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Abstract We investigate the role of disorder and diffrac-

tive scattering in the shot noise power of quantum trans-

port through a two-dimensional quantum dot. By tuning the

strength of the disorder potential and the openings of the dot,

we numerically explore the influence of quantum scattering

mechanisms on the current shot noise. For small cavity open-

ings we find the shot noise for disordered samples to be of

almost equal magnitude as for clean samples where transport

is ballistic. We explain this finding by diffractive scattering

at the cavity openings which act as strong noise sources.

Estimates for the shot noise induced by both the disorder po-

tential and the diffractive openings are presented that agree

with the numerical data.

Keywords Shot noise . Quantum dots . Disorder . Ballistic
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1 Introduction

Now almost a century ago Walter Schottky investigated

the current noise in vacuum tubes and explained this phe-

nomenon (“shot noise”) by the granularity of the electron

charge [1]. Recently this topic has resurfaced in the field of

mesoscopic physics [2, 3], as it was shown that the phase-

coherent current through low temperature conductors shows

very distinct shot noise characteristics. Ballistic quantum

transport experiments [4, 5] as well as theoretical investi-

gations [6–13] have demonstrated that the time-dependent

current shot noise contains very useful information about

the system properties of a conductor. This information has,
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e.g., been used to explore the crossover from a deterministic

(classical) particle picture of electron motion to a probabilis-

tic (quantum) description, where electrons behave as matter

waves [4,7]. Contrary to the classical vacuum tube where the

noise is due to the random emission of charges, it is the quan-

tum uncertainty inherent in phase-coherent transport which

gives rise to current shot noise in mesoscopic systems. Due

to the correlations between electrons in the Fermi sea the

mesoscopic shot noise S is suppressed relative to the Pois-

sonian value of uncorrelated electrons SP [6]. This suppres-

sion is customarily expressed in terms of the Fano factor

F = S/SP .

Most investigations to date have focused on mesoscopic

quantum dots whose dynamics is fully chaotic or fully

stochastic. In this limit random matrix theory (RMT) [14]

predicts a universal value for the Fano factor, F = 1/4. The

applicability of this RMT result requires, however, dwell

times in the open cavity, τD , which are sufficiently long com-

pared to the characteristic quantum scattering time τQ in the

cavity potential. The latter estimates the time for the initially

localized quantum wavepackets to be scattered into random

direction and thus to be spread all over the width d of the

cavity (typically d ≈ √
A with A area of the dot). The limit

τQ/τD � 1 corresponds to the quantum (or RMT) regime

and τQ/τD � 1 corresponds to the classical limit for which

F = 0 is expected. For cavities where τQ is determined by

stochastic quantum scattering, a simple conjecture for F was

put forward [4, 11],

F ≈1/4 (1 + τQ/τD)−1 . (1)

We note at this point that a similar prediction was presented

for the case that the spreading of the wavepacket in the cav-

ity is due to classical chaotic dynamics [7]. In the case we

study here, the noise source is however given by a short-range
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disorder potential and Eq. (1) should be applicable. The term

“short-range” refers to the correlation length of the disorder,

lC , which is smaller than the Fermi wavelength λF . The scat-

tering of wavepackets at this potential is thus determined by

stochastic quantum diffraction rather than by classical scat-

tering mechanisms. The strength and shape of the disorder

potential will control the amount of diffractive scattering that

enters τQ . The shot noise and its crossover from the disor-

dered (quantum) regime to the clean (classical) regime is then

determined by the ratio τQ/τD in Eq. (1).

An obvious test of the above prediction would be to simu-

late phase-coherent scattering processes on a computer. How-

ever, conventional numerical techniques suffer from a slow

convergence rate, especially for the case where many open

modes participate in the transport process. To circumvent this

difficulty an “open” dynamical kicked rotator model was re-

cently successfully used to mimic chaotic and stochastic scat-

tering in a 1D-system [9,10,15]. Experimental tests have, so

far, been limited to the regime of τQ/τD < 1 [4].

2 Numerical simulation

In the present article we explore the disordered-to-clean

crossover of shot noise by numerically simulating the full

two-dimensional quantum transport problem for the case of a

disordered cavity. In particular, we investigate the predicted

suppression of shot noise for decreasing disorder strength.

Taken at face value, Eq. (1) yields F = 0 (complete suppres-

sion of shot noise) for the case of negligible scattering rates,

i.e. for τQ → ∞. To investigate this question, we analyze a

model system that allows to study the crossover regime from

disordered to regular dynamics explicitly.

Our scattering system consists of a rectangular cavity to

which two leads of width d are attached via tunable shutters

with an opening width w (see Fig. 1(a)). Varying the lead

openings and the disorder potential allows to tune the dwell

time τD and the mean rate of spreading of the wavepacket

independently.

The cavity region of width d and length 2d contains

a disorder potential V characterized by its mean value

〈V 〉 = 0, and the correlation function 〈V (x)V (x + a)〉 =
〈V 2〉 exp(−a/ lC ). The correlation length lC is typically a

small fraction of the Fermi wavelength lC/λF ≈ 0.12 and

the potential strength V0 =
√

〈V 2〉 is weak, V0/EF ≤ 0.1 .

In the limit of vanishing disorder (V0 → 0) the motion in-

side the cavity becomes completely regular.

Our quantum calculation proceeds within the framework

of the modular recursive Green’s function method (MRGM)

[16] which allows to treat two-dimensional quantum dots

with relatively small λF (details are given in Ref. [12]). We

evaluate the transmission amplitudes tmn for an electron in-

jected from the left by projecting the Green’s function at

the Fermi energy G(EF ) onto all modes m, n ∈ [1, . . . , N ]

Fig. 1 (a) Rectangular quantum billiard with tunable shutters and dis-
order potential (gray shaded area). Tuning the opening of the shut-
ters w, the dwell time τD in the cavity can be varied. (b) Fano fac-
tor F in the quantum-to-classical crossover regime (numerical data
from the full quantum simulation for the geometry depicted in (a)).
Curves shown correspond to different strengths of the disorder po-
tential (measured with respect to the Fermi energy EF ): V0/EF =
0.1 (�), 0.07 (�), 0.05 (•), 0.03 (◦), 0.015 (�), 0 (�). A decrease
from the “quantum value” F = 1/4 for large τD towards the “classical
value” F = 0 for short τD is clearly visible. The inset depicts the the-
oretical prediction based on a quasiclassical simulation. Note the good
agreement with the numerical data from the full quantum calculation

in the in- and outgoing lead, respectively. The Fano factor

F is then calculated from the N -dimensional transmission

matrices t [3],

F = 〈Tr t†t(1 − t†t)〉
〈Tr t†t〉 =

〈 ∑N
n=1 Tn(1 − Tn)

〉
〈 ∑N

n=1 Tn

〉 , (2)

with Tn being the eigenvalues of t†t . The brackets 〈. . .〉
indicate that we average over 150 equidistant points in

the wavenumber-range kF ∈ [40.1, 40.85] × π/d, where 40

transverse lead modes are open.

3 Results and discussion

The numerical results for the Fano factor F are displayed

in Fig. 1(b) as a function of the inverse dwell time τ−1
D . For

τ−1
D → 0 (i.e. large dwell times) F approaches the universal

value 1/4 irrespective of the strength of the disorder potential

V0, while for shorter dwell times F falls off gradually. The

steepness of this decrease is clearly dependent on V0 and
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thus on the strength of disorder scattering. Most striking is

the feature that for V0 → 0 but long dwell times the shot

noise reaches the RMT value even though the dynamics is

now entirely regular (see Fig. 1(b)). This observation sug-

gests that the quantum scattering time τQ contains additional

contributions other than from disorder scattering alone. We

argue that the key point is the wavepacket diffraction at the

cavity openings which has to be incorporated in the theo-

retical description of shot noise [17–19]. Note that this fea-

ture is inherent in quantum transport and independent of the

disorder potential in the cavity [16]. Disorder scattering cer-

tainly leads to wavepacket spreading but does not consti-

tute the only or, in general, dominant source. We will show

below how to modify our estimate for the quantum scat-

tering time τQ to properly include diffraction of the cavity

openings.

To quantify the amount of diffraction in the cavity we per-

form a quasi-classical Monte-Carlo transport simulation in

which we follow an ensemble of classical trajectories sub-

ject to Fraunhofer scattering at the shutter openings [17]

and a Poissonian random scattering process in the disor-

der potential region [20]. Diffraction at the cavity openings

has been studied in detail [17, 18] and can be described

by a standard Fraunhofer diffraction analysis for electrons

which enter or leave the cavity [17]. To assess the Poissonian

scattering off the disorder we calculate the transport mean

free path (τS · vF ) and the differential scattering probabil-

ity (P(θ ) ∼ dσ/dθ ) in first Born approximation, thus taking

into account quantum diffractive scattering (for lC · kF < 1)

along the lines of Refs. [4,11]. Our simulation contains wave

spreading resulting from both the Fraunhofer injection of

classical trajectories at the shutter opening and from multiple

disorder scattering inside the cavity. The modified quantum

scattering time τ̃Q which includes the Fraunhofer corrections

is drastically reduced as compared to τQ which contains con-

tributions from disorder scattering alone. For an improved

estimate of the Fano factor F we additionally take into ac-

count the exact dwell time distribution P(t), resulting from

the quasi-classical simulation for the particular system we

study. Following [8] these ingredients determine the Fano

factor F as follows:

F = 1/4

[
1 −

∫ τ̃Q

0

P(t) dt

]
= 1/4

∫ ∞

τ̃Q

P(t) dt . (3)

The above estimate (see inset of Fig. 1b) is in very good

agreement with the results from the quantum calculations.

4 Summary

To summarize, we have numerically determined the behav-

ior of the Fano factor F in a realistic scattering system with

a tunable disorder potential and tunable shutters. We find

that diffraction at the lead openings is sufficient to establish

the RMT prediction for shot noise suppression (F = 1/4),

irrespective of disorder in the cavity. The disordered-to-

clean crossover in F can be estimated by a generalization

of a previously proposed dependence [8] on the quantum

scattering time τQ [Eq. (3)], provided that the definition of

τQ is properly modified to include diffraction at the cavity

openings.
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