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Critical phenomena and nonlinear dynamics in a spin ensemble strongly coupled to a cavity.
I1. Semiclassical-to-quantum boundary
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We numerically study the dynamics and stationary states of a spin ensemble strongly coupled to a single-
mode resonator subjected to loss and external driving. Employing a generalized cumulant expansion approach
we analyze finite-size corrections to a semiclassical description of amplitude bistability, which is a paradigm
example of a driven-dissipative phase transition. Our theoretical model allows us to include inhomogeneous
broadening of the spin ensemble and to capture in which way the quantum corrections approach the semiclassical
limit for increasing ensemble size N. We set up a criterion for the validity of the Maxwell-Bloch equations and
show that close to the critical point of amplitude bistability even very large spin ensembles consisting of up to
10* spins feature significant deviations from the semiclassical theory.
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I. INTRODUCTION

The dynamics of open many-body quantum systems is
of fundamental importance for various branches of physics
[1]. In particular, so-called hybrid quantum systems, whose
technological relevance requires them to be open, have shifted
to the center of attention over the last decade [2,3]. As a
prominent example, spin ensembles coupled to a cavity mode
emerged as a powerful platform for quantum computation
[4-6], quantum memories [7-9], and quantum communication
[10,11]. Besides their technological significance, the driven
and dissipative character of spin-cavity systems makes them
also well suited to study fundamental aspects of nonequilib-
rium many-body physics [12—14]. Corresponding theoretical
descriptions clearly profit from the fact that the interactions
among the individual spins or atoms are mediated via few
common cavity modes only. This leads to extremely long-
ranged interactions and suppressed fluctuations [14,15], often
enabling accurate semiclassical descriptions of these systems.

Among semiclassical approaches the seminal Maxwell-
Bloch equations play a distinguished role in quantum optics.
Being based on neglecting the correlations between spins and
the electromagnetic field, they successfully describe many
effects of lasers [16], superradiance [17-19], critical slowing
down [20-22], and amplitude bistability [21-27]. In a separate
companion paper we use the Maxwell-Bloch equations to
study the dynamics of macroscopic spin ensembles near the
critical point of amplitude bistability and analyze the effect
of critical slowing down in the presence of inhomogeneous
broadening [22]. Here, we will investigate to what extent
the Maxwell-Bloch equations themselves are well justified
to describe the actual quantum dynamics of such systems
on experimentally relevant time scales. This question is of
particular interest near the critical point of a driven-dissipative
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phase transition as in the case of optical bistability. Here the
semiclassical Maxwell-Bloch equations give rise to two stable
steady-state solutions combined with a hysteresis effect, while
a full quantum treatment predicts a unique steady state that
can deviate dramatically from semiclassical results [26]. One
major source of this deviation is the bimodal character of
the quantum-mechanical probability distribution, which leads
to a switching of the system between the two semiclassi-
cally stable branches [28-30]. Since, however, the switching
time between the stable solutions diverges with the system
size [28,29], the Maxwell-Bloch equations describe well how
large systems evolve dynamically for experimentally observ-
able time scales. The natural question to ask in this specific
context is thus how many spins are required to constitute an
ensemble that is sufficiently “large” to enter the thermody-
namic limit where the semiclassical solutions are sufficiently
accurate to describe the dynamics of this quantum system
close to the bistability region [30,31].

To carry out such a comparison between the semiclassical
and the quantum dynamics, the time evolution of a finite
number of spins inside a cavity needs to be evaluated [29-37].
Due to computational constraints, a full quantum-mechanical
treatment of cavity-spin systems is, however, limited to small
spin ensembles or to few excitations in the system [33].
Results for spin ensembles of up to eight spins [30] showed
a rapid convergence of the quantum case to the semiclassical
limit, but failed to provide a quantitative analysis of the
corresponding boundary. Also further extensive theoretical
efforts to describe spin-cavity systems of increasing ensemble
size on a full quantum level [34-36] left the transition between
the semiclassical and the full quantum case mostly uncharted.
Since these two realms occupy opposing limits with respect to
the system size, special techniques are required to bridge the
gap between the microscopic and the macroscopic domains.

For a closed system of completely symmetric spin ensem-
bles, e.g., the scaling of quantum corrections as a function
of the number of two-level systems was studied using a
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Wentzel-Kramers-Brillouin (WKB) approach analyzing the
eigenvalue spectrum [38]. In the present paper we study the
onset of quantum corrections in the complementary setting
of an open system with external driving and dissipation.
Using a generalized cumulant expansion approach [39-46],
we establish a criterion for the validity of the semiclassical
Maxwell-Bloch equations for a wide range of parameters,
taking the effect of inhomogeneous broadening explicitly into
account.

Our paper is organized as follows: In Sec. II we introduce
the model and derive the hierarchic set of equations of motion
for expectation values (Sec. IT A). We review the semiclassical
approximation (Sec. II B) and present a generalized truncation
scheme based on higher orders of cumulants (Sec. II C). The
effect of amplitude bistability is investigated in Sec. III start-
ing with a homogeneous spin ensemble (Sec. III A) and ex-
amining the semiclassical-to-quantum boundary (Sec. III B).
The presented analysis is then extended to the case of an
inhomogeneously broadened spin ensemble (Sec. III C). In
Sec. IV we draw our conclusions.

II. MODEL

The system we consider consists of N two-level atoms or
spins with transition frequencies w; coupled to a single-mode
cavity with coupling strength g;. The two-level emitters may
or may not exhibit inhomogeneous broadening or coupling,
both of which can be treated with the model at hand. The
cavity is coherently driven by an external field of strength n
and frequency w),. The starting point for the theoretical model
is the Tavis-Cummings Hamiltonian [47], which, in a rotating
frame with driving frequency w,, reads (i = 1)

N N
L1 .
’H:AcalaﬂLE E Aj";"’} [gjo;a" +g50/al
j=1 j=1

+iln@)a’ — n*(t)al, (1)

where A, = w, — w, and A; = w; — w, are the detunings of
the cavity frequency w, and of the individual spin frequencies
w; with respect to the external driving field of frequency w,,.
Here a' and a are the creation and annihilation operators of the
single cavity mode and af, a;r, and o; are the Pauli operators
corresponding to the individual spins. In the following we
consider the driving amplitude to be constant ((z) = n) and
without loss of generality assume * = n as well as g% = g;.

The dissipation of the system is described by the Lindblad
superoperator

N
Lp(p) = k Qapa’ —a'ap —pad'a)+ Vp Z (o;,o af — ,0)
Jj=1
N
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where the first term corresponds to the cavity loss at rate «;
the second term gives nonradiative dephasing of the individual
spins with rate y,,/2, and the last term describes their radiative
decay with rate y,.

The total dynamics of the driven-dissipative system is then
given by the master equation

d

1
5P =7 el+ Lp(p), 3)

with H and Lp given by Egs. (1) and (2), respectively, and p
being the density operator of the total cavity-spin system.

A. Equations of motion for expectation values

Full quantum solutions for the density operator of the
system or of chosen subsystems can be obtained via direct
integration of the master equation [48—50], quantum trajectory
methods [1,29,30,51,52], or, as recently shown in [36], also
by variational renormalization group methods. All of these
approaches are limited, however, in the number of spins or
excitations in the system. Since we are interested in the
relation between quantum-mechanical and semiclassical so-
lutions over a wide range of parameters, we take a different
approach here and directly solve for the expectation values of
the operators of interest [42]. Multiplying the master equation
(3) with the given operator, taking the trace operation, and
using the cyclic permutation of the trace, it is straightforward
to obtain the following equations of motion (EOM) for the
expectation values (a), (o j_), and (af):

d
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In the following we denote expectation values involving
a product of n operators as nth-order expectation values. The
interaction part of the Hamiltonian couples EOM for nth-order
expectation values to EOM for (n 4 1)th-order expectation
values and thereby creates an infinite hierarchy of coupled
equations. (The EOM up to third-order expectation values are
shown in the Appendix). To solve the dynamics of the system,
the hierarchy of equations thus needs to be truncated at some
level. In the following we use a truncation procedure based
on a cumulant expansion [39-43] to obtain a closed set of
equations that can be solved numerically.

B. Semiclassical approximation

The most prominent approach for driven-dissipative spin-
cavity systems of the type described in the previous section is
to solve Egs. (4)—(6) in the semiclassical limit by applying a
self-consistent field approximation [25],

<afa) ~ (of)(a), @)
(o7 a") ~ (o7 )(a"). 8)

Using this full factorization, the hierarchy of Egs. (4)—(6)
truncates at first order according to our previous notation and
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one derives the seminal Maxwell-Bloch equations:
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where c.c. stands for the complex conjugate of the previous
term. The full factorization of expectation values employed
above is well justified for an infinite number of spins, since
fluctuations in the large-N limit decrease with 1/N [32,33].
An important property of the semiclassical limit is that with
the transformations

(@) — (a)/~/N, n— nvN,

and fixed spin distribution p(w;), the governing equations are
invariant under variation of the number of spins, N, inside the
ensemble. Any deviations from the scaling given by Eq. (12)
can therefore be attributed to quantum corrections to the
semiclassical equations [30].

g — &i/VN, (12)

C. Cumulant expansion approach

The basis of the semiclassical limit is the full factorization
given by Eqgs. (7) and (8), neglecting the second-order cumu-
lant, which for two arbitrary operators A and B is defined as

(AB), = (AB) — (A)(B). (13)
To include correlations between operators in the model it is
necessary to keep the EOM for expectation values of higher
order explicitly and to truncate the hierarchy of equations at
some higher level. The explicit formulas for third- and fourth-
order cumulants read [39]

(ABC), = (ABC) — (AB)(C) — (AC)(B) — (BC)(A)
+2(A)(B)(C), (14)
(ABCD), = (ABCD) — ((A)(BCD) + (B)(ACD)
+(C)(ABD) + (D)(ABC) + (AB)(CD)
+ (AC)(BD) + (AD)(BC))
+2((AB)(C)(D) + (AC)(B)(D)
+ (AD)(B)(C) + (BC)(A)(D)
+ (BD)(A)(C) + (CD)(A)(B))
6

15)

The expressions for cumulants of high order are quite cum-
bersome but they allow us to represent an expectation value
of a given order by a cumulant of the same order and by
expectation values of lower order only. Therefore, a closed
system of equations can be obtained by neglecting higher
orders of cumulants. In the following we call a truncation
scheme that keeps EOM of expectation values up to nth order
but neglects cumulants of the (n 4 1)th order as the nth-order
cumulant expansion (CEn). The semiclassical Maxwell-Bloch

equations, hence, can be considered as a first-order cumulant
expansion (CE1).

For the present paper we apply a cumulant expansion of
second (CE2) and third order (CE3) to the coupled EOM of
the driven-dissipative spin system (Appendix). The CE2 then
consists of 12 coupled EOM for the expectation values: (a),
(0,). (0f). (ofa). (ofo]). (o a"). (o] o)), (o a). (d'a),
(ata), (o]fo]?), and (op0;). All third-order expectation values
are expanded according to

~ N A

(ABC) ~ (AB)(C) + (AC)(B) + (BC)(A)

—2(A)(B)(C), (16)

where third-order cumulants (ABC ). are neglected. For the
CE3 we eliminate this approximation and extend the EOM
by 13 additional equations for the expectation values (c7,fczT )
(ak_a"'a), (ak_a"'aT), (ofaa), (o, aa), (a‘aa), (aaa), (CHCHOR
(ak’Uj’aT), (ak*aj’a% (o,faj’cff), (a,faj’a), and (0y 0 a).
Note that third-order expectation values containing only spin
operators are not included and are truncated on the level of
Eq. (16), which is justified since correlations among three
spins play only a minor role as compared to correlations
between spins and the collective cavity mode. All fourth-order
expectation values that show up in the EOM of the CE3 are
expanded as

(ABCD) ~ (Ay(BC

a7)

with fourth-order cumulants (ABCD), being neglected. The
closed set of equations resulting from the CE2 and CES3 is
solved numerically to obtain the dynamics and stationary
states of the driven-dissipative spin system.

III. AMPLITUDE BISTABILITY

We now analyze the validity of the semiclassical Maxwell-
Bloch equations, using the CE2 and CE3 introduced in the
previous section. In particular we focus on amplitude bista-
bility as a paradigm effect for cooperative phenomena in an
open system far from equilibrium [26]. Over the last decades
amplitude bistability served as a role model for a nonequilib-
rium phase transition with experimental realizations in various
systems [21,23,27,31]. To observe amplitude bistability in our
model, we study the stationary transmission through a cavity-
spin system under constant driving n. The transmission is
proportional to the cavity probability amplitude |(a)|?, whose
stationary value |{ay)|> can be obtained either directly by
setting all time derivatives in Egs. (9)—(11) to zero or by a
temporal evolution of the system for a sufficiently long time.

A. Homogenous broadening

For simplicity, we start with the case of homoge-
neous coupling (g; = g) and radiative decay only (y, = 0).
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FIG. 1. Stationary solutions for the cavity probability amplitude
|{ay)|* as a function of the driving amplitude 5. These semiclassical
results are obtained from Eq. (18) for x = 2y, = 27 x 1 MHz and
cooperativity parameters C ranging from 4 to 14. Amplitude bistabil-
ity shows up for C > 8, where regions of two stable solutions (solid
lines) and one unstable solution (dashed lines) coexist. The critical
points ncim (red dots) mark the maxima of the slope d|{ay)|*/dn of
the input-output relation. In the bistable regime, the cavity prob-
ability amplitude experiences a first-order phase transition at n},
characterized by a jump from a state of low transmission to a
state of high transmission. This behavior is indicated for C = 14
by stationary state values (blue squares) extracted from a temporal
evolution of the system under constant driving for a sufficiently long
time.

Moreover, we assume that the driving field is on resonance
with the cavity and all individual spins (A, =0, A; =0).
In the semiclassical limit, the stationary cavity probability
amplitude |(ay)|? is then given by

2

U (18)

2
1+ I(amHz/no) K2
and is therefore completely characterized by the collective
cooperativity parameter C = Ng?/k ¥y, the photon saturation
number ny = yhz /247, and the scaled driving amplitude 1/x.
The stationary state equation above gives the typical, non-
linear input-output relations presented in Fig. 1 for collective
cooperativity parameters ranging from C = 4 to C = 14. Note
that we increase C here by increasing the individual coupling
g while keeping all other parameters constant. At low driving,
the enhanced cooperative emission of the ensemble leads to
a stationary state of low transmission, sometimes called the
lower or cooperative branch. Increasing cooperativities lead
to an increasing suppression of the transmission [25]. For
strong driving the spins start to saturate ((aj_ Yo = 0) and
thereby decouple from the cavity [see Eq. (9)], leading to a
stationary state of high transmission, which is independent of
the cooperativity parameter C. This upper branch is therefore
also called the independent-atom branch [33]. For C > 8 the
stationary state equation (18) exhibits regions where three
solutions coexist (two stable and one unstable). This bistable
region is bounded by two critical points 7_; and n;;it, which
are characterized by an infinite slope d|{ay)|>/dn in the
transmission curve. For C < 8 no bistability occurs and only
one point of maximal but finite slope d|{ay)|*/dn exists. In
this case there is a continuous transition from the lower to the
upper branch for increasing driving. In the bistable case, by
contrast, the system changes discontinuously from a state of

|<as,>|2(1 +C

low transmission to a state of high transmission in a first-order
phase transition at the critical point n:’m.

In the following we are interested in the validity of the
semiclassical solution in the vicinity of the critical point ',
for a finite number of spins. Note that, under the trivial scaling
given by Eq. (12), the semiclassical stationary state equation
(18) is independent of the number of spins, N. The corre-
lations (aja)c and (aj’aT)C, however, can lead to significant
deviations from this trivial scaling [30], as displayed in Fig. 2.
Here we present the impact of the quantum corrections on
the stationary cavity probability amplitude |(ay)|* for a col-
lective cooperativity parameter of C = 14 (with the tendency
described in the following being similar for all C). Typical
numerical results using the CE2 and CE3 are demonstrated
on the example of ten different driving strengths, which
are chosen such that we probe the stationary states on the
lower transmission branch of the bistable regime as well as
on the upper transmission branch above the critical point
Nerit:

Our results in Fig. 2 show that, for small ensembles, the sta-
tionary transmission calculated by means of the CE2 and CE3
deviates significantly from the semiclassical solution even
outside the bistable region. As expected, increasing the num-
ber of spins restores the semiclassical results, since the quan-
tum fluctuations decrease as 1/N [30]. However, the actual
number of spins needed for the CE to agree well with
the semiclassical solution substantially increases for driving
strengths close to the critical point 7}, . Whereas the re-
sults obtained from the CE3 for spin ensembles of moderate
size (N = 250) agree reasonably well with the semiclassi-
cal solution for most driving strengths, this is not the case
for the driving strengths close to the critical point of the
low transmission branch, 0.97 n. and 0.99 7. , respectively.
Here much larger numbers of spins (N = 2500) are needed
for the CE3 to reasonably approach the semiclassical lower
transmission branch. Note that the stationary states shown in
Fig. 2 are extracted from a temporal evolution of the system
for sufficiently long time starting initially from an unexcited
spin ensemble ((aj) =—1, (aj_) =0) and an empty cav-
ity ({a) = 0), subjected to constant driving. For this initial
state the semiclassical dynamics converges towards the lower
transmission branch of the bistable region and reaches the
upper transmission branch only for n > n:;it as indicated in
Fig. 1.

Figure 2(c) presents the transient dynamics of the cavity
probability amplitude |(a(t))|iﬁ3) calculated using the CE3

for C = 14 and driving strength n = 1.05 n:’m. As depicted
already in Fig. 2(b) for N = 250 the CE3 agrees well with
the semiclassical solution, whereas for small spin ensembles
(N =10 or 50) the CE3 tends towards a stationary state of
much lower transmission than that predicted by the semiclas-
sical equations. Interestingly, our calculations for N = 86 and
N = 87 spins indicate that there is an abrupt crossover from
spin ensembles with large deviations from the semiclassical
limit towards spin ensembles where such deviations are small.
Whereas for N < 86 the CE3 tends towards a stationary state
of relatively low transmission, ensembles of N > 87 spins
start to approach a state of high transmission, in accordance
with the semiclassical solution.
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FIG. 2. Finite-size corrections to the semiclassical cavity probability amplitude for a cooperativity parameter C = 14. (a, b) Stationary

solutions for the cavity probability amplitude |{a)|?

as a function of the driving amplitude 1. The semiclassical result is shown as black

solid line. Amplitude bistability is marked by two critical points ncim (red dots) with a bistable region in between (gray area). At well-defined
driving amplitudes, corrections to the semiclassical solutions are calculated using (a) the second- and (b) third-order cumulant expansion (CE)
for different numbers of spins N = 10, 50, 250, and 2500. The colored arrows indicate the deviations from the corresponding semiclassical
transmission curve. (c) Temporal evolution of the cavity probability amplitude |{a(t)) |§CE3) using the third-order CE and for the driving strength
n = 1.05 7, . The initial conditions are chosen such that at = 0 the spin ensemble is unexcited and the cavity is empty. Results are shown
for increasing numbers of spins N = 10, 50, 86, 87, and 250. The semiclassical solution is shown as black dashed line. The colored symbols

indicate the stationary states shown in (b).

To measure the validity of the semiclassical approximation
for different driving strengths and cooperativity parameters,
we normalize the stationary state obtained in the framework
of the CE2 and CE3 by the corresponding semiclassical result
(CED),

2
as) ey

()]
2
aa) 2,

(CE2,3) =

, 19)

such that a value close to unity corresponds to the semiclas-
sical regime. Figure 3 shows the normalized cavity proba-
bility amplitude |(a})|imyz) for the driving strength 1.05 5,
and cooperativity parameters ranging from C =2 to C =
20. Focusing at first on the CE2 solutions, we can see that
the normalized cavity probability amplitude approaches the
semiclassical result |(cZ,)|iE2 = 1 for increasing numbers of
spins as expected from a linearized theory of fluctuations
[33]. As indicated already above, our results show that for
increasing cooperativity parameters the transition towards the
semiclassical solution becomes more abrupt and for C > 8
resembles a first-order phase transition at N ~ 45.

Coming now to the CE3 solutions, a similar tendency
is observed with the only difference that the transition is
shifted to larger values of N for increasing cooperativi-
ties C. Although these results suggest that for amplitude
bistability the crossover from systems of large fluctuations
towards systems of small fluctuations has a discontinuous
nature, care must be taken, since in the crossover region
the cumulant expansion has not yet converged; i.e., the CE2
and CE3 give quite different values for |(ay)|*>. Including
higher orders of cumulants or a full quantum-mechanical
treatment of the problem is therefore required to ensure the
convergence to a true quantum solution in this parameter
regime.

It turns out that at values of n slightly smaller than 7},
(at which the first-order transition obtained in the framework
of the semiclassical approach occurs), other time-dependent
solutions can simultaneously exist for certain numbers of
spins, N—a common scenario in the driven-dissipative dy-
namics described by a set of nonlinear differential equations.
Specifically, starting from the simple initial conditions men-
tioned above (empty cavity with unexcited spin ensemble),
we end up with periodic solutions after some transient time
or sometimes the overall approach even becomes numeri-
cally unstable giving rise to unphysical solutions (indicated,
e.g., by unphysical values of |{o})| > 1). To overcome this

(a) second-order CE
Cee

1 ______

(b) third-order CE
e

————— —1

2

(CE2,CE3)
A
N
~
~
EN
L
oy
(@)
W\ B
L

[(ase)]

—0.1
C=20 1]

C=20

1 10 100 1 10 100
N N

FIG. 3. Comparison of the second- and third-order CE with
the semiclassical cavity transmission for the driving strength n =
1.05n},. The normalized stationary-state solutions for the cavity
probability amplitude |(a’},)|(2CE2‘3) = |(ax,)|(2CE2‘3) / |(as,>|(2CE” are shown
as a function of the number of spins, N, using (a) the second- (CE2)
and (b) the third-order cumulant expansions (CE3), respectively.
Results are shown for cooperativity parameters C = 2 (dark blue) to
C =20 (dark red). |(ay)|? = 1 (dashed black line) corresponds

; ! (CE2.3)
to the semiclassical result.
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FIG. 4. Relative deviations in the cavity probability amplitude
[{ay)|* calculated using the semiclassical Maxwell-Bloch equations
(CE1) and the second- (CE2) and third-order cumulant expansions
(CE3). Results are shown for cooperativity C = 14 and driving
strengths (a) n = 1.05 %, and (b) n = 0.95 7. The relative devi-
ations are defined as ASE = ||{ay) |(zn) — |(aS,)|(2m) |/1{ay) |(2m), where n
and m stand for the CE1, CE2, and CE3, respectively. The horizontal
black dashed line indicates the threshold of convergence, which we
set to be 8¢ = 1072, Only if all three relative deviations, ASE, (blue
dash-dotted line), ASE, (green double-dash-dotted line), and A$E,
(orange solid line), are smaller than §e is the semiclassical solution
for the cavity probability amplitude |(ay)|* reliable. The minimal
ensemble size that fulfills this criterion is denoted as N,. (vertical
black dashed line).

problem we vary the initial conditions for (o}) between —1
and —0.5 to finally find those which lie in the so-called
basin of attraction for the stationary state. Originating from
such initial conditions, the system eventually settles to the
stationary state under study as time increases.

B. Semiclassical-to-quantum boundary

To avoid the difficulties in the crossover region of Fig. 3,
we focus in the following on the results of the CE close
to the semiclassical stationary states and define a criterion
for the validity of the semiclassical Maxwell-Bloch equations
based on the convergence of the cumulant expansion. For this
purpose we define the relative deviations

1) P~ a2,
e, (20)
(@),

CE _
AZ =

where n and m stand for the different orders of the cumulant
expansion, CE1, CE2, and CE3. Figure 4 presents the relative
deviations between the first three orders of the cumulant
expansion, AYE,, ASE,, and AfE,, for C = 14 and driving
strengths 7 = 1.05n. and 0.957n7,, respectively. It turns
out that the discontinuous nature of the crossover region is
reflected also in the relative deviations, resulting in a rather
complicated dependence on the number of spins, N. Above
the crossover regions the relative deviations decrease linearly
with 1/N as expected from a linearized theory of quantum
fluctuations in the small-noise limit [33]. The size of the
relative deviations, however, does not only strongly depend
on the cooperativity C and the number of spins, N, but also
on the driving strength 1. Our results show that for the same
C and the same N the relative deviations for n = 0.95 n;n are

significantly larger than for n = 1.05 57, . This asymmetry is
explored in more detail below.

In the following we define a small threshold value §e =
1072, which serves as a criterion for the convergence of
the cumulant expansion as well as for the validity of the
semiclassical solutions. We estimate the minimal number of
spins, Ny, for which all relative deviations drop below the
threshold value, i.e.,

ASE), ASE ASE; < e, 21

and call it a semiclassical-to-quantum boundary. Hence, for
spin ensembles with N > Ny, the semiclassical Maxwell-
Bloch equations provide trustworthy results for the cavity
probability amplitude |{ay)|*, and all higher correlations like
(a]?a)c, (crj’af)c, etc., give only negligible relative contri-
butions (lower than 1%). The vanishing influence of these
quantum correlations, which is characterized by Eq. (21), cap-
tures a subtle but important point of open quantum systems.
While the true quantum solution of the steady-state master
equation o = 0 is unique, the bistability of the semiclassi-
cal regime translates into a bimodality of the corresponding
quasiprobability function. The quantum system switches be-
tween these two quasistationary components, giving a unique
time-averaged expectation value which can substantially de-
viate from the semiclassical solution within the bistability re-
gion [28-30]. The switching time, however, strongly depends
on the system size being divergent for large N [28,29]. Hence,
the convergence criterion provided by Eq. (21) implies that for
N > N, the cavity probability amplitude |{ay)|* calculated
from a full quantum-mechanical evolution of the initial state
cannot be distinguished from the solutions of the semiclassical
Maxwell-Bloch equations on experimentally feasible time
scales.

Figure 5 shows this semiclassical-to-quantum boundary
value as a function of both the cooperativity parameters C and
the driving strengths 7. This main result of our paper demon-
strates how the value of N increases close to the critical point
n..,. Exactly at n = . the time the systems needs to reach its
stationary state for C > 8 diverges due to the effect of critical
slowing down [20] and data points are therefore omitted for
these parameters. For parameter regions where no bistability
occurs, i.e., for C < 8, there is no sharp distinction between
the lower and upper transmission branches. Here the value of
the semiclassical-to-quantum boundary, Ny, has its maximum
at driving strengths slightly above the critical driving strength
nd, and starts to peak at n = 5. only as C approaches the
threshold value of bistability. As can be seen in Fig. 5(b) for
the cooperativity parameter C = 5 the value of Ny, above .
is significantly larger than below that driving strength. This
asymmetry with respect to n;it becomes less pronounced but
is still present for increasing cooperativities up to C < 8. The
peak in Ny, for C = 7.8 at the critical driving is the precursor
of the emergence of a first-order phase transition and the effect
of bistability, which emerges for cooperativity values above
Cc=38.

It is worth noting that for C > 8 the semiclassical-to-
quantum boundary as defined in Eq. (21) behaves qualitatively
differently for the lower transmission branch as compared to
the upper transmission branch. As we approach the critical
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FIG. 5. Semiclassical-to-quantum boundary: Minimal number of spins, N, for which the cumulant expansion converges towards the
semiclassical results, i.e., for which condition (21) is fulfilled. (a) N as a function of the driving strength 1 and the cooperativity parameter

C. Note that N, drastically increases in the vicinity of the critical point 7

+
crit

for C > 8 and no data are available in this region (gray bar). The

horizontal dashed lines correspond to cooperativity parameters, which are shown separately in (b) and (c), respectively. (b) N, as a function of
the driving strength 1 for C = 5.0, 6.5, and 7.8 (dark to light blue). (c) N, as a function of the driving strength n for C = 10, 14, and 18 (light

to dark orange).

point n:rm from below by analyzing stationary states disposed
on the lower transmission branch, the value Ny, progressively
increases and eventually diverges exactly at n'., where the
saddle-node bifurcation occurs [curves from the left with
respect to the gray bar of Fig. 5(c)]. In contrast, the only stable
solutions above n’. are those which are located on the upper
transmission branch which lie, however, far away in phase
space from the saddle-node bifurcation at n;it. Therefore,
when approaching n;it from above, the value of Ny, exhibits
no divergence and is significantly smaller than below n". .

Another interesting tendency seen in Fig. 5(c) is that for
n < n;it (lower transmission branch) N, increases for in-
creasing cooperativity parameters C. In contrast, for n > n.
(upper transmission branch) increasing cooperativity param-
eters C lead to a decrease of N. Our findings suggest that
close to the critical point at the lower transmission branch
even very large ensembles of up to ~10* spins can show
behavior that goes beyond the semiclassical description. Note
that for large cooperativities the differences in Ny, for driving
strengths within and outside the bistable region become very
large. Whereas for C = 18 and n = 1.01 njm the semiclassical
result agrees well (1% deviation) with the CE2 and CE3
already for ensembles of Ny, & 500 spins, the corresponding
value grows to Ny &~ 3 x 10* for n = 0.99 n;t. This can be
explained by very large quantum fluctuations near the critical
point, which destabilize one of the two semiclassical basins
of attraction. Note that the asymmetry between the lower and
upper transmission branches encountered in Fig. 5(c) results
from our choice to probe the critical point 1’ . We anticipate
areversed role of the two transmission branches when probing
the stationary states of the upper transmission branch close to
the critical point 7_,.

C. Inhomogeneous broadening

In the following we extend our investigations to in-
homogeneously broadened spin ensembles and study how
the broadening of the spin ensemble alters the previously

defined minimal number of spins, N, that is required for the
validity of the semiclassical Maxwell-Bloch equations. We
therefore relax the condition A; = 0 and allow for a Gaussian
frequency distribution of the individual spins. This scenario
becomes computationally much more demanding, since now
the hierarchy of equations (summarized in the Appendix)
has to be solved for each spin frequency A; individually.
Numerically we split the spin ensemble into L equidistantly
spaced frequency clusters A, where the index p runs from
1 to L and each frequency cluster is filled up with M, spins.
After this procedure, Eqs. (A1)—(A25), representing the CE3,
in total are 131 + L(L + 1)/2 + 23L + 9 first-order ordinary
differential equations, which can be solved for moderate val-
ues of L. For our calculations we chose L = 51 and distributed
the spins following a Gaussian distribution

2
M :]Xefzun(z)%’

e (22)

with K = ZL,] e_““(z)%
such that Z,LL:I M, =N.

In Fig. 6 we present results for Gaussian spin distributions
with three different full widths at half maximum, I" = 0.1, 0.5,
and 1.0 MHz. Note that an increase of the width I' leads to a

decrease of the collective cooperativity

being a normalization constant

C= i iM _ (23)
Y n=1 1 + AAZL/Vh ’

with all other parameters kept constant. This drop of the
collective cooperativity for increasing widths of the distribu-
tion can be observed in Fig. 6(a), where we show the semi-
classical bistability curves of the inhomogeneously broad-
ened spin ensembles in comparison with the unbroadened
case (corresponding to a collective cooperativity of C = 18).
The spin distributions with a full width at half maximum
of ' =0.1, 0.5, and 1.0 MHz then correspond to collec-
tive cooperativity parameters of C ~ 17.9, 15.8, and 12.7,
respectively.
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FIG. 6. Semiclassical-to-quantum boundary including inhomogeneous broadening: (a) Semiclassical stationary states for the cavity
probability amplitude |{a,;)|? as a function of the driving amplitude 1. Parameters are the same as in Fig. 2. Results are shown for Gaussian
spin distributions with a full width at half maximum of I' = 0.1, 0.5, and 1.0 MHz, corresponding to a collective cooperativity of C ~ 17.9,
15.8, and 12.7, respectively (light to dark green). Results without inhomogeneous broadening, corresponding to C = 18, are presented for
comparison purposes (dotted orange line). (b) Semiclassical-to-quantum boundary N, as a function of the driving strength n for I' = 0.1, 0.5,
and 1.0 MHz (light to dark green), and no inhomogeneous broadening (orange).

The minimal number of spins, Ny, for which the cumulant
expansion converges towards the semiclassical results is
presented in Fig. 6(b). A comparison with Fig. 5(c) indicates
that the change in the semiclassical-to-quantum boundary due
to the inhomogeneous broadening can be well understood in
the way the collective cooperativity parameter C changes with
broadening. Our results for the inhomogeneously broadened
spin distributions therefore confirm our earlier findings
that even very large spin ensembles of about 10* spins can
show nonsemiclassical behavior close to the critical point of
bistability.

IV. CONCLUSIONS

We have studied in detail the route towards the semiclas-
sical limit for a dissipative spin-cavity system driven close
to the critical point of amplitude bistability. In particular
we analyzed the validity of the semiclassical Maxwell-Bloch
equations close to the critical point following the transition
from the lower to the upper transmission branch of amplitude
bistability for varying cooperativities C and for different num-
bers of spins, N. We numerically solved the nonlinear sets
of equations resulting from a second- (CE2) and third-order
cumulant expansion (CE3) and compared the results with the
semiclassical stationary solution for the cavity probability am-
plitude. Based on the convergence of the cumulant expansion
towards the semiclassical results, we defined a criterion for the
reliability of the Maxwell-Bloch equations and determined the
minimal number of spins, Ny, necessary to ensure the validity
of the semiclassical approximation.

Our results reveal that not only the distance to but also
the way of approaching the critical point is a crucial factor
which strongly influences the validity of the semiclassical
equations. More specifically, we disclose that the large quan-
tum fluctuations inside the bistable region lead to very large
values of N in the proximity of the critical point of the lower
transmission branch. Remarkably, here even very large spin
ensembles of up to ~ 10* spins can feature deviations from

the semiclassical cavity probability amplitude. Our results
therefore suggest that a spin ensemble of the same size can
behave semiclassically or quantum mechanically depending
not only on the system parameters but also on the proximity
of critical points and the way of approaching them.
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APPENDIX: HIERARCHY OF COUPLED EQUATIONS

In order to employ the CE2 and CE3 as described in
Sec. I1 C the equations of motion have to be generated also for
second- and third-order expectation values. The derivation of
these equations is straightforward but the arising expressions
soon become unwieldy for higher orders of expectation val-
ues. Since the resulting equations, which enable an accurate
description of spin-cavity systems including the effect of
inhomogeneous broadening, constitute a critical part of our
paper, we provide them explicitly below:

First-order expectation values

d . o _
@) =~ +iA)a) —i ;gk(g" y+m, (Al
d
21000 = =0+ 2rp + iAo ) + igilofa),  (A2)
Sl = =2y((of) + 1) + 2i ge({oa") — (o7 a")"),
(A3)
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Second-order expectation values

(A4)

(A5)

(AT)

(A8)

(A9)

(A10)

(Al1)

d .
Jlofa) = =G+ 2y +iAdfofa) = 2yia) + nlof) — i Zg, ofo; ) +igiloy ) +2igi (o a'a) — (o a'a’)"),
yor
d Zp— i 2y - i Z52 i 5"t +. -
E(qu" >j§k —Byn+ 2y, +i Aj)(okaj )— 2]/;,(0‘]- )+ tgj(akaja) + 2i gr ({0, o;a ) — {0}, o; a)),
d, _ + . . 8k t
Z(Uk a') =—+yn+2y, +i(Ar — A)) o, a ) +n{og)+i Zgj 0 o, ) +i > ((O’k> + 1) +lgk(0ka a) (A6)
g
d . oy
T —(o o ) ;{ —Qyn+4y, +i(A; — Ak))(a,:raj_) — igk<c7,foj_a') + igj(cr;o*k_a') ,
d _ .
E(Uk a)=—(k +yp+2y, +i(Ar + AC))<Uk a) + U(Uk —i Zgj 0, 0 > + lgk<0kaa>
o
d
Jlaa’) = =2 —iAc)a'a") +2i ng (o @) + 2n(a)*,
d N .
T la'a) = —2«(a'a) - i;gk«o;aw — (0, a")) +n (@) + (@),
a\oioi) = =2n((of) +lofoj) + (o) + {o0i)) + 21 gul(ofor a") = (oo a’)) + 2i g ((ofo; a') = (oo a")'),
d
E(akfoj ) —Qyn+4y, +i(A;+ Ak))(ok O+ lgk<ako a> + zg](o o, a )

Third-order expectation values

d *
oy (a,f ¥ > = —2(k + yh)(aka a) 2ypla’a) + n((a a — lZgj UkG a (Ulfaj’aT) )

J#lf

+igi((o,a’) — (o a")) + 2igi(fo a'a’a) — (o a"a’a)),

d . .
—(oga'a) = —Q2k + ) + vu + iAoy a'a) + n((oy a’) + (o a)) + i gk(ofa aa)

dt
Y 8
. - — . 8k
+i)_gillofo a) = (o o7 a) +i = ((ofa) + (@),
‘]:#k
d . N
Tlogald’) = —Qk +yp) + (A =280) o a'a) + 2n{o a') +2i Y _gjlofopal)
o
+ igk((a,fa>* + (a)*) + igk(aka‘afa>
d, ., . .
E(@aa) =2k +yn + lAC)<a,;aa) th(a a ) + 2n<ak )+ 2igi({o, a) —2i Zg] aka a

/#k

+2i gk((UI:aTaa) — (Uljaaa)),

d _ . _ _ : o .
Ew" aa) = —2(k + yp) + vu + i(Ax + 2A.)){o; aa) + 2n{o, a) — 2i Zgj(ak o;a)+ lgk(okzaaa>,
T
N N

d *
E(cﬂaa) = -Gk +iA)a’aa) — 2i ngw,;a*a) +i ngw,;cﬁaw +2n(a’a) + nia’a’)”,
k=1 k=1
d N
E(aaa) = —3(k +iA.)(aaa) — 3i ng(ak’am + 3n(aTaT)*,
k=1
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N
+gj(c7kzaj_afa> — gk(o;a,:raa) - g,-(cr,fcr;’aa)) —1i Z gm(cr,fo]zan:> + igk<ajc7k_) + igj(akzaj_>, (A20)
iy
—logoja ) =~ + 2y 4y +i(Ac+ A = Aoy o7 a Ny 4o o) +i ng o 007
o
+ i%k((oj_) + (crkzo*j )) + lgzl ((ak )+ (afcrk_» + igk(akzaj_aTa> + igj(cr;ak_afa» (A21)
i(a*a’a) = —(k 42+ 4y, +i(A;— A +A) o o7 a) +nioc o7
a1 0k 9 2 Vh Vp j k c k Oj noy o;
—1i Z gmf O'k 0;0,)— éZ‘(( o)+ <akz0j >) — igk(aljaj_afa> + igj(crk'”'ajaa), (A22)
pory
d
E(a,foj_aT) 5, U 3n 2y A i—Aofora’) = 2yu(o;a’) + nlofo;)
N
+i Z gm(anfakzoJ —ig (O'k Y4 %((0,5) + (o,faj?)) + igj(a,fozaTa)
mk,j
+2igi (o o7 d'a’) — (oo ala)), (A23)
d
sloiora) =~ 437+ 2y, +i(8; + Aolofoj a) = 2yilof a) + nlofoy)
—1i Z gm ak —I— i gi{o, o; )Y+ lgj(crko aa) +2igr({o, o; aTa) (o,faj_aa)), (A24)
ory
d
E«)‘k_aj_a) j?k —(k + 2y + 4)/17 +i(Ar+ A+ AC))(O'k_O'j_a)
N
+nlogo;) —i Z gmloy 07 0,) + igk(o,faj*aa> + igj(o;okfaa) (A25)
m=1
m#k, j

[1] A.J. Daley, Adv. Phys. 63, 77 (2014).

[2] Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Rev. Mod. Phys.
85, 623 (2013).

[3] G. Kurizki, P. Bertet, Y. Kubo, K. Mglmer, D. Petrosyan, P.
Rabl, and J. Schmiedmayer, Proc. Natl. Acad. Sci. USA 112,
3866 (2015).

[4] K. Tordrup, A. Negretti, and K. Mglmer, Phys. Rev. Lett. 101,
040501 (2008).

[5] J. H. Wesenberg, A. Ardavan, G. A. D. Briggs, J. J. L. Morton,
R. J. Schoelkopf, D. I. Schuster, and K. Mglmer, Phys. Rev.
Lett. 103, 070502 (2009).

[6] Y. Ping, E. M. Gauger, and S. C. Benjamin, New J. Phys. 14,
013030 (2012).

[7] C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J.
Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kroll, J. H. Miiller
et al., Eur. Phys. J. D 58, 1 (2010).

[8] Y. Kubo, I. Diniz, A. Dewes, V. Jacques, A. Dréau, J.-F. Roch,
A. Auffeves, D. Vion, D. Esteve, and P. Bertet, Phys. Rev. A 85,
012333 (2012).

013856-

[9] C. Grezes, Y. Kubo, B. Julsgaard, T. Umeda, J. Isoya, H.

Sumiya, H. Abe, S. Onoda, T. Ohshima, K. Nakamura, I. Diniz,
A. Auffeves, V. Jacques, J. F. Roch, D. Vion, D. Esteve, K.
Moelmer, and P. Bertet, C. R. Phys. 17, 693 (2016).

[10] L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Nature
(London) 414, 413 (2001).

[11] H. J. Kimble, Nature (London) 453, 1023 (2008).

[12] A. A. Houck, H. E. Tiireci, and J. Koch, Nat. Phys. 8, 292
(2012).

[13] A. Tomadin and R. Fazio, J. Opt. Soc. Am. B 27, A130 (2010).

[14] M. Buchhold, P. Strack, S. Sachdev, and S. Diehl, Phys. Rev. A
87, 063622 (2013).

[15] M. Foss-Feig, P. Niroula, J. T. Young, M. Hafezi, A. V.
Gorshkov, R. M. Wilson, and M. F. Maghrebi, Phys. Rev. A
95, 043826 (2017).

[16] H. Haken, Laser Theory (Springer-Verlag, New York, 1984).

[17] R. H. Dicke, Phys. Rev. 93, 99 (1954).

[18] A. A. Svidzinsky, X. Zhang, and M. O. Scully, Phys. Rev. A 92,
013801 (2015).

10


https://doi.org/10.1080/00018732.2014.933502
https://doi.org/10.1080/00018732.2014.933502
https://doi.org/10.1080/00018732.2014.933502
https://doi.org/10.1080/00018732.2014.933502
https://doi.org/10.1103/RevModPhys.85.623
https://doi.org/10.1103/RevModPhys.85.623
https://doi.org/10.1103/RevModPhys.85.623
https://doi.org/10.1103/RevModPhys.85.623
https://doi.org/10.1073/pnas.1419326112
https://doi.org/10.1073/pnas.1419326112
https://doi.org/10.1073/pnas.1419326112
https://doi.org/10.1073/pnas.1419326112
https://doi.org/10.1103/PhysRevLett.101.040501
https://doi.org/10.1103/PhysRevLett.101.040501
https://doi.org/10.1103/PhysRevLett.101.040501
https://doi.org/10.1103/PhysRevLett.101.040501
https://doi.org/10.1103/PhysRevLett.103.070502
https://doi.org/10.1103/PhysRevLett.103.070502
https://doi.org/10.1103/PhysRevLett.103.070502
https://doi.org/10.1103/PhysRevLett.103.070502
https://doi.org/10.1088/1367-2630/14/1/013030
https://doi.org/10.1088/1367-2630/14/1/013030
https://doi.org/10.1088/1367-2630/14/1/013030
https://doi.org/10.1088/1367-2630/14/1/013030
https://doi.org/10.1140/epjd/e2010-00103-y
https://doi.org/10.1140/epjd/e2010-00103-y
https://doi.org/10.1140/epjd/e2010-00103-y
https://doi.org/10.1140/epjd/e2010-00103-y
https://doi.org/10.1103/PhysRevA.85.012333
https://doi.org/10.1103/PhysRevA.85.012333
https://doi.org/10.1103/PhysRevA.85.012333
https://doi.org/10.1103/PhysRevA.85.012333
https://doi.org/10.1016/j.crhy.2016.07.006
https://doi.org/10.1016/j.crhy.2016.07.006
https://doi.org/10.1016/j.crhy.2016.07.006
https://doi.org/10.1016/j.crhy.2016.07.006
https://doi.org/10.1038/35106500
https://doi.org/10.1038/35106500
https://doi.org/10.1038/35106500
https://doi.org/10.1038/35106500
https://doi.org/10.1038/nature07127
https://doi.org/10.1038/nature07127
https://doi.org/10.1038/nature07127
https://doi.org/10.1038/nature07127
https://doi.org/10.1038/nphys2251
https://doi.org/10.1038/nphys2251
https://doi.org/10.1038/nphys2251
https://doi.org/10.1038/nphys2251
https://doi.org/10.1364/JOSAB.27.00A130
https://doi.org/10.1364/JOSAB.27.00A130
https://doi.org/10.1364/JOSAB.27.00A130
https://doi.org/10.1364/JOSAB.27.00A130
https://doi.org/10.1103/PhysRevA.87.063622
https://doi.org/10.1103/PhysRevA.87.063622
https://doi.org/10.1103/PhysRevA.87.063622
https://doi.org/10.1103/PhysRevA.87.063622
https://doi.org/10.1103/PhysRevA.95.043826
https://doi.org/10.1103/PhysRevA.95.043826
https://doi.org/10.1103/PhysRevA.95.043826
https://doi.org/10.1103/PhysRevA.95.043826
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRevA.92.013801
https://doi.org/10.1103/PhysRevA.92.013801
https://doi.org/10.1103/PhysRevA.92.013801
https://doi.org/10.1103/PhysRevA.92.013801

CRITICAL PHENOMENA AND NONLINEAR DYNAMICS IN ...

PHYSICAL REVIEW A 100, 013856 (2019)

[19] B. C. Rose, A. M. Tyryshkin, H. Riemann, N. V. Abrosimoyv,
P. Becker, H.-J. Pohl, M. L. W. Thewalt, K. M. Itoh, and S. A.
Lyon, Phys. Rev. X 7, 031002 (2017).

[20] R. Bonifacio and P. Meystre, Opt. Commun. 29, 131 (1979).

[21] A. Angerer, S. Putz, D. O. Krimer, T. Astner, M. Zens, R.
Glattauer, K. Streltsov, W. J. Munro, K. Nemoto, S. Rotter, J.
Schmiedmayer, and J. Majer, Sci. Adv. 3, 1701626 (2017).

[22] D. O. Krimer, M. Zens, and S. Rotter, Phys. Rev. A 100, 013855
(2019).

[23] H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, Phys. Rev.
Lett. 36, 1135 (1976).

[24] R. Bonifacio and L. A. Lugiato, Opt. Commun. 19, 172 (1976).

[25] R. Bonifacio and L. A. Lugiato, Phys. Rev. A 18, 1129 (1978).

[26] L. A. Lugiato, Prog. Opt. 21, 69 (1984).

[27] F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, Science
322, 235 (2008).

[28] W. Casteels, R. Fazio, and C. Ciuti, Phys. Rev. A 95, 012128
(2017).

[29] J. M. Fink, A. Dombi, A. Vukics, A. Wallraff, and P. Domokos,
Phys. Rev. X 7, 011012 (2017).

[30] A. Dombi, A. Vukics, and P. Domokos, J. Phys. B 46, 224010
(2013).

[31] G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J.
Kimble, Phys. Rev. Lett. 67, 1727 (1991).

[32] T. Mori, J. Stat. Mech. (2013) P06005.

[33] H.J. Carmichael, Statistical Methods in Quantum Optics 2: Non-
Classical Fields (Springer-Verlag, Heidelberg, 2008).

[34] T. Shirai, S. Todo, H. de Raedt, and S. Miyashita, Phys. Rev. A
98, 043802 (2018).

[35] P. Kirton and J. Keeling, Phys. Rev. Lett. 118, 123602
(2017).

[36] H. S. Dhar, M. Zens, D. O. Krimer, and S. Rotter, Phys. Rev.
Lett. 121, 133601 (2018).

[37] S. Sarkar and J. S. Satchell, Europhys. Lett. 3, 797 (1987).

[38] J. Keeling, Phys. Rev. A 79, 053825 (2009).

[39] R. Kubo, J. Phys. Soc. Jpn. 17, 1100 (1962).

[40] H. A. M. Leymann, A. Foerster, and J. Wiersig, Phys. Status
Solidi C 10, 1242 (2013).

[41] K. Henschel, J. Majer, J. Schmiedmayer, and H. Ritsch, Phys.
Rev. A 82, 033810 (2010).

[42] H. A. M. Leymann, A. Foerster, and J. Wiersig, Phys. Rev. B
89, 085308 (2014).

[43] S. Krdamer and H. Ritsch, Eur. Phys. J. D 69, 282 (2015).

[44] A. Vardi, V. A. Yurovsky, and J. R. Anglin, Phys. Rev. A 64,
063611 (2001).

[45] A. Vardi and J. R. Anglin, Phys. Rev. Lett. 86, 568 (2001).

[46] W. Casteels, S. Finazzi, A. Le Boité, F. Storme, and C. Ciuti,
New J. Phys. 18, 093007 (2016).

[47] M. Tavis and F. W. Cummings, Phys. Rev. 170, 379 (1968).

[48] H. J. Carmichael, R. J. Brecha, and P. R. Rice, Opt. Commun.
82,73 (1991).

[49] A. Auffeves, D. Gerace, S. Portolan, A. Drezet, and M. Franca
Santos, New J. Phys. 13, 093020 (2011).

[50] R. Saez-Blazquez, J. Feist, A. 1. Fernandez-Dominguez, and
F. J. Garcia-Vidal, Optica 4, 1363 (2017).

[51] C. W. Gardiner, A. S. Parkins, and P. Zoller, Phys. Rev. A 46,
4363 (1992).

[52] A. Vukics and H. Ritsch, Eur. Phys. J. D 44, 585 (2007).

013856-11


https://doi.org/10.1103/PhysRevX.7.031002
https://doi.org/10.1103/PhysRevX.7.031002
https://doi.org/10.1103/PhysRevX.7.031002
https://doi.org/10.1103/PhysRevX.7.031002
https://doi.org/10.1016/0030-4018(79)90153-6
https://doi.org/10.1016/0030-4018(79)90153-6
https://doi.org/10.1016/0030-4018(79)90153-6
https://doi.org/10.1016/0030-4018(79)90153-6
https://doi.org/10.1126/sciadv.1701626
https://doi.org/10.1126/sciadv.1701626
https://doi.org/10.1126/sciadv.1701626
https://doi.org/10.1126/sciadv.1701626
https://doi.org/10.1103/PhysRevA.100.013855
https://doi.org/10.1103/PhysRevA.100.013855
https://doi.org/10.1103/PhysRevA.100.013855
https://doi.org/10.1103/PhysRevA.100.013855
https://doi.org/10.1103/PhysRevLett.36.1135
https://doi.org/10.1103/PhysRevLett.36.1135
https://doi.org/10.1103/PhysRevLett.36.1135
https://doi.org/10.1103/PhysRevLett.36.1135
https://doi.org/10.1016/0030-4018(76)90335-7
https://doi.org/10.1016/0030-4018(76)90335-7
https://doi.org/10.1016/0030-4018(76)90335-7
https://doi.org/10.1016/0030-4018(76)90335-7
https://doi.org/10.1103/PhysRevA.18.1129
https://doi.org/10.1103/PhysRevA.18.1129
https://doi.org/10.1103/PhysRevA.18.1129
https://doi.org/10.1103/PhysRevA.18.1129
https://doi.org/10.1016/S0079-6638(08)70122-7
https://doi.org/10.1016/S0079-6638(08)70122-7
https://doi.org/10.1016/S0079-6638(08)70122-7
https://doi.org/10.1016/S0079-6638(08)70122-7
https://doi.org/10.1126/science.1163218
https://doi.org/10.1126/science.1163218
https://doi.org/10.1126/science.1163218
https://doi.org/10.1126/science.1163218
https://doi.org/10.1103/PhysRevA.95.012128
https://doi.org/10.1103/PhysRevA.95.012128
https://doi.org/10.1103/PhysRevA.95.012128
https://doi.org/10.1103/PhysRevA.95.012128
https://doi.org/10.1103/PhysRevX.7.011012
https://doi.org/10.1103/PhysRevX.7.011012
https://doi.org/10.1103/PhysRevX.7.011012
https://doi.org/10.1103/PhysRevX.7.011012
https://doi.org/10.1088/0953-4075/46/22/224010
https://doi.org/10.1088/0953-4075/46/22/224010
https://doi.org/10.1088/0953-4075/46/22/224010
https://doi.org/10.1088/0953-4075/46/22/224010
https://doi.org/10.1103/PhysRevLett.67.1727
https://doi.org/10.1103/PhysRevLett.67.1727
https://doi.org/10.1103/PhysRevLett.67.1727
https://doi.org/10.1103/PhysRevLett.67.1727
https://doi.org/10.1088/1742-5468/2013/06/P06005
https://doi.org/10.1088/1742-5468/2013/06/P06005
https://doi.org/10.1088/1742-5468/2013/06/P06005
https://doi.org/10.1103/PhysRevA.98.043802
https://doi.org/10.1103/PhysRevA.98.043802
https://doi.org/10.1103/PhysRevA.98.043802
https://doi.org/10.1103/PhysRevA.98.043802
https://doi.org/10.1103/PhysRevLett.118.123602
https://doi.org/10.1103/PhysRevLett.118.123602
https://doi.org/10.1103/PhysRevLett.118.123602
https://doi.org/10.1103/PhysRevLett.118.123602
https://doi.org/10.1103/PhysRevLett.121.133601
https://doi.org/10.1103/PhysRevLett.121.133601
https://doi.org/10.1103/PhysRevLett.121.133601
https://doi.org/10.1103/PhysRevLett.121.133601
https://doi.org/10.1209/0295-5075/3/7/005
https://doi.org/10.1209/0295-5075/3/7/005
https://doi.org/10.1209/0295-5075/3/7/005
https://doi.org/10.1209/0295-5075/3/7/005
https://doi.org/10.1103/PhysRevA.79.053825
https://doi.org/10.1103/PhysRevA.79.053825
https://doi.org/10.1103/PhysRevA.79.053825
https://doi.org/10.1103/PhysRevA.79.053825
https://doi.org/10.1143/JPSJ.17.1100
https://doi.org/10.1143/JPSJ.17.1100
https://doi.org/10.1143/JPSJ.17.1100
https://doi.org/10.1143/JPSJ.17.1100
https://doi.org/10.1002/pssc.201200711
https://doi.org/10.1002/pssc.201200711
https://doi.org/10.1002/pssc.201200711
https://doi.org/10.1002/pssc.201200711
https://doi.org/10.1103/PhysRevA.82.033810
https://doi.org/10.1103/PhysRevA.82.033810
https://doi.org/10.1103/PhysRevA.82.033810
https://doi.org/10.1103/PhysRevA.82.033810
https://doi.org/10.1103/PhysRevB.89.085308
https://doi.org/10.1103/PhysRevB.89.085308
https://doi.org/10.1103/PhysRevB.89.085308
https://doi.org/10.1103/PhysRevB.89.085308
https://doi.org/10.1140/epjd/e2015-60266-5
https://doi.org/10.1140/epjd/e2015-60266-5
https://doi.org/10.1140/epjd/e2015-60266-5
https://doi.org/10.1140/epjd/e2015-60266-5
https://doi.org/10.1103/PhysRevA.64.063611
https://doi.org/10.1103/PhysRevA.64.063611
https://doi.org/10.1103/PhysRevA.64.063611
https://doi.org/10.1103/PhysRevA.64.063611
https://doi.org/10.1103/PhysRevLett.86.568
https://doi.org/10.1103/PhysRevLett.86.568
https://doi.org/10.1103/PhysRevLett.86.568
https://doi.org/10.1103/PhysRevLett.86.568
https://doi.org/10.1088/1367-2630/18/9/093007
https://doi.org/10.1088/1367-2630/18/9/093007
https://doi.org/10.1088/1367-2630/18/9/093007
https://doi.org/10.1088/1367-2630/18/9/093007
https://doi.org/10.1103/PhysRev.170.379
https://doi.org/10.1103/PhysRev.170.379
https://doi.org/10.1103/PhysRev.170.379
https://doi.org/10.1103/PhysRev.170.379
https://doi.org/10.1016/0030-4018(91)90194-I
https://doi.org/10.1016/0030-4018(91)90194-I
https://doi.org/10.1016/0030-4018(91)90194-I
https://doi.org/10.1016/0030-4018(91)90194-I
https://doi.org/10.1088/1367-2630/13/9/093020
https://doi.org/10.1088/1367-2630/13/9/093020
https://doi.org/10.1088/1367-2630/13/9/093020
https://doi.org/10.1088/1367-2630/13/9/093020
https://doi.org/10.1364/OPTICA.4.001363
https://doi.org/10.1364/OPTICA.4.001363
https://doi.org/10.1364/OPTICA.4.001363
https://doi.org/10.1364/OPTICA.4.001363
https://doi.org/10.1103/PhysRevA.46.4363
https://doi.org/10.1103/PhysRevA.46.4363
https://doi.org/10.1103/PhysRevA.46.4363
https://doi.org/10.1103/PhysRevA.46.4363
https://doi.org/10.1140/epjd/e2007-00210-x
https://doi.org/10.1140/epjd/e2007-00210-x
https://doi.org/10.1140/epjd/e2007-00210-x
https://doi.org/10.1140/epjd/e2007-00210-x

