreover, these uniform intensity waves are still
valid for any slowly varying or rapidly fluctuating (subwavelength) optical potential
(as exact solutions of Helmholtz equation). For these reasons the aforementioned
physical values depend on the size of the scattering region, and on the operation
wavelength.

The most striking application of CI waves occurs for the case of scattering
through disordered environments. From the discussion above on the disordered
lattices we already know that in strongly scattering disordered media Anderson
localization occurs. For scattering states like the ones considered here, Anderson
localization results in an exponential decrease of the transmittance T = |t |2 for
structures with sizes greater than the localization length ξ = −2D〈ln [T (D)]〉−1.
For a given real and disordered index of refraction in the localized regime close
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to unit transmittance is thus very unlikely and occurs only at well-isolated, sharply
resonant wave numbers that are difficult to achieve experimentally [63, 64]. Our
approach now allows to turn this behavior upside down – not only in the sense that
we can engineer unit transmission at any predetermined value of the wavenumber k,
but also that we can create scattering states that have constant intensity in a strongly
disordered environment which would usually give rise to the most dramatic intensity
fluctuations known in wave physics.

We illustrate our results for the disordered one-dimensional slab shown in Fig. 7,
where a refractive index distribution following Eq. (20) is considered with a tunable
imaginary component, ε(x) = [nR(x) + i a nI (x)]2 (the tunable parameter a

controls the overall amplitude of gain and loss). More specifically, the generating
function W(x) is a superposition of 99000 Gaussian functions of the same amplitude
and width, but centered around random positions. For a = 0 the refractive index is
Hermitian, whereas for a = 1 CI waves exist. The refractive index distribution of
such a non-Hermitian disordered medium is depicted in Fig. 7a, and the localization
length ξ of the Hermitian refractive index (a = 0) is depicted in Fig. 7b. Without the
gain and loss distribution, the system reflects almost all waves due to localization.
Adding first only the gain part of the CI refractive index distribution (see Fig. 7c)
still results in highly oscillatory scattering wave functions with finite reflectance for
all values of the gain amplitude a (from 0 to 1), see Fig. 7d. Quite counterintuitively,
adding also the loss part of the CI index distribution leads to perfect and fringe-free
transmission for a = 1, see Fig. 7e. By varying the gain-loss amplitude a, as in
Fig. 7e, we can also see the smooth transition from the Anderson localization regime
(at a = 0) to perfect transmission with constant intensity (at a = 1).

Another important aspect of CI waves is their experimental realization, with the
most challenging part being the fabrication of a specific index distribution with gain
and loss [65]. In order to overcome such inherent difficulties, we study here also the
existence of CI scattering states in a system of discrete elements, see Fig. 8. Such a
set-up is composed of many discrete sites (cavities) with gain or loss and a specific
real refractive index distribution. Translating the analytic solution of Eq. (20) to
a finite-difference model, yields the following discrete solution that satisfies the
discrete version of the Helmholtz equation with the discrete dielectric elements εm

and the CI scattering state ψm:

εm = b−2
{

2 − e
ik�x

2 (Wm+Wm+1) − e− ik�x
2 (Wm+Wm−1)

}
(24)

and

ψm = exp

[
ik�x

2

(

W1 + Wm + 2
m−1∑

n=2

Wn

)]

, (25)

where b = ωΔx, ω2 = 2 [1−cos(kΔx)]/Δx2, and m = 1, . . . , M . Additionally,
perfect transmission boundary conditions imposed at the endpoints of the discrete
chain of the scatterers ψ0 = ψ1 exp (−ik�x) , and ψM+1 = ψM exp (ik�x) as
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Fig. 7 A strongly disordered potential consisting of N = 99000 Gaussian scatterers is considered.
(a) The corresponding refractive index distribution nR(x) in a small interval of x is shown.
(b) Exponential suppression of the transmittance T with localization length ξ in this system
for variable length of the disordered region D. (c) Imaginary part of the refractive index nI (x)

following from the CI design principle (nI (x) is matched to the real index distribution in (a)).
(d, e) Scattering wave functions for the disordered region as a function of the gain-loss strength
parameter a, for the gain-only and gain-loss potential, respectively. In both cases, an incident plane
wave is considered (from left to right). The CI-wave can be clearly seen for the full gain-loss
strength (a = 1) in (e)

well as the relation ωΔx < 2 must always hold. We consider a specific example in
Fig. 8 of M-elements that form a one-dimensional disordered chain. By adding gain
or loss onto the sites as prescribed by Eq. (24), an incoming wave from the left will
have the same constant intensity on all of these sites.
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Fig. 8 Disordered chain of discrete scatterers with an incoming plane wave from the left. The real
part (gray) as well as the gain (red) and loss (green) components of the refractive index are shown
for each scatterer. The corresponding discrete CI-wave is depicted with black dots. The normalized
parameters used are M = 20, ω = 12, L = 2 and Δx = L/(M − 1)

5 Future Directions and Outlook

In conclusion, we have presented an overview of recent results related to constant-
intensity waves in non-Hermitian systems such as synthetic media with gain and
loss. The central idea of this line of research is to spatially engineer the imaginary
part of the index of refraction in order to obtain a desired field pattern (constant-
intensity in this case). A possible next step in this context is to generalize CI
scattering states to more than one dimension. It is currently still an open question,
however, whether this is possible at all or under which constraints this can work.
A second direction that we are currently pursuing is to use our design principle not
only to create waves with a constant intensity, but rather with any desired intensity
profile inside a given medium [66, 67]. In preliminary calculations we find, e.g.,
that it is readily possible to create states that have a pronounced focus deep inside
a disordered medium – a property that is very desirable for various applications
in biophotonics and imaging. Last, but not least, we have also recently found
[68] that a medium that supports CI scattering states can be made unidirectionally
invisible. In this way we uncover a general design principle for unidirectional
invisibility that goes far beyond the periodic structure with PT-symmetry discussed
so far [11]. At this point we have to emphasize that these types of phenomena
are based on complex wave interference and are therefore expected to exist in
various areas of wave physics (optics, microwaves, acoustics, etc). As far as the
experimental demonstration of such CI-waves is concerned, we have recently
observed perfect transmission of acoustic CI-waves in disordered media [69]. These
findings demonstrate that CI-waves have considerable potential for new exciting
applications.
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