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Critical phenomena and nonlinear dynamics in a spin ensemble strongly coupled to a cavity.
I. Semiclassical approach
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We present a theoretical study of the nonlinear dynamics and stationary states of an inhomogeneously
broadened spin ensemble coupled to a single-mode cavity driven by an external drive with constant amplitude.
Assuming a sizable number of constituents within the ensemble allows us to use a semiclassical approach and to
formally reduce the theoretical description to the Maxwell-Bloch equations for the cavity and spin amplitudes.
We explore the critical slowing-down effect, quench dynamics, and asymptotic behavior of the system near a
steady-state dissipative phase transition accompanied by a bistability effect. Some of our theoretical findings
have recently been successfully verified in a specific experimental realization based on a spin ensemble of
negatively charged nitrogen-vacancy centers in diamond strongly coupled to a single-mode microwave cavity
[see A. Angerer et al., Sci. Adv. 3, e1701626 (2017)].
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I. INTRODUCTION

The phenomenon of optical bistability has been extensively
analyzed and experimentally realized in various systems ex-
hibiting driven-dissipative phase transitions such as a laser
with a saturable absorber [1], resonant cavities of different
shapes filled with two-level atoms [2–5], or an interferometer
with a nonlinear absorber [6] driven by the coherent incident
field—to name just a few examples (see, also, [7] for a
review). In all of these systems, the incident field was either
on resonance or close to resonance with the cavity field—the
two different cases referred to, respectively, as absorptive or
dispersive optical bistability. At the same time, it was shown
that while the bistability effect with hysteresis arises on the
semiclassical level when the problem is formally reduced to
the Maxwell-Bloch equations, a quantum treatment of the
coherently driven cavity predicts a unique quantum steady
solution for the cavity amplitude without amplitude bistabil-
ity [8]. The uniqueness of the quantum state was attributed
to quantum or classical fluctuations which lead to a finite
probability for a system to jump from one stable branch to
another and, as a consequence, to smearing out the bistabil-
ity region [9]. However, in the thermodynamic limit, these
fluctuations are negligibly small, so that the semiclassical
solution featuring the bistability effect is well justified for
many experimental realizations [7]. Two natural questions
which arose in this context are the following: how many atoms
for the onset of the thermodynamic limit are required and what
kind of system characteristics can trigger this onset [10]?

Over the last decade, open quantum systems featuring a
driven-dissipative phase transition in the thermodynamic limit
became a subject of renewed interest caused by technological
progress in various setups of cavity quantum electrodynamics
(QED). Many of these setups are studied in terms of their po-
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tential for the storage and processing of quantum information,
secure communication, and quantum sensing. Particularly
attractive in this context are so-called hybrid quantum systems
(HQS), which conflate the individual advantages of different
quantum technologies [11]. Among recent realizations of such
HQS, those based on spin, atomic, or molecular ensembles
coupled to superconducting microwave cavities have attracted
broad attention [12]. The technology for building such devices
has meanwhile advanced up to the degree that state-of-the-art
experiments can be performed on a single superconducting
chip, on which the corresponding ensemble is probed through
the in- and outcoupling of a microwave field. Other inter-
esting alternatives for HQS are being realized with opto-
and nanomechanical systems, which enable the conversion
between microwave and optical photons via phonons [13].

The experimental success achieved in various physical
realizations led to intensive theoretical studies in this rapidly
developing field. Many intriguing effects on both sides of
the semiclassical-to-quantum boundary have recently been
observed in a relatively simple system comprising a single-
mode driven-dissipative cavity with a Kerr optical nonlinear-
ity. Among them are, e.g., dynamic hysteresis effects [14,15],
nonadiabatic effects under periodic driving [16], photon
blockade and multiphoton resonant effects under additional
parametric driving [17], and the emergence of a jump in the
observable when proceeding to the thermodynamic limit [18].
Recent theoretical studies also highlight the importance of
metastable states in the understanding of a driven-dissipative
phase transition [18–20] and the geometrical nature of the
metastable dynamics [21]. Strong coupling of a single spin
or spin ensemble to the cavity leads to the emergence of a rich
variety of other intriguing phenomena, such as the breakdown
of the photon blockade for increasing drive power [22,23], the
bistability effect for just a few atoms [25] or for extremely
low saturation photon numbers [24], as well as bistable versus
metastable behavior in driven-dissipative Rydberg gases [26].
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In a recent paper [32] involving the present authors, among
others, it was shown how a hybrid system composed of a
superconducting resonator coupled to an inhomogeneously
broadened spin ensemble in diamond can be used to ex-
plore amplitude bistability in new regimes of cavity QED.
In accordance with the first theoretical findings based on a
semiclassical approach, the experiment demonstrated a crit-
ical slowing down of the cavity population of the order of
11 hours—a timescale much longer than observed previously
for this phenomenon. In this paper, we present a detailed
theoretical study of this effect including an analysis based on
adiabatically eliminating the cavity field, and a description of
the asymptotic behavior for long times as well as of absorptive
optical bistability. The system under study consists of an in-
homogeneously broadened spin ensemble strongly coupled to
a single-mode resonator exhibiting a driven-dissipative phase
transition. We consider the thermodynamic limit justified for
a very large number of spins where the problem can be
treated in the framework of the Maxwell-Bloch equations. In
accordance with the recent experimental realization [32], the
cavity decay rate and the nonradiative dephasing of individual
spins are chosen to be much larger than their radiative dephas-
ing. Among other phenomena mentioned above, we find an
interesting separation of timescales in the temporal dynamics.
Specifically, the system exhibits damped Rabi oscillations
of the cavity amplitude and small spin deviations from the
spins’ unexcited ground state at short times, even for moderate
values of the driving amplitude. The transient state that the
system sets into is reminiscent of a stationary state for a
relatively long time span. However, at even longer timescales,
the system deviates from this transient state towards its ulti-
mate stationary state with possible large spin deviations from
the ground state, characterized by a strong dependence on
the driving amplitude.

All issues related to the onset of the thermodynamic limit
are addressed in a separate companion paper, where we use
a cumulant-expansion approach to analyze the semiclassical-
to-quantum boundary as the size of the spin ensemble grows
[27].

Our paper is organized as follows. In Sec. II, we present
the theoretical framework of our problem, summarizing all
important assumptions made in our approach. In Sec. III,
we consider the dynamics and bistability effects under the
action of an external drive with constant amplitude for dif-
ferent shapes of the spectral spin distribution. Section IV is
devoted to adiabatic elimination of the cavity amplitude and
critical slowing-down phenomena. In Sec. V, we investigate
asymptotic decay towards a stationary state. Finally, we draw
our conclusions in Sec. VI.

II. THEORETICAL MODEL

Our starting point is the Tavis-Cummings Hamiltonian
(h̄ = 1) [28],

H = �ca†a + 1

2

N∑
k

�kσ
z
k +

N∑
k

[gkσ
−
k a† + g∗

kσ
+
k a]

+ i [η(t )a† − η∗(t )a], (1)

where a† and a are standard creation and annihilation op-
erators of the single cavity mode with frequency ωc and
σ+

k , σ−
k , σ z

k are the Pauli operators associated with each in-
dividual spin of frequency ωk . Here, �k = ωk − ωp and �c =
ωc − ωp are detunings with respect to the external driving
frequency ωp, and gk stands for the coupling strength of the
kth spin. An incoming signal is characterized by the carrier
frequency ωp and by the amplitude η(t ). The interaction part
of H is written in the dipole and rotating-wave approximation
(terms ∝ aσ−

k , a†σ+
k are neglected).

A quantum master equation [29] for the spin-cavity den-
sity matrix can be written in the form dρ/dt = −i[H, ρ] +
LD(ρ), where H stands for the Hamiltonian (1) and LD(ρ) is
the standard Lindblad operator which accounts for the system-
environment interaction as follows:

LD(ρ) = κ (2aρa† − a†a ρ − ρ a†a) + γp

N∑
j=1

(
σ z

j ρ σ z
j − ρ

)

+ γh

N∑
j=1

(2σ−
j ρ σ+

j − σ+
j σ−

j ρ − ρ σ+
j σ−

j ), (2)

where the first term describes the cavity losses with the decay
rate κ . We will explicitly distinguish between nonradiative de-
phasing (second term) and radiative dephasing (third term) of
the individual spins characterized by two different relaxation
rates, γp and γh, respectively. Using this formalism, one can
derive a first-order linear ordinary differential equation (ODE)
for the expectation value of any operator O, which is given
by d〈O〉/dt = Tr{−i[ O,H]ρ + OLD(ρ)}. In what follows,
we study the thermodynamic (semiclassical) limit where the
number of spins is taken to infinity (N → ∞) and all corre-
lations between spin and cavity operators are neglected, i.e.,
the second-order expectation values such as 〈σ−

k a†〉 and 〈σ z
k a〉

factorize into products of the first-order expectation values
〈σ−

k 〉〈a†〉 and 〈σ z
k 〉〈a〉. With these approximations, we arrive at

the well-known Maxwell-Bloch equations [30] for the cavity
and spin expectation values, 〈a〉, 〈σ−

k 〉, and 〈σ z
k 〉, which form

a closed set of nonlinear equations,

ȧ = −(κ + i�c)a − i
∑

k

gkσ
−
k + η(t ), (3a)

σ̇−
k = −(γ⊥ + i�k )σ−

k + igkσ
z
k a, (3b)

σ̇ z
k = −γ‖

(
1 + σ z

k

) + 2igk (σ−
k a† − σ+

k a), (3c)

where γ⊥ = γh + 2γp and γ‖ = 2γh are the transverse and
longitudinal relaxation rates, respectively. For simplicity, we
omit in Eqs. (3a)–(3c) and everywhere below the angle brack-
ets 〈·〉 that indicate expectation values. The nonlinear nature
of Eqs. (3a)–(3c) notably stems from the above-mentioned
factorization procedure applied to intrinsically linear ODEs
for the expectation values.

In what follows, the main focus of our study will be
the dynamics in systems for which nonradiative processes
constitute the dominant dephasing mechanism, i.e., γh 
 γp

and, therefore, γ‖ 
 γ⊥. Moreover, we also assume that the
cavity decay rate κ is orders of magnitude larger than the
longitudinal relaxation rate, so that in addition, the following
inequality holds: γ‖ 
 κ . These two inequalities are very well
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fulfilled as, e.g., in the recent experiments mentioned in Sec. I
[31,32].

For many physical realizations, the individual spin-
coupling strengths gk and/or spin frequencies ωk are not
the same, but rather are distributed around certain mean
values—an effect commonly referred to as inhomogeneous
broadening of the spin ensemble. As mentioned above, the
thermodynamic limit is justified for a sizable number of
constituents (spins, qubits, etc.) in which case the distribution
of coupling strengths and/or of spin frequencies is a smooth
function around the mean value. Such a phenomenological
continuous spectral spin density allows one to conveniently
treat the problem in the framework of a Volterra equation
for the cavity amplitude a [31,33], valid in the limit of weak
driving signals η, when the so-called Holstein-Primakoff ap-
proximation holds [34]. The specific shape of the spin density
depends on the physical system under study and can typically
be determined by a careful comparison with the experiment
based on stationary or dynamical transmission measurements.

Following previous studies [31,33,35], we model the shape
of the spin spectral density, ρ(ω) = ∑

k g2
kδ(ω − ωk )/
2, by

a q-Gaussian distribution which is symmetric with respect to
the mean frequency ωs,

ρ(ω) = B[1 − (1 − q)(ω − ωs)2/�2]1/(1−q), (4)

where q is the dimensionless shape parameter, 1 < q < 3,
γq = 2�

√
(2q − 2)/(2q − 2) is the full width at half max-

imum (FWHM), and B is a normalization constant. Note
that Gaussian and Lorentzian distributions are recovered for
q → 1 and q = 2, respectively. The parameter 
 introduced
right before Eq. (4) in the formal expression for the spectral
spin density is the collective coupling strength of the spin
ensemble to the cavity, 
2 = ∑N

j g2
j . It is worth noting that


 scales with the ensemble size as
√

N so that for large spin
ensembles, its value can easily exceed the total decoherence
rate of the system, giving rise to the strong-coupling regime
(see, e.g., [36,37] for nitrogen-vacancy (NV) spin ensembles).

Importantly, in the general case when the initially unex-
cited spins are driven away from the south pole of the Bloch
sphere through a sizable driving amplitude η, the dynamics
becomes essentially nonlinear and it is no longer possible
to formulate the problem in the simple form of a Volterra
equation. Neither will it be possible to solve the problem
in the continuous limit. Instead, similar to previous work
[32], we discretize the spectral density by performing the in-

verse transformation, g j = 
[ρ(ω j )/
∑M

l=1 ρ(ωl )]
1/2

, where
the shape of ρ(ω) can be determined at the stage of linear
dynamics governed by the Volterra equation. In other words,
we make our problem numerically tractable by dividing the
entire frequency interval into M clusters of equal size, where
each cluster is characterized by the coupling strength gj .
Thus, each g j effectively represents the coupling strength of
a “large” spin residing in the jth cluster within the frequency
subinterval ω j to ω j + �ω j rather than an individual coupling
strength. Another possible way of mapping the continuous
to the discrete case is to keep both the (frequency) size of
each cluster and the coupling strength to each spin the same,
but filling up each cluster with a different number of spins
distributed in accordance with the shape of ρ(ω).

If not specified otherwise, our numerical calculations are
performed with a set of parameters typical for the experiments
with a λ/2 superconducting microwave coplanar waveguide
resonator magnetically coupled to a spin ensemble of neg-
atively charged NV centers in diamond [31–33]: the cavity
decay rate κ/2π = 0.8 MHz, the coupling strength 
/2π =
12 MHz, the transverse spin relaxation rate γ⊥/2π =
250 kHz, the dimensionless q-Gaussian parameter q = 1.39,
and the FWHM of the q-Gaussian γq/2π = 9.4 MHz.
The mean frequency of the spectral density, the cavity fre-
quency, and the probe frequency of the driving signal are all
taken to be in resonance, ωs = ωc = ωp = 2π × 2.6915 GHz.
Next, the value for the longitudinal relaxation rate, γ‖/2π =
100 Hz, is chosen to be much smaller than the transverse one,
γ⊥, but still at least two orders of magnitude larger than that
measured in real experiments with NV centers. This is done
to artificially reduce the integration time in numerical calcu-
lations and, thus, to considerably diminish computational ef-
forts. This trick, however, causes no qualitative changes on the
resulting scenarios presented below as the smallest timescale
∼1/γ‖ is well separated from the rest of the timescales.

We assume, without loss of generality, that the driving
amplitude η(t ) is a real function. Taking into account that
the q-Gaussian distribution is symmetric with respect to the
mean frequency ωs and that we always operate on resonance,
ωp = ωc = ωs, it can straightforwardly be proven that the
cavity amplitude a(t ) is real too.

III. DYNAMICS AND BISTABILITY EFFECT

Typical temporal evolutions for the cavity probability am-
plitude a(t ) are shown in Figs. 1(a) and 1(b) for the case when
the external constant driving field η is suddenly switched on at
time t = 0, i.e., η(t ) = η 
(t ), with 
(t ) being the Heaviside
step function and η = const. This choice for such a simple
shape of the external drive allows us to capture all essential
features of the dynamics from the trivial initial state to the
final stationary state with comparatively simple equations.
The linear and logarithmic timescales in Figs. 1(a) and 1(b),
respectively, show well-separated timescales of the resulting
dynamics. A fast timescale, on which Rabi oscillations are
clearly resolved, corresponds to the following inverse rates:
∼1/κ, 1/γ⊥ [see Fig. 1(a)]. Rabi oscillations are a signa-
ture that the system is in the strong-coupling regime due to
the ensemble’s strong collective coupling to the cavity. The
decoherence caused mainly by inhomogeneous broadening
of the spin ensemble finally lets the oscillations disappear,
giving rise to a transient steady-state regime at rather long
times. It is seen from Fig. 1(a) that the dynamics is scalable
over both of these time intervals as the ratio of the cavity
amplitude to the amplitude of the driving signal, a(t )/η,
remains practically unaltered even for moderate values of η

(all curves for different values of η lie on top of each other in
this figure). The situation is different, however, at the longest
timescales in the system, of the order of ∼1/γ‖. As shown
in Fig. 1(b), at such very long times, the value of a(t ) starts
to deviate from a transient constant level and finally evolves
to its ultimate stationary state having a strong dependence
on the value of η. We will explicitly demonstrate below that
under certain circumstances, the system can evolve into a
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FIG. 1. (a), (b) Cavity probability amplitude a(t ) vs time t (in
units of 1/γ‖) under the action of an external drive with constant
amplitude η/κ = 0.054, 0.11, 0.19, 0.24 (from light to dark green),
which is switched on at t = 0. We present the numerical results
(a) on a linear timescale and (b) on a logarithmic time scale to
cover a much longer time interval. (c) Stationary solutions for the
cavity amplitude a2

0 as a function of the driving amplitude η (log-log
scale). Solid and dashed curves are stable and unstable solutions,
respectively, represented by a node and a saddle. The two points at
which they meet are saddle-node bifurcations. Hysteresis behavior
of a2

0 under smooth sweeping of the amplitude η through the critical
region is indicated by two arrows. Green symbols are stationary
solutions to which the system eventually settles for the values of
η from (a) and (b) [the colors of the symbols in (c) correspond to
those of the curves in (a) and (b)]. (a)–(c) η is normalized such that
η = 1 lies exactly at the middle between the upper and lower saddle-
node (SN) bifurcations occurring at, respectively, η

up
SN = 0.955 and

ηdown
SN = 1.045 (solid circles).

final stable state on timescales which are even much longer
than 1/γ‖.

Next, we analyze stationary solutions obtained by setting
all time derivatives in Eqs. (3a)–(3c) to zero so that a closed
nonlinear equation with respect to the stationary cavity ampli-
tude a0 (indicated by the subscript 0) can be derived,

a0

(
1 +

∑
k

Ck

1 + a2
0

/
nk

)
= η

κ
. (5)

Here, Ck and nk are, respectively, the cooperativity parameter
and the photon saturation number for the kth spin defined as

Ck = g2
k

γ⊥κ
(
1 + �2

k

/
γ 2

⊥
) , nk = γ⊥γ‖

4g2
k

(
1 + �2

k

/
γ 2

⊥
)
. (6)

The collective system cooperativity can be defined as C =∑
k Ck . The z component of the kth spin operator expectation

value can then be calculated as follows:

σ z0
k = − 1

1 + a2
0

/
nk

. (7)

In Fig. 1(c), all solutions of Eq. (5) for a2
0 are presented

versus the driving amplitude η for 
/2π = 12 MHz. We

choose a value for the collective cooperativity C ≈ 78 which
is larger than the threshold value Cth ≈ 42 above in which
the system always features bistable behavior within a certain
interval of η. The lower or cooperative branch in Fig. 1(c)
is characterized by rather small spin deviations from the
south pole of the Bloch sphere and the enhanced cooperative
emission, resulting in low transmissions. Indeed, for small
enough driving amplitudes η, the term a2

0/nk can be neglected
in Eqs. (5) and (7), giving rise to the pure linear response
of the system with σ z0

k ≈ −1 and a0 ≈ η/[κ (1 + C)], where
the stationary amplitude is diminished by a factor of 1 + C
as compared to the amplitude a0 = η/κ for the empty cavity
without spin ensemble.

As displayed in Fig. 1(c), stationary solutions lying on
the lower branch represented by a node remain stable when
the driving amplitude η is below some critical value ηdown

SN .
At this critical value, a stable node coalesces with another
point lying on the unstable branch [dashed line in Fig. 1(c)]
which is a saddle. Thus, in dynamical system classification,
we are dealing here with a saddle-node (SN) bifurcation at
η = ηdown

SN accompanied by a discontinuous transition to the
upper branch, which is also represented by a stable node [38].
If one starts from the upper branch and the driving amplitude
η is decreased, the system switches back to the lower branch
at η = η

up
SN, where another SN bifurcation occurs. The upper

branch is characterized by large spin deviations from the south
pole, leading to a progressive reduction of the spin-cavity
coupling as η increases. The limiting case of η → ∞ is
readily restored from Eqs. (5) and (7) and corresponds to the
fully saturated spin ensemble, σ z0

k = 0, which is effectively
decoupled from the cavity with a0 = η/κ .

The bistability region is located between the two critical
points, η = η

up
SN and η = ηdown

SN , which can be determined from
the condition that the derivative dη/da0 vanishes (i.e., da0/dη

is infinite—a signature of a first-order transition),

1

κ

dη

da0
= 1 +

∑
k

Ck(
1 + a2

0

/
nk

)
(

1 − 2a2
0

/
nk

1 + a2
0

/
nk

)
= 0. (8)

Note that the unstable branch is accompanied by a negative
slope of the driving strength η as a function of the trans-
mission amplitude a0, dη/da0 < 0, and its two ends connect
the upper and lower branch for which dη/da0 > 0 holds.
It is worth noting that Eq. (8) has a solution only when
the cooperativity parameter C is above a certain threshold
value Cth—otherwise the bistability effect does not occur. In
the latter case, the system features no phase transition when
starting from the lower branch and increasing η. Rather, the
lower and upper branches are directly connected with each
other at the point where d2a0/dη2 = 0.

We now explore the onset of bistability for different
shapes of the spectral spin distribution ρ(ω). The results of
the corresponding calculations are displayed in Fig. 2 for
a Gaussian, q-Gaussian, and a Lorentzian distribution as a
function of the collective coupling strength 
. (Note that
the value of cooperativity C monotonically grows with 
.)
One can see from this figure that the onset of bistability
has a general tendency to move towards higher values of the
coupling strength 
 as the distribution becomes broader. This
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FIG. 2. Pairs of critical values for the (a) driving amplitudes ηSN

and (b) corresponding cavity amplitudes squared (aSN
0 )2 at which

SN bifurcations occur for Gaussian, q-Gaussian, and Lorentzian
distributions (labeled by G, qG, and L in both panels). Solid circles
in (a) are the upper and lower SN bifurcations from Fig. 1 and for the
q-Gaussian distribution the same parameters are used as in Fig. 1.

can be explained by the fact that for broader distributions
spectrally more distant spins are effectively less and less
coupled to a cavity and, as a result, larger values for the
critical coupling strength are required to observe the onset of
bistability.

Another interesting observation is that critical values for
the driving amplitudes ηSN as well as resulting values for the
cavity amplitudes aSN

0 are almost independent of the shape of
the spectral spin distribution at the onset of bistability [see
cusps in Figs. 2(a) and 2(b) from which a pair of curves
emanates]. This can be intuitively understood as follows:
regardless of the precise shape of ρ(ω), a certain value of non-
linearity is needed to trigger the instability mechanism leading
to a discontinuous transition. As the value of nonlinearity is
directly related to the collective characteristic quantity |a0|2,
the only crucial issue is at which critical value for the coupling
strength 
 the necessary value for the onset of bistability
|aSN

0 |2 is achieved. We also note that as the coupling strength

 increases, the bistability region gets wider in η more rapidly
for narrower shapes of the spectral density.

IV. ADIABATIC ELIMINATION AND CRITICAL
SLOWING DOWN

To get more detailed insights into the system dynamics,
we use the standard procedure of adiabatic elimination of
selected dynamical variables [4,39,40]. Taking into account
that γ‖ 
 κ, γ⊥,
, we expect that all long-lived processes
occur on timescales of the order of 1/γ‖. Specifically, we
adiabatically eliminate the cavity amplitude a and the spin
lowering expectation value σ−

k from Eqs. (3a)–(3c), as these
expectation values adiabatically follow the evolution of the
z component of the spin operator expectation value σ z

k at
large times when t � 1/κ, 1/γ⊥, 2π/
. We first introduce
the dimensionless time τ = γ‖t and rewrite Eqs. (3a)–(3c) as

follows:

γ‖
κ

da

dτ
= −a − 1

2κ

∑
k

gkσ
y
k + η

κ
, (9a)

γ‖
γ⊥

dσ x
k

dτ
= −σ x

k − �k

γ⊥
σ

y
k , (9b)

γ‖
γ⊥

dσ
y
k

dτ
= �k

γ⊥
σ x

k − σ
y
k − 2gk

γ⊥
σ z

k a, (9c)

dσ z
k

dτ
= −(

1 + σ z
k

) + 2gk

γ‖
σ

y
k a, (9d)

where σ−
k = (σ x

k − iσ y
k )/2. Note that in Eq. (9a), we have

used the fact that the x component of the collective spin,
Jx = ∑

k gkσ
x
k /2, vanishes since spectral densities under con-

sideration are always symmetric with respect to the central
spin frequency ωs and ωc = ωs.

Next, from the inequalities γ‖/κ 
 1 and γ‖/γ⊥ 
 1, we
infer that the time derivatives of the variables to be eliminated,
dσ−

k /dτ and da/dτ , give negligibly small contributions at
large times with respect to the terms staying on the right-hand
side of Eqs. (9a)–(9c). Straightforward calculations then yield
the following reduced equations for σ z

k and a:

dσ z
k

dτ
= −(1 + σ z

k ) − η2

κ2

σ z
k

nk
(
1 − ∑

l Clσ
z
l

)2 , (10)

a = η

κ
(
1 − ∑

l Clσ
z
l

) , (11)

where the cooperativity parameter Cl and the photon sat-
uration number nl for the lth spin are given by Eq. (6).
Note that further simplification of these equations without
any additional assumptions regarding the shape of inhomo-
geneous broadening turns out to be difficult. In particular, we
could not derive a closed equation with respect to the cavity
amplitude a.

As can be deduced from the derivation of the adiabatic
elimination, the above equations are of restricted validity in
the sense that they cannot capture the effect of initial coherent
energy exchange (Rabi oscillations) between the cavity and
the spin ensemble, but will instead describe the evolution at
large times only. Indeed, the cavity amplitude a is enslaved
to σ z

k through Eq. (11): at every instant of (slow) time, the
value of a is entirely determined by the spin components σ z

k ,
which are given by the closed set of Eqs. (10). Note also that
solving the equations after adiabatic elimination, in general,
needs special caution in the choice of system parameters and
the time step of numerical integration: There is a number of
additional requirements to be simultaneously fulfilled for the
global validity of the adiabatic approximation, besides a well-
defined timescale separation (such as the magnitude of all
parameters, of the physical variables, and of their fluctuations;
see [39] for details).

In Fig. 3, the results of the calculations under adiabatic
elimination are compared with those obtained in the frame-
work of the full Maxwell-Bloch equations (3a)–(3c). In the
former case, Eqs. (10) for σ z

k are numerically solved with
initial conditions σ z

k = −1 (spin ensemble is in the ground
state) and a is correspondingly found from Eq. (11) (enslaved
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FIG. 3. The z component of the central spin operator expecta-
tion value, σ z

c (t ), [(a) in log-log scale] and the cavity probability
amplitude a(t ) [(b) in log-lin scale] vs time t (in units of 1/γ‖)
under the action of an external drive with constant amplitude, η(t ) =
η 
(t ), where 
(t ) is the Heaviside step function and η = const. The
values for η are chosen to be the same as those shown by symbols
in Fig. 1(c). Solid lines: full numerical solutions. Dashed lines:
numerical solution of Eqs. (10) and (11) obtained under adiabatic
elimination of σ−

k (t ) and a(t ).

variable). Thus, after performing the adiabatic elimination,
all details about initial cavity population and its subsequent
transient dynamics are completely washed out. It is seen
from Fig. 3 that the adiabatic elimination indeed is a very
reasonable approximation for the system’s evolution at large
times after the transient oscillatory behavior disappears.

Although a varies slowly in time and the derivative da/dτ

was omitted in Eq. (9a) owing to the small prefactor as
mentioned above, we can still capture this slow variation of
the cavity amplitude a by differentiating the reduced Eq. (11)
with respect to slow time τ . We finally arrive at the most
general expression for da/dτ ,

da

dτ
= κa2

η

∑
l

Cl
dσ z

l

dτ
, (12)

where dσ z
l /dτ is determined by Eq. (10).

If we now assume that all spins are in resonance, �k = 0
and σ z

l = σ z, Eq. (12) can be drastically simplified so that we
obtain a single ODE for the cavity amplitude [32],

da

dτ
= a − κ

η
(1 + C)a2 + 4κC

Nγ‖
a3 − 4κ2C

Nγ‖η
a4, (13)

where C = g2N/(γ⊥κ ) stands for the collective system co-
operativity. Thus a polynomial structure of this ODE with
respect to a in the absence of inhomogeneous broadening
acquires a more complex form than the simplest normal
form of a differential equation exhibiting a saddle-node (SN)
bifurcation [41,42]. Note that exactly at the SN bifurcation,
two stationary solutions (one stable and one unstable fixed
point) coalesce with each other, being solutions of the non-
linear algebraic equation ẋ = f (x) = 0 (the dot stands for the
time derivative). When slightly detuning the control parameter
from the threshold for the SN bifurcation to the side where
the above-mentioned equation has no solutions, the value of ẋ
may be arbitrarily small. As a result, the system passes very
slowly through the region in phase space (x, ẋ) near the SN
bifurcation. In the literature, this phenomenon is often referred
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FIG. 4. Long transient quench dynamics in the vicinity of the
(a),(b) upper and (c),(d) lower SN bifurcations shown in Fig. 1.
(a),(c) Cavity probability amplitude squared a2(t ) and (b),(d) the z
component of the central spin operator expectation value, σ z

c (t ), vs
time t (in units of 1/γ‖) under the action of an external drive with
constant amplitude, η(t ) = η 
(t ), where 
(t ) is the Heaviside step
function and η = const. The values for η are chosen slightly below
(above) the upper (lower) SN bifurcation. As an initial condition, a
stationary solution on (a), (b) the upper branch or (c), (d) the lower
branch is chosen, which lies far away from the critical region. The
closer the value of η to the corresponding critical value η

up
SN or ηdown

SN ,
the longer the transient time (transient time increases from light to
dark curves in all panels). Gray regions designate a gap in values of
|a0|2, where no stable stationary solution exists (see Fig. 1).

to as a saddle-node “ghost” [42] since the phase trajectories
are considerably delayed in their flow by the SN bifurcation
before they eventually reach a corresponding stable solution
(the so-called critical slowing-down effect). Moreover, a set
of trajectories exhibits a dip close to the SN bifurcation so
that the formed structure in phase space is reminiscent of a
“bottleneck” into which they are funneled.

Based on this simple case, we conjecture that such phe-
nomena as the saddle-node ghost and the critical slowing-
down effect can also show up for the case with inhomo-
geneous broadening governed by the full Maxwell-Bloch
equations (3a)–(3c) or their reduced version after adiabatic
elimination [see Eqs. (10) and (11)], despite the fact that
one cannot derive a single differential equation of polynomial
form for the cavity amplitude a. In Fig. 4, we present one
specific example of such effects, i.e., the quench dynamics
in the vicinity of the upper and lower SN bifurcations from
Fig. 1. Specifically, we take as initial conditions for a and σ z

k
the stationary solution located on the upper branch at a certain
value for the driving amplitude η, which is substantially larger
than the critical value η

up
SN at which the upper SN bifurcation

occurs. Next, the system is quenched below the upper SN
by suddenly changing η to the values which lie slightly
below η

up
SN. A similar test is also repeated for the lower SN

bifurcation, but now we start from a stationary solution on
the lower branch and abruptly change η to the values slightly
above ηdown

SN . In both cases, we observe a very pronounced
bottleneck structure developing over timescales much longer
than the slowest timescale in our system, 1/γ‖. This behavior
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FIG. 5. Phase portraits and scalings for the quench dynamics
near SN bifurcations. (a) Phase trajectories in the [da2(t )/dt, a2(t )]
plane (log-log scale) for an initial condition chosen as a stationary
state lying on the upper branch of the S-shaped bistability curve in
Fig. 1(c). The driving value η is then abruptly decreased to a value
located slightly below the one at which the upper SN bifurcation
occurs, ηc ≡ η

up
SN = 0.955 (in the normalization of Fig. 1). For the

purpose of demonstration, a few values in the proximity of the
bifurcation point are taken. (b) The time T − T0 (measured in units
of 1/γ‖) needed to pass the slowing-down region [gray area in (a)]
vs log10(|η − ηc|) is displayed by empty symbols. Dashed curve:
the algebraic fit T − T0 = β |η − ηc|−α , with the exponent α = 0.53,
T0 = −6.25, and β = 1.16. (c), (d) Corresponding visualizations of
the quench dynamics near the lower SN bifurcation at ηc ≡ ηdown

SN =
1.045. A stationary solution located at the lower branch is now used
as an initial condition and η is increased to a value located slightly
above this bifurcation point. Dashed curve: the same algebraic fit
as above with the exponent α = 0.52, T0 = −74.7, and β = 2.54.
Arrows in (a) and (c) indicate the system’s evolution during the
course of time. The darker a curve’s color in (a) and (c), the closer
the value of η to the corresponding critical value η

up
SN or ηdown

SN .

is indicative of the aforementioned critical slowing-down
phenomenon in systems exhibiting saddle-node bifurcations
[43–45].

In order to further characterize the slowing-down dynam-
ics, we plot in Figs. 5(a) and 5(c) several phase trajectories.
The closer the driving amplitude η is to the critical value at
which the upper or lower SN bifurcation occurs, the more and
more time our system spends near a narrow slowing-down
region in phase space [gray areas in Figs. 5(a) and 5(c)],
where da2/dt drops to very small values (see a distinct dip
structure in the shape of phase trajectories). At the critical
point, a stable node and a saddle collide with each other,
resulting in the divergence of time T , which is the time a
phase trajectory spends in the slowing-down region displayed
by gray areas in Figs. 5(a) and 5(c). Such a singular behavior is
explained by a vanishing “velocity” da2/dt exactly at the SN
bifurcation. We found that this divergence has an algebraic
nature, by fitting the calculated values for T to the function
T = T0 + β |η − ηc|−α , where ηc = η

up
SN or ηc = ηdown

SN for the
upper or lower SN bifurcation, respectively [see Figs. 5(b)
and 5(d)].

It turns out that in both cases, the exponent α only slightly
exceeds the well-known square-root scaling law, α = 0.5, for

the simplest normal form of a nondegenerate SN bifurcation,
dx/dt = r + x2, where x ∈ Re and r � 0 is the bifurcation
parameter [43]. Such scaling similarities can be traced back to
very generic features of continuous phase transitions at which
a system becomes scale invariant and is characterized by an
infinite correlation length and time. Specifically, both cor-
relation length and time demonstrate power-law divergence
upon changing the external parameter in the vicinity of the
phase transition [46]. Moreover, a set of critical exponents
can be the same for a certain class of phase transitions which
share the same symmetries and dimensionality. This phe-
nomenon, referred to as “universality” [46], can be understood
by divergent correlations at the phase transition giving rise to
smearing out of the system’s complexity nearby it. Therefore,
a very complex system can respond similarly as a very simple
one provided that both are sufficiently close to the phase
transition—a scenario which is realized in our case as well.

V. ASYMPTOTIC DECAY

Regardless of the amount of time that should elapse to
escape from the slowing-down region [see, e.g., long transient
plateau in Fig. 4 and gray areas in Figs. 5(a) and 5(c)], a phase
trajectory ultimately passes through this region. Finally, our
system evolves towards a single possible stable state at the
corresponding value of η chosen during the quench procedure;
see very left and right parts of Figs. 5(a) and 5(c). (Recall that
the values of driving amplitude η lie slightly below the critical
value for the upper SN bifurcation, η < η

up
SN, and slightly

above the one for the lower SN bifurcation, η > ηdown
SN .) In

both cases, the stable solution is represented by a stable node.
When approaching this final stable state, the dynamics

again significantly slows down as da2/dt gets smaller and
smaller during the course of time [see very left and right parts
of Figs. 5(a) and 5(c), respectively]. We now aim at finding the
decay rate ζ of this asymptotic dynamics by a linear stability
analysis around the stationary state for which all previous
transient evolutions are irrelevant. Specifically, we slightly
perturb the stationary states by writing

a = a0 + δa(t ), σ±
k = σ−0

k + δσ−
k (t ),

σ z
k = σ z0

k + δσ z
k (t ), (14)

where a0, σ−0
k , and σ z0

k are stationary solutions given by
Eqs. (5) and (7), and δa(t ), δσ−

k (t ), δσ z
k (t ) ∼ e−ζ t describe

small perturbations around them. By substituting Eq. (14) into
the dynamical equations (3a)–(3c) and neglecting the terms
higher than first order, we end up after some algebra with
the following characteristic equation with respect to the decay
rate ζ :

ζ − κ −
∑

k

g2
kσ

z0
k (ζ − γ‖ + 4κ|a0|2Ck )(ζ − γ⊥)[

(ζ − γ⊥)2 + �2
k

]
(ζ − γ‖) + 4g2

k|a0|2(ζ − γ⊥)

= 0, (15)

where we use the same notations as before.
We solve this equation numerically using a standard

Newton-Raphson method and present the results for the low-
est positive value of ζ for different values of the coupling
strengths 
 in Fig. 6. While nonlinear equations typically give
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FIG. 6. (a) Stationary solutions for the cavity amplitude a2
0 vs

driving amplitude η for different values of the coupling strength,

/2π = 7, 8, 8.84, 12 MHz (curves from left to right). The very
right curve coincides with the one depicted in Fig. 1(c). (b) The
decay rate ζ (in units of γ‖) towards the corresponding stationary
states displayed in (a) [see Eq. (15)]. Symbols in (b) are the minima
of ζ connected with the corresponding stationary states [symbols
in (a)] by dashed lines. η is normalized as in Fig. 1.

rise to multiple solutions for ζ , here the contributions from all
values of ζ exponentially fade out as e−ζ t , and the one with
the smallest value will eventually survive in the asymptotic
limit (t → ∞).

As seen from Fig. 6(b), the calculated curves for the
decay rate ζ demonstrate a pronounced dip structure, which
becomes steeper and steeper as one approaches the onset
value for the SN bifurcation, 
th/2π = 8.86 MHz, which
corresponds to the collective cooperativity Cth ≈ 42 (see three
sets of curves in Fig. 6 for 
/2π = 7, 8, and 8.84 MHz).
Note that in the whole range of η displayed in Fig. 6(b),
the values for the decay rate ζ are smaller than the slow-
est longitudinal relaxation rate γ‖ (ζ/γ‖ < 1 in this figure).
Remarkably, the minimal value of ζ vanishes precisely at
the SN bifurcation, resulting in the divergence of the corre-
sponding timescale 1/ζ . As previously discussed, for even
larger coupling strength (
/2π > 8.86 MHz), a pair of SN
bifurcations occurs, giving rise to two separate curves for
the values of ζ (see the disconnected curves for 
/2π =
12 MHz in Fig. 6). Each of the two different values for
ζ in the bistability region stands for the decay rate with
which a system exponentially decays in the limit of t → ∞
to the corresponding stable stationary state lying either on
the upper or on the lower branch. At both SN bifurcations,
1/ζ diverges as in the aforementioned case of a single SN
bifurcation.

We can now establish an interesting connection of the
slow asymptotic dynamics explored above, which has an
entirely classical nature, with the behavior in open quantum
systems exhibiting dissipative phase transitions [22,47]. In
quantum systems with a Markovian bath, the dynamics is
governed by a Lindblad master equation for the system’s
density matrix, which can be formulated in terms of a Liouvil-
lian superoperator. The properties of its eigenvalue spectrum
determine the resulting dynamics. Note that eigenvalues of the

Liouvillian supermatrix are complex valued among which a
zero eigenvalue is always present. A usually nondegenerate
state which belongs to this zero eigenvalue is associated
with the unique quantum stationary state. It turns out that
in different quantum systems, e.g., in a single-mode cavity
with a Kerr optical nonlinearity driven by a laser, the next
eigenvalue with the smallest imaginary part can come very
close to zero in a certain range of control parameters, whereas
its real part is identically zero therein [14,15]. In this case, the
imaginary part of this eigenvalue represents the asymptotic
relaxation rate to the quantum stationary state whose value
might be much smaller than all other relaxation rates in
the system—a phenomenon which is often referred to as a
closure of the Liouvillian gap [14–16,18,21]. The structure
of the Liouvillian gap closure as a function of the control
parameter η is reminiscent of the parameter dependence of the
slowest decay rate ζ for the coupling strengths 
 below the
onset of the SN bifurcation [see three shapes of ζ for 
/2π =
7, 8, 8.84, 12 MHz in Fig. 6(b)] suggesting an interesting
semiclassical-to-quantum similarity.

VI. CONCLUSIONS

We have theoretically studied driven-dissipative nonlinear
dynamics and phase transitions for a single cavity mode in-
teracting with an inhomogeneously broadened spin ensemble.
We considered the thermodynamic limit treating the problem
in the framework of Maxwell-Bloch equations assuming dif-
ferent shapes for the spectral spin density. Our main focus was
concentrated on spin-cavity systems where the cavity decay
rate and the nonradiative dephasing of individual spins are
much larger than their radiative decay. We analyzed in detail
the onset of bistability for different shapes of the spectral spin
density and found bistability to always arise provided that
the collective coupling strength is above a certain value. The
dynamics under the action of a constant drive that is suddenly
switched on turned out to be linear (and therefore scalable) on
timescales featuring damped Rabi oscillations followed by a
transient stationary state even for moderate amplitudes of the
driving signal. In contrast, at times which are of the order of
the slowest timescale proportional to the inverse of the radia-
tive dephasing rate, the dynamics is nonlinear, being perfectly
captured by a much simpler set of equations obtained under
adiabatic elimination of the cavity amplitude. In this long-time
regime, the spin ensemble is dephased and it progressively
saturates with time such that after some transient, the system
evolves to its ultimate stationary state that strongly depends
on the value of the driving amplitude.

We then explored in detail the effect of critical slowing
down of the cavity population near two phase transitions
represented by saddle-node bifurcations. This effect is charac-
terized by a power-law divergence of the transient time when
the value of the driving amplitude approaches the critical one
at which the phase transition occurs. We also calculated the
smallest exponent of the asymptotic behavior of the system as
it settles to the upper or lower stationary states. Their values
turned out to be substantially smaller than the radiative de-
phasing rate of the individual spins in a noticeable interval of
driving amplitudes exhibiting a minimum value that vanishes
exactly at the dissipative phase transitions.

013855-8



CRITICAL PHENOMENA AND NONLINEAR DYNAMICS IN … PHYSICAL REVIEW A 100, 013855 (2019)

ACKNOWLEDGMENTS

We would like to thank Andreas Angerer, Himadri
Dhar, William Munro, Kae Nemoto, and Stefan Putz for
helpful discussions and the European Commission under
Project No. NHQWAVE (MSCA-RISE 691209) for support.

M.Z. acknowledges financial support by the Austrian Science
Fund (FWF) through Project No. F49-P10 (SFB NextLite) and
the Doctoral Program CoQuS (W1210). Some of the compu-
tational results presented here have been achieved using the
Vienna Scientific Cluster (VSC).

[1] L. A. Lugiato, P. Mandel, S. T. Dembinski, and A. Kossakowski,
Semiclassical and quantum theories of bistability in lasers
containing saturable absorbers, Phys. Rev. A 18, 238 (1978).

[2] R. Bonifacio and L. A. Lugiato, Optical bistability and cooper-
ative effects in resonance fluorescence, Phys. Rev. A 18, 1129
(1978).

[3] E. Abraham, S. S. Hassan, and R. K. Bullough, Dispersive
optical bistability in a Fabry-Perot cavity, Opt. Commun. 33,
93 (1980).

[4] E. Abraham and S. S. Hassan, Effects of inhomogeneous
broadening on optical bistability in a fabry-perot cavity, Opt.
Commun. 35, 291 (1980).

[5] S. S. Hassan, P. D. Drummond, and D. F. Walls, Dispersive
optical bistability in a ring cavity, Opt. Commun. 27, 480
(1978).

[6] P. D. Drummond, Optical bistability in a radially varying model,
IEEE J. Quantum Electron. 17, 301 (1981).

[7] L. A. Lugiato, Theory of optical bistability, Prog. Opt. 21, 69
(1984).

[8] P. D. Drummond and D. F. Walls, Quantum theory of optical
bistability. I: Nonlinear polarisability model, J. Phys. A: Math.
Gen. 13, 725 (1980).

[9] H. Risken, C. Savage, F. Haake, and D. F. Walls, Quantum
tunneling in dispersive optical bistability, Phys. Rev. A 35, 1729
(1987).

[10] G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and
H. J. Kimble, Optical Bistability and Photon Statistics in Cavity
Quantum Electrodynamics, Phys. Rev. Lett. 67, 1727 (1991).

[11] G. Kurizki, P. Bertet, Y. Kubo, K. Mølmer, D. Petrosyan, P.
Rabl, and J. Schmiedmayer, Quantum technologies with hybrid
systems, Proc. Natl. Acad. Sci. USA 112, 3866 (2015).

[12] Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum
circuits: Superconducting circuits interacting with other quan-
tum systems, Rev. Mod. Phys. 85, 623 (2013).

[13] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity
optomechanics, Rev. Mod. Phys. 86, 1391 (2014).

[14] W. Casteels, F. Storme, A. Le Boité, and C. Ciuti, Power
laws in the dynamic hysteresis of quantum nonlinear photonic
resonators, Phys. Rev. A 93, 033824 (2016).

[15] S. R. K. Rodriguez, W. Casteels, F. Storme, N. Carlon Zambon,
I. Sagnes, L. Le Gratiet, E. Galopin, A. Lemaitre, A. Amo, C.
Ciuti, and J. Bloch, Probing a Dissipative Phase Transition via
Dynamical Optical Hysteresis, Phys. Rev. Lett. 118, 247402
(2017).

[16] V. Reimer, K. Pedersen, N. Tanger, M. Pletyukhov, and V.
Gritsev, Nonadiabatic effects in periodically driven dissipative
open quantum systems, Phys. Rev. A 97, 043851 (2018).

[17] N. Bartolo, F. Minganti, W. Casteels, and C. Ciuti, Exact steady
state of a Kerr resonator with one- and two-photon driving and
dissipation: Controllable Wigner-function multimodality and
dissipative phase transitions, Phys. Rev. A 94, 033841 (2016).

[18] F. Minganti, A. Biella, N. Bartolo, and C. Ciuti, Spectral theory
of Liouvillians for dissipative phase transitions, Phys. Rev. A
98, 042118 (2018).

[19] A. Le Boité, M.-J. Hwang, and M. B. Plenio, Metastability in
the driven-dissipative Rabi model, Phys. Rev. A 95, 023829
(2017).

[20] K. Macieszczak, M. Guta, I. Lesanovsky, and J. P. Garrahan,
Towards a Theory of Metastability in Open Quantum Dynam-
ics, Phys. Rev. Lett. 116, 240404 (2016).

[21] D. O. Krimer and M. Pletyukhov, Few-mode geometric descrip-
tion of driven-dissipative phase transition in an open quantum
system, arXiv:1808.00030v2.

[22] H. J. Carmichael, Breakdown of Photon Blockade: A Dissipa-
tive Quantum Phase Transition in Zero Dimensions, Phys. Rev.
X 5, 031028 (2015).

[23] J. M. Fink, A. Dombi, A. Vukics, A. Wallraff, and P. Domokos,
Observation of the Photon-Blockade Breakdown Phase Transi-
tion, Phys. Rev. X 7, 011012 (2017).

[24] A. Dombi, A. Vukics, and P. Domokos, Bistability effect in
the extreme strong coupling regime of the Jaynes-Cummings
model, Eur. Phys. J. D 69, 60 (2015).

[25] A. Dombi, A. Vukics, and P. Domokos, Optical bistability in
strong-coupling cavity QED with a few atoms, J. Phys. B: At.
Mol. Opt. Phys. 46, 224010 (2013).

[26] M. J. Martin, D. Meiser, J. W. Thomsen, J. Ye, and M. J.
Holland, Extreme nonlinear response of ultranarrow optical
transitions in cavity QED for laser stabilization, Phys. Rev. A
84, 063813 (2011).

[27] M. Zens, D. O. Krimer, and S. Rotter, Phys. Rev. A 100, 013856
(2019).

[28] M. Tavis and F. W. Cummings, Exact solution for an N-
molecule radiation-field Hamiltonian, Phys. Rev. 170, 379
(1968).

[29] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, New York, 2007).

[30] R. Bonifacio and L. A. Lugiato, in Dissipative Systems in
Quantum Optics, Topics in Current Physics (Springer-Verlag,
Berlin, 1982), pp. 61–92.

[31] S. Putz, D. O. Krimer, R. Amsüss, A. Valookaran, T. Nöbauer,
J. Schmiedmayer, S. Rotter, and J. Majer, Protecting a spin
ensemble against decoherence in the strong-coupling regime of
cavity QED, Nat. Phys. 10, 720 (2014).

[32] A. Angerer, S. Putz, D. O. Krimer, T. Astner, M. Zens, R.
Glattauer, K. Streltsov, W. J. Munro, K. Nemoto, S. Rotter,
J. Schmiedmayer, and J. Majer, Dynamical exploration of am-
plitude bistability in engineered quantum systems, Sci. Adv. 3,
e1701626 (2017).

[33] D. O. Krimer, S. Putz, J. Majer, and S. Rotter, Non-Markovian
dynamics of a single-mode cavity strongly coupled to an in-
homogeneously broadened spin ensemble, Phys. Rev. A 90,
043852 (2014).

013855-9

https://doi.org/10.1103/PhysRevA.18.238
https://doi.org/10.1103/PhysRevA.18.238
https://doi.org/10.1103/PhysRevA.18.238
https://doi.org/10.1103/PhysRevA.18.238
https://doi.org/10.1103/PhysRevA.18.1129
https://doi.org/10.1103/PhysRevA.18.1129
https://doi.org/10.1103/PhysRevA.18.1129
https://doi.org/10.1103/PhysRevA.18.1129
https://doi.org/10.1016/0030-4018(80)90101-7
https://doi.org/10.1016/0030-4018(80)90101-7
https://doi.org/10.1016/0030-4018(80)90101-7
https://doi.org/10.1016/0030-4018(80)90101-7
https://doi.org/10.1016/0030-4018(80)90231-X
https://doi.org/10.1016/0030-4018(80)90231-X
https://doi.org/10.1016/0030-4018(80)90231-X
https://doi.org/10.1016/0030-4018(80)90231-X
https://doi.org/10.1016/0030-4018(78)90428-5
https://doi.org/10.1016/0030-4018(78)90428-5
https://doi.org/10.1016/0030-4018(78)90428-5
https://doi.org/10.1016/0030-4018(78)90428-5
https://doi.org/10.1109/JQE.1981.1071100
https://doi.org/10.1109/JQE.1981.1071100
https://doi.org/10.1109/JQE.1981.1071100
https://doi.org/10.1109/JQE.1981.1071100
https://doi.org/10.1016/S0079-6638(08)70122-7
https://doi.org/10.1016/S0079-6638(08)70122-7
https://doi.org/10.1016/S0079-6638(08)70122-7
https://doi.org/10.1016/S0079-6638(08)70122-7
https://doi.org/10.1088/0305-4470/13/2/034
https://doi.org/10.1088/0305-4470/13/2/034
https://doi.org/10.1088/0305-4470/13/2/034
https://doi.org/10.1088/0305-4470/13/2/034
https://doi.org/10.1103/PhysRevA.35.1729
https://doi.org/10.1103/PhysRevA.35.1729
https://doi.org/10.1103/PhysRevA.35.1729
https://doi.org/10.1103/PhysRevA.35.1729
https://doi.org/10.1103/PhysRevLett.67.1727
https://doi.org/10.1103/PhysRevLett.67.1727
https://doi.org/10.1103/PhysRevLett.67.1727
https://doi.org/10.1103/PhysRevLett.67.1727
https://doi.org/10.1073/pnas.1419326112
https://doi.org/10.1073/pnas.1419326112
https://doi.org/10.1073/pnas.1419326112
https://doi.org/10.1073/pnas.1419326112
https://doi.org/10.1103/RevModPhys.85.623
https://doi.org/10.1103/RevModPhys.85.623
https://doi.org/10.1103/RevModPhys.85.623
https://doi.org/10.1103/RevModPhys.85.623
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/PhysRevA.93.033824
https://doi.org/10.1103/PhysRevA.93.033824
https://doi.org/10.1103/PhysRevA.93.033824
https://doi.org/10.1103/PhysRevA.93.033824
https://doi.org/10.1103/PhysRevLett.118.247402
https://doi.org/10.1103/PhysRevLett.118.247402
https://doi.org/10.1103/PhysRevLett.118.247402
https://doi.org/10.1103/PhysRevLett.118.247402
https://doi.org/10.1103/PhysRevA.97.043851
https://doi.org/10.1103/PhysRevA.97.043851
https://doi.org/10.1103/PhysRevA.97.043851
https://doi.org/10.1103/PhysRevA.97.043851
https://doi.org/10.1103/PhysRevA.94.033841
https://doi.org/10.1103/PhysRevA.94.033841
https://doi.org/10.1103/PhysRevA.94.033841
https://doi.org/10.1103/PhysRevA.94.033841
https://doi.org/10.1103/PhysRevA.98.042118
https://doi.org/10.1103/PhysRevA.98.042118
https://doi.org/10.1103/PhysRevA.98.042118
https://doi.org/10.1103/PhysRevA.98.042118
https://doi.org/10.1103/PhysRevA.95.023829
https://doi.org/10.1103/PhysRevA.95.023829
https://doi.org/10.1103/PhysRevA.95.023829
https://doi.org/10.1103/PhysRevA.95.023829
https://doi.org/10.1103/PhysRevLett.116.240404
https://doi.org/10.1103/PhysRevLett.116.240404
https://doi.org/10.1103/PhysRevLett.116.240404
https://doi.org/10.1103/PhysRevLett.116.240404
https://arxiv.org/abs/1808.00030
https://doi.org/10.1103/PhysRevX.5.031028
https://doi.org/10.1103/PhysRevX.5.031028
https://doi.org/10.1103/PhysRevX.5.031028
https://doi.org/10.1103/PhysRevX.5.031028
https://doi.org/10.1103/PhysRevX.7.011012
https://doi.org/10.1103/PhysRevX.7.011012
https://doi.org/10.1103/PhysRevX.7.011012
https://doi.org/10.1103/PhysRevX.7.011012
https://doi.org/10.1140/epjd/e2015-50861-9
https://doi.org/10.1140/epjd/e2015-50861-9
https://doi.org/10.1140/epjd/e2015-50861-9
https://doi.org/10.1140/epjd/e2015-50861-9
https://doi.org/10.1088/0953-4075/46/22/224010
https://doi.org/10.1088/0953-4075/46/22/224010
https://doi.org/10.1088/0953-4075/46/22/224010
https://doi.org/10.1088/0953-4075/46/22/224010
https://doi.org/10.1103/PhysRevA.84.063813
https://doi.org/10.1103/PhysRevA.84.063813
https://doi.org/10.1103/PhysRevA.84.063813
https://doi.org/10.1103/PhysRevA.84.063813
https://doi.org/10.1103/PhysRevA.100.013856
https://doi.org/10.1103/PhysRevA.100.013856
https://doi.org/10.1103/PhysRevA.100.013856
https://doi.org/10.1103/PhysRevA.100.013856
https://doi.org/10.1103/PhysRev.170.379
https://doi.org/10.1103/PhysRev.170.379
https://doi.org/10.1103/PhysRev.170.379
https://doi.org/10.1103/PhysRev.170.379
https://doi.org/10.1038/nphys3050
https://doi.org/10.1038/nphys3050
https://doi.org/10.1038/nphys3050
https://doi.org/10.1038/nphys3050
https://doi.org/10.1126/sciadv.1701626
https://doi.org/10.1126/sciadv.1701626
https://doi.org/10.1126/sciadv.1701626
https://doi.org/10.1126/sciadv.1701626
https://doi.org/10.1103/PhysRevA.90.043852
https://doi.org/10.1103/PhysRevA.90.043852
https://doi.org/10.1103/PhysRevA.90.043852
https://doi.org/10.1103/PhysRevA.90.043852


KRIMER, ZENS, AND ROTTER PHYSICAL REVIEW A 100, 013855 (2019)

[34] H. Primakoff and T. Holstein, Many-body interactions in atomic
and nuclear systems, Phys. Rev. 55, 1218 (1939).

[35] K. Sandner, H. Ritsch, R. Amsüss, C. Koller, T. Nöbauer, S.
Putz, J. Schmiedmayer, and J. Majer, Strong magnetic coupling
of an inhomogeneous nitrogen-vacancy ensemble to a cavity,
Phys. Rev. A 85, 053806 (2012).

[36] R. Amsüss, C. Koller, T. Nöbauer, S. Putz, S. Rotter, K.
Sandner, S. Schneider, M. Schramböck, G. Steinhauser, H.
Ritsch, J. Schmiedmayer, and J. Majer, Cavity QED with
Magnetically Coupled Collective Spin States, Phys. Rev. Lett.
107, 060502 (2011).

[37] Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya,
N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A.
Dréau, J.-F. Roch, I. Diniz, A. Aufféves, D. Vion, D. Esteve,
and P. Bertet, Hybrid Quantum Circuit with a Superconducting
Qubit Coupled to a Spin Ensemble, Phys. Rev. Lett. 107,
220501 (2011).

[38] P. Glendinning, Stability, Instability and Chaos (Cambridge
University Press, Cambridge, 1996).

[39] L. A. Lugiato, P. Mandel, and L. M. Narducci, Adiabatic
elimination in nonlinear dynamical systems, Phys. Rev. A 29,
1438 (1984).

[40] P. D. Drummond and D. F. Walls, Quantum theory of optical
bistability. II. Atomic fluorescence in a high-Q cavity, Phys.
Rev. A 23, 2563 (1981).

[41] The behavior of dissipative systems in the vicinity of bifur-
cations can often be characterized by the so-called normal
form, which does not depend on a particular structure of the
underlying system [42].

[42] S. H. Strogatz, Nonlinear Dynamics and Chaos (Westview
Press, Cambridge, MA, 2000).

[43] C. Kuehn, Scaling of saddle-node bifurcations: Degeneracies
and rapid quantitative changes, J. Phys. A: Math. Theor. 42,
045101 (2009).

[44] R. Bonifacio and P. Meystre, Critical slowing down in optical
bistability, Opt. Commun. 29, 131 (1979).

[45] S. Barbarino, A. Gozzini, F. Maccarrone, I. Longo, and R.
Stampacchia, Critical slowing-down in microwave absorptive
bistability, Il Nuovo Cimento B 71, 183 (1982).

[46] M. Vojta, Quantum phase transitions, Rep. Prog. Phys. 66, 2069
(2003).

[47] E. M. Kessler, G. Giedke, A. Imamoglu, S. F. Yelin, M. D.
Lukin, and J. I. Cirac, Dissipative phase transition in a central
spin system, Phys. Rev. A 86, 012116 (2012).

013855-10

https://doi.org/10.1103/PhysRev.55.1218
https://doi.org/10.1103/PhysRev.55.1218
https://doi.org/10.1103/PhysRev.55.1218
https://doi.org/10.1103/PhysRev.55.1218
https://doi.org/10.1103/PhysRevA.85.053806
https://doi.org/10.1103/PhysRevA.85.053806
https://doi.org/10.1103/PhysRevA.85.053806
https://doi.org/10.1103/PhysRevA.85.053806
https://doi.org/10.1103/PhysRevLett.107.060502
https://doi.org/10.1103/PhysRevLett.107.060502
https://doi.org/10.1103/PhysRevLett.107.060502
https://doi.org/10.1103/PhysRevLett.107.060502
https://doi.org/10.1103/PhysRevLett.107.220501
https://doi.org/10.1103/PhysRevLett.107.220501
https://doi.org/10.1103/PhysRevLett.107.220501
https://doi.org/10.1103/PhysRevLett.107.220501
https://doi.org/10.1103/PhysRevA.29.1438
https://doi.org/10.1103/PhysRevA.29.1438
https://doi.org/10.1103/PhysRevA.29.1438
https://doi.org/10.1103/PhysRevA.29.1438
https://doi.org/10.1103/PhysRevA.23.2563
https://doi.org/10.1103/PhysRevA.23.2563
https://doi.org/10.1103/PhysRevA.23.2563
https://doi.org/10.1103/PhysRevA.23.2563
https://doi.org/10.1088/1751-8113/42/4/045101
https://doi.org/10.1088/1751-8113/42/4/045101
https://doi.org/10.1088/1751-8113/42/4/045101
https://doi.org/10.1088/1751-8113/42/4/045101
https://doi.org/10.1016/0030-4018(79)90153-6
https://doi.org/10.1016/0030-4018(79)90153-6
https://doi.org/10.1016/0030-4018(79)90153-6
https://doi.org/10.1016/0030-4018(79)90153-6
https://doi.org/10.1007/BF02721171
https://doi.org/10.1007/BF02721171
https://doi.org/10.1007/BF02721171
https://doi.org/10.1007/BF02721171
https://doi.org/10.1088/0034-4885/66/12/R01
https://doi.org/10.1088/0034-4885/66/12/R01
https://doi.org/10.1088/0034-4885/66/12/R01
https://doi.org/10.1088/0034-4885/66/12/R01
https://doi.org/10.1103/PhysRevA.86.012116
https://doi.org/10.1103/PhysRevA.86.012116
https://doi.org/10.1103/PhysRevA.86.012116
https://doi.org/10.1103/PhysRevA.86.012116

