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Abstract. We study the shot noise by numerically simulating phase-coherent transport through
a quantum dot. The chaotic-to-regular crossover regime of shot noise suppression is investigated
explicitly by tuning the disorder potential and the openings of the dot. Employing the Modular
Recursive Green’s Function Method we obtain results for the Fano factor in regular systems which
show a remarkable similarity to the results in chaotic systems. We argue that in the absence of
chaotic scattering diffraction at the lead openings is the dominant source of shot noise. Estimates
for the shot noise induced by this mechanism are presented, which agree with the numerical data.
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The current noise induced by the discreteness of the electron charge (“shot noise”) has
attracted attention now already for almost a century [1]. Recently this topic has resur-
faced in the field of mesoscopic physics [2, 3], where ballistic quantum transport experi-
ments [4, 5] and theoretical advances [6, 7, 8, 9, 10, 11, 12, 13] have mutually stimulated
each other. In this context shot noise has been employed to explore the crossover from a
deterministic (classical) particle picture of electron motion to a probabilistic (quantum)
description, where electrons behave as matter waves. The quantum uncertainty inherent
in the latter picture gives rise to noisy transport. In conductance through quantum dots
the correlations between electrons in the Fermi sea lead to a suppression of shot noise S
relative to the Poissonian value of uncorrelated electrons SP [14] which is customarily
expressed in terms of the Fano factor F = S/SP.
Most investigations to date have focused on quantum dots whose classical dynamics is
fully chaotic [6, 8, 9, 10, 11, 12, 14, 15, 16]. In this limit, random matrix theory (RMT)
[16] predicts a universal value for the Fano factor, F = 1/4. The applicability of this
RMT result requires, in addition to the underlying chaotic dynamics, dwell times in the
open cavity τD which are sufficiently long compared to the Ehrenfest time τE . The latter
estimates the time for the initially localized quantum wavepackets to spread all over the
width d of the cavity (typically d ≈

√
A with A area of the dot) due to the divergence of

classical chaotic trajectories. It can be estimated as [17]

τE = Λ−1 ln(d/λF) , (1)

where Λ is the Lyapunov exponent (Λ > 0 for a chaotic cavity), and λF is the de
Broglie wavelength associated with the wavenumber at the Fermi surface kF . The limit
τE/τD � 1 corresponds to the quantum (or RMT) regime and τE/τD � 1 corresponds
to the classical limit for which F = 0 is expected. For ballistic cavities in the crossover
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between these two regimes a simple conjecture for F was put forward [6],

F =1/4 exp(−τE/τD) . (2)

For cavities with a short-ranged disorder potential, an alternative crossover behavior,

F =1/4 (1+ τQ/τD)−1 , (3)

was proposed [4, 11], where τQ is a characteristic scattering time within which the
wavepacket is scattered into random direction. The quantities τQ and τE are closely
related to another as both denote the characteristic time scale for spreading of the
wavepacket by chaotic scattering either at the boundary (τE) or the interior (τQ) of the
cavity. Moreover, for short ranged disorder with a correlation length lC < λF , τQ in-
corporates, just as τE , quantum effects and depends on an effective h̄eff of the system.
The crossover from the chaotic to the regular regime is therefore predicted to be con-
trolled by a single ratio τE/τD or τQ/τD which will be a function of the size of quantum
effects (h̄eff) and the mean rate of irregular (chaotic) scattering, 〈Λ〉. The chaotic-to-
regular crossover corresponds to the limit 〈Λ〉 → 0, while the quantum-to-classical limit
involves h̄eff → 0.
One open question not yet well understood is the behavior of shot noise for motion in a
regular rather than chaotic cavity, i.e. in the limit Λ → 0. For a mixed system lower val-
ues of F have been observed [7] suggesting that for regular systems F may vanish. Taken
at face value, Eq. (2) yields F = 0 (complete suppression of shot noise) for the case of
τE → ∞ or Λ → 0 at fixed value of h̄eff. To investigate this question, we analyze a model
system that allows to study the crossover regime from chaotic to regular dynamics,
i.e. Λ → 0, explicitly. Our scattering system consists of a rectangular cavity to which two
leads of width d are attached via tunable shutters with an opening width w (see Fig. 1a).
Varying the lead openings and the disorder potential allows to tune the dwell time τD and
the mean rate of chaotic spreading of the wavepacket, 〈Λ〉, independently. The cavity re-
gion of width d and length 2d contains a disorder potential V characterized by its mean
value 〈V 〉= 0, and the correlation function 〈V (x)V (x+a)〉= 〈V 2〉exp(−a/lC). The cor-
relation length lC is typically a small fraction of the Fermi wavelength lC/λF ≈ 0.12 and
the potential strength V0 =

√
〈V 2〉 is weak, V0/EF ≤ 0.1. In the limit of vanishing dis-

order (V0 → 0) the motion inside the cavity becomes completely regular.
Our quantum calculation proceeds within the framework of the modular recursive
Green’s function method (MRGM) [18] which allows to treat two-dimensional quan-
tum dots with relatively small λF (or small h̄eff). Details are given in Ref. [13]. We
evaluate the transmission amplitudes tmn for an electron injected from the left by pro-
jecting the Green’s function at the Fermi energy G(EF) onto all modes m,n ∈ [1, . . . ,N]
in the in- and outgoing lead, respectively. The Fano factor F is then calculated from the
N-dimensional transmission matrices t [3],

F =
〈Tr t†t(

� − t†t)〉
〈Tr t†t〉 =

〈∑N
n=1 Tn(1−Tn)〉
〈∑N

n=1 Tn〉
, (4)

with Tn being the eigenvalues of t†t. The brackets 〈. . .〉 indicate that we average over 150
equidistant points in the wavenumber-range kF ∈ [40.1,40.85]×π/d, where 40 trans-
verse lead modes are open. Figure 1c displays the Fano factor as a function of the inverse
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dwell time τ−1
D . For τ−1

D → 0 (i.e. large dwell times) F approaches the universal value
1/4 irrespective of the strength of the disorder potential V0, while for shorter dwell times
F falls off gradually (Fig. 1c). The steepness of this decrease is clearly dependent on V0
and thus on the mean scattering rate 〈Λ〉. Most striking is the feature that for V0 → 0 but
long dwell times the shot noise reaches the RMT value even though the dynamics is now
entirely regular (see Fig. 1c). This observation suggests that the conjectures [Eq. (2) or
Eq. (3)] require modifications to properly account for the shot noise in the regular limit.
We argue that the key point is the wavepacket diffraction at the cavity openings which
has to be incorporated in the theoretical description of shot noise [19, 20, 21]. Note that
this feature is inherent in quantum transport and independent of the underlying regular
or chaotic dynamics [18]. Scattering due to chaotic dynamics, which lies at the core of
RMT, certainly leads to wavepacket spreading but does not constitute the only or, in
general, dominant source.
To quantify the amount of diffraction in the cavity we perform a quasi-classical Monte-
Carlo transport simulation in which we follow an ensemble of classical trajectories sub-
ject to Fraunhofer scattering at the shutter openings [19] and a random Poissonian scat-
tering process in the disorder potential region [22]. For the latter we calculate the trans-
port mean free path (τS · vF ) and the differential scattering probability (P(θ) ∼ dσ/dθ )
in first Born approximation, thus taking into account quantum diffractive scattering (for
lC · kF < 1) along the lines of Refs. [4, 11]. We find that the differential cross section is
strongly peaked at small forward scattering angles (see Fig. 1b). The modified Ehrenfest
time τ̃E which includes these diffractive corrections is drastically reduced as compared
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FIGURE 1. (a) Rectangular quantum billiard with tunable shutters and disorder potential (gray shaded
area). Tuning the opening of the shutters w, the crossover from quantum-to-classical scattering can be
investigated. (b) Normalized differential scattering probability P(θ ) ∼ dσ/dθ as calculated in first Born
approximation for the employed disorder potential. (c) Fano factor F in the quantum-to-classical crossover
regime (numerical data from the full quantum simulation for the geometry depicted in (a)). Curves shown
correspond to different strengths of the disorder potential (measured with respect to the Fermi energy EF ):
V0/EF = 0.1(�), 0.07(�), 0.05(•), 0.03(◦), 0.015(N), 0(M). A decrease from the “quantum value”
F = 1/4 for large τD towards the “classical value” F = 0 for short τD is clearly visible. The inset depicts the
theoretical prediction based on a quasiclassical simulation. Note the good agreement with the numerical
data from the full quantum calculation.
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to the conjecture in Eq. (1). For an improved estimate of the Fano factor F we addition-
ally take into account the exact dwell time distribution P(t), resulting from the quasi-
classical simulation for the particular system we study. Following [9] these ingredients
determine the Fano factor F as follows:

F = 1/4

[
1−

∫ τ̃E

0
P(t)dt

]
= 1/4

∫ ∞

τ̃E

P(t)dt . (5)

Note that this expression is applicable to chaotic as well as regular systems and valid
irrespective of whether the origin of spreading is ballistic scattering at the boundary or
diffractive scattering inside the cavity. The estimate according to Eq. (5) (see inset of
Fig. 1c) is in very good agreement with the results from the quantum calculations.
To summarize, we have numerically determined the behavior of the Fano factor F in
a realistic scattering system with a tunable disorder potential and tunable shutters. We
find that diffraction at the lead openings is sufficient to establish the RMT prediction
for shot noise suppression (F = 1/4), irrespective of regular or chaotic dynamics. The
chaotic-to-regular crossover in F can be estimated by a generalization of a previously
proposed dependence [9] on the Ehrenfest time τ̃E [Eq. (5)], provided that the definition
of the Ehrenfest time is properly modified to include diffraction.
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