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ABSTRACT

We investigate the shot noise in phase-coherent transport through quantum cavities by a two dimensional ab-initio
simulation of the scattering problem. In particular, we study the influence of quantum scattering mechanisms
on the transport statistics by tuning the strength of a disorder potential and the openings of the dot. For small
cavity openings we find the shot noise for disordered samples to be of almost equal magnitude as for clean samples
where transport is ballistic. We explain this finding by diffractive scattering at the cavity openings which act
as strong noise sources. For ballistic cavities we demonstrate the emergence of “noiseless scattering states”,
irrespective of sharp-edged entrance and exit lead mouths. Our numerical results for the onset thresholds of
these “classical” states are in very good agreement with analytical estimates.
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1. INTRODUCTION

Now almost a century ago Walter Schottky investigated the shot noise in vacuum tubes and explained this
phenomenon by the granularity of the electron charge.1 Recently this topic has resurfaced in the field of meso-
scopic physics,2, 3 as it was shown that the phase-coherent current through low temperature conductors shows
very distinct shot noise characteristics. Ballistic quantum transport experiments4, 5 as well as theoretical in-
vestigations6–15 have demonstrated that the time-dependent current shot noise contains very useful information
about the system properties of a conductor. This information has, e.g., been used to explore the crossover from
a deterministic (classical) particle picture of electron motion to a probabilistic (quantum) description, where
electrons behave as matter waves.4, 6–15 Contrary to the classical vacuum tube where the noise is due to the
random emission of charges, it is the quantum uncertainty inherent in phase-coherent transport which gives
rise to current shot noise in mesoscopic systems. Due to the correlations between electrons in the Fermi sea
the mesoscopic shot noise S is suppressed relative to the Poissonian value of uncorrelated electrons SP .6 This
suppression is customarily expressed in terms of the Fano factor F = S/SP .

Most investigations to date have focused on mesoscopic quantum dots whose dynamics is fully chaotic or fully
stochastic. In this limit random matrix theory (RMT)16 predicts a universal value for the Fano factor, F = 1/4.
The applicability of this RMT result requires, however, dwell times in the open cavity, τD, which are sufficiently
long compared to the characteristic quantum scattering time τQ in the cavity potential. The latter estimates the
time for the initially localized quantum wavepackets to be scattered into random direction and thus to be spread
all over the width d of the cavity (typically d ≈ √

A with A area of the dot). The limit τQ/τD � 1 corresponds
to the quantum (or RMT) regime and τQ/τD � 1 corresponds to the classical limit for which F = 0 is expected.
For cavities where τQ is determined by stochastic quantum scattering at a disorder potential, a simple conjecture
for the quantum-to-classical crossover of F was put forward,4, 11

F ≈1/4 (1 + τQ/τD)−1 . (1)

We note at this point that a similar prediction was presented for the case that the spreading of the wavepacket
in the cavity is due to classical chaotic dynamics.7 In the case we study here, the noise source is however given
by a short-range disorder potential and Eq. (1) should be applicable. The term “short-range” refers to the
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Figure 1. (a) Rectangular quantum billiard with tunable shutters and disorder potential (gray shaded area). Electrons are
injected from the left into the cavity region of size A = 2d2, width 2d and height d. Tuning the opening of the shutters w
and the strength of the disorder potential V0, the crossover from quantum-to-classical and disordered-to-ballistic scattering
can be investigated, respectively. (b) Normalized differential scattering probability P (θ) ∼ dσ/dθ as calculated in first
Born approximation for the disorder potential in (a). Note the two prominent peaks at small angles, indicating a strong
bias towards forward-scattering (similar to observations in the experiment17).

correlation length of the disorder, lC , which must be smaller than the Fermi wavelength λF . The scattering
of wavepackets at this potential is thus determined by stochastic quantum diffraction rather than by classical
scattering mechanisms. The strength and shape of the disorder potential will control the amount of diffractive
scattering that enters τQ. The shot noise and its crossover from the disordered (quantum) regime to the clean
(classical) regime is eventually determined by the ratio τQ/τD in Eq. (1).

An obvious test of the above prediction would be to simulate phase-coherent scattering processes on a com-
puter. However, conventional numerical techniques suffer from a slow convergence rate, especially for the case
where many open modes participate in the transport process. To circumvent this difficulty an “open” dynam-
ical kicked rotator model was recently successfully used to mimic chaotic as well as stochastic scattering in a
1D-system.9, 10, 15, 18

2. NUMERICAL SIMULATION

The aim of the present paper is to investigate the above questions by numerically simulating the full two-
dimensional quantum transport problem for the case of a disordered cavity. Our quantum calculation proceeds
within the framework of the modular recursive Green’s function method (MRGM)19 which overcomes some of
the limitations of conventional techniques and allows us to perform transport calculations for two-dimensional
quantum dots with relatively small λF . By decreasing the disorder strength in our quantum cavity, we can
explore the predicted suppression of shot noise to the limit of vanishing disorder amplitude where transport
is ballistic. Note that in the ballistic limit of this crossover one might expect a complete suppression of shot
noise (F = 0), corresponding to the limit τQ → ∞ in Eq. (1). We will demonstrate in the following that this
noiseless classical limit is not realized in realistic scattering systems, as also other noise sources will contribute
significantly.

Our scattering system consists of a rectangular cavity to which two leads of width d are attached via tunable
shutters with an opening width w (see Fig. 1a). The cavity region of width d and length 2d contains a static on-
site disorder potential V characterized by its mean value 〈V 〉 = 0, and the correlation function 〈V (x)V (x+a)〉 =
〈V 2〉 exp(−a/lC). As required for a short-range disorder potential, we choose the correlation length lC to be a
small fraction of the Fermi wavelength lC/λF ≈ 0.12. Setting the potential strength V0 =

√〈V 2〉 to be weak,
V0/EF ≤ 0.1, we avoid that the electrons show any kind of localization in the disorder. Separately varying
the lead openings and the amplitude of the disorder potential allows us to tune the dwell time τD and the rate
of stochastic scattering in the cavity independently of each other. Note that in the ballistic limit of vanishing
disorder (V0 → 0) our cavity becomes a clean rectangular box featuring only regular (integrable) classical
dynamics. We evaluate the transmission amplitudes tmn for an electron injected from the left by projecting
the Green’s function at the Fermi energy G(EF ) onto all modes m, n ∈ [1, . . . , N ] in the in- and outgoing lead,
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Figure 2. (a) Fano factor F for the cavity shown in Fig. 1a as a function of the shutter opening ratio
w/d (both cavity openings always have the same size). Curves for different disorder amplitudes: V0/EF =
0.1 (�), 0.07 (�), 0.05 (•), 0.03 (◦), 0.015 (�), 0 (�). The universal “quantum” value F = 1/4 [as predicted by ran-
dom matrix theory (RMT)] is well reproduced for small shutter openings (large large τD); large deviations towards the
“classical value” F = 0 occur for large cavity openings (short τD). (b) Fano factor as a function of the disorder amplitude
V0. Curves for different shutter openings: w/d = 0.1 (�), 0.2 (�), 0.3 (•), 0.4 (◦), 0.5 (�), 0.55 (�). The black vertical
arrows indicate two crossover trajectories (1) and (2) as discussed in the text. Insets of (a) and (b) depict the theoretical
prediction (without fit parameters) based on a quasiclassical simulation and Eq. (3). Note the good agreement with the
numerical data from the full quantum calculation.

respectively. The Fano factor F is then calculated3 from the N -dimensional matrix of transmission amplitudes
t,

F =
〈Tr t†t(1 − t†t)〉

〈Tr t†t〉 =
〈∑N

n=1 Tn(1 − Tn)〉
〈∑N

n=1 Tn〉
, (2)

with Tn being the eigenvalues of t†t. The brackets 〈. . .〉 indicate that we average over 150 equidistant points in
the wavenumber-range kF ∈ [40.1, 40.85]× π/d, where 40 transverse lead modes are open. We choose a nearest-
neighbor spacing ∆x = ∆y in the Cartesian discretization grid such that the Fermi wavelength is well resolved
by a large number of grid points, λF ≈ 32∆x. With these settings we have a total number of ∼ 8.5 × 105 grid
points in the interior of the cavity.

3. SHOT NOISE RESULTS

The numerical results for the Fano factor F are displayed in Fig. 2 as a function of the shutter opening w/d
(Fig. 2a) and the disorder amplitude V0 (Fig. 2b). For small shutter openings w/d → 0 (i.e. large dwell times)
F approaches the universal value 1/4 irrespective of the strength of the disorder potential V0, while for wider
openings (shorter dwell times) F falls off gradually. The steepness of this decrease is clearly dependent on V0 and
thus on the strength of disorder scattering. Most striking is the feature that for V0 → 0 but long dwell times the
shot noise reaches the RMT value even though the dynamics is now entirely regular. In Fig. 2b this feature is
reflected by the fact that the Fano factor F does not decay to zero even as V0 → 0 (compare also to similar results
obtained from magnetotransport calculations13). This observation suggests that either the quantum scattering
time τQ contains additional contributions other than from disorder scattering alone, or that Eq. (1) requires a
modification to properly account for the shot noise in the ballistic limit. We argue that the key point here is the
wavepacket diffraction at the cavity openings which has to be incorporated in the theoretical description of shot
noise.20, 21 Note that this feature is inherent in quantum transport and independent of the disorder potential in
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the cavity. Disorder scattering certainly leads to wavepacket spreading but does not constitute the only or, in
general, dominant source. As will be shown below, incorporating diffraction at the cavity openings necessitates
modifications both to Eq. (1) and to an estimate for the quantum scattering time τQ.

To quantify the total amount of diffraction by all different scattering sources in the cavity we perform a
quasi-classical Monte-Carlo transport simulation in which we follow an ensemble of classical trajectories subject
to diffractive scattering at the shutter openings20 and to a Poissonian scattering process in the disorder potential
region.22 Diffraction at the cavity openings has been studied in detail20, 21 and can be described by a standard
Fraunhofer diffraction analysis for electrons which enter or leave the cavity.20 In our quasi-classical simulation we
therefore choose the initial momentum distribution of the injected electron trajectories to follow the analytical
Fraunhofer diffraction patterns. To assess the Poissonian scattering off the disorder we calculate the transport
mean free path (τS · vF ) and the differential scattering probability (P (θ) ∼ dσ/dθ) in first Born approximation.
We find that the differential cross section is strongly peaked at small forward scattering angles (see Fig. 1b) rather
than being uniformly distributed among all angular directions (as one would expect for s-wave scattering). Our
quasi-classical simulation allows us to determine a modified quantum scattering time τ̃Q as the time it takes for
the ensemble of trajectories to acquire a mean spread of the order of the cavity width d under the influence of
both Fraunhofer diffraction and multiple disorder scattering events in the cavity. In other words, the time τ̃Q

is extracted from our numerics by checking at which moment in time the mean spreading ∆r(t) satisfies the
following relation: ∆r(τ̃Q) = 〈(�r − 〈�r 〉)2〉1/2 = d . We find that the inclusion of Fraunhofer scattering leads to
a drastic reduction of the quantum scattering time τ̃Q. An important consequence of this modification is that
the parameter τ̃Q is now of comparable magnitude or even smaller than the time τ0 beyond which a universal
decay behavior for P (t) can be expected to set in. In this regime (where τ̃Q � τ0) system-specific deviations of
the dwell time distribution from a universal decay law are more pronounced than characteristic mean differences
between ballistic and stochastic cavities. For our estimate of the Fano factor F we therefore take into account
the exact dwell time distribution P (t), resulting from the quasi-classical simulation for the particular system we
study. These ingredients determine the Fano factor F as follows:8

F = 1/4

⎡

⎢
⎣1 −

eτQ∫

0

P (t) dt

⎤

⎥
⎦ = 1/4

∞∫

eτQ

P (t) dt . (3)

Note that this expression is applicable to disordered, chaotic as well as regular systems and should therefore be
valid irrespective of whether the origin of spreading is ballistic scattering at the boundary or diffractive scattering
inside the cavity. To check the validity of this approach, we compare the estimates obtained from Eq. (3) with
the results from the full quantum calculation. As shown in the insets of Fig. 2a,b, we find the quasi-classical
results to be in very good agreement with the numerical values from the quantum solution of the transport
problem.

4. BALLISTIC VERSUS STOCHASTIC TRANSPORT

As displayed in Fig. 2a,b the shot noise power is increased by both an increase in the disorder strength V0 as
well as by a decrease in the shutter openings w/d. To illustrate the similarity between the effects of varying V0

and w/d, let us compare two “crossover trajectories” in the two-dimensional parameter space of V0 and w/d.
We choose both trajectories to start from the same parameter values of vanishing disorder strength, V0 = 0, and
an opening ratio w/d = 0.5. As expected, the Fano factor F at this point in the ballistic limit (V0 = 0) is rather
low, F ≈ 0.1. Consider now the increase of F either by (1) decreasing the shutter opening (without adding
any disorder) or by (2) increasing the disorder strength in the cavity (at a fixed value of the cavity opening).
Both crossovers trajectories (1),(2) are indicated by black arrows in Figs. 2a,b and apparently give rise to a
very similar evolution of the Fano factor F . We therefore conclude that characteristic differences between the
crossovers (1) and (2) are hard to pin down in the shot noise power. At first glance this finding might seem
surprising, especially in view of the fact that in the absence of disorder [as in crossover (1)] shot noise suppression
was predicted to be mediated by so-called “noiseless scattering states”.8 However, in the presence of disorder
[as in crossover (2)] these noiseless states should be entirely suppressed. Noiseless (or deterministic) transport
channels are expected to appear as soon as classical transmission bands20 in phase space can be resolved by the
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Figure 3. Integrated distribution function of transmission eigenvalues, I(T ), for the cavity shown in Fig. 1a. (a) Crossover
from large to small shutter openings as indicated by arrow (1) in Fig. 2b (at zero disorder, V0 = 0): I(T) for w/d =
0.5, 0.4, 0.3, and 0.2 (top to bottom). (b) Crossover from clean to disordered samples as indicated by arrow (2) in Fig. 2a
(at half-opening, w/d = 0.5): I(T) for different disorder potentials V0 = 0, 0.03EF , 0.05EF , and 0.1EF (top to bottom).
The pronounced difference between (a) and (b) near T = 1 is highlighted in the insets.

ballistic scattering process.8, 10 The resulting separation of phase space in noiseless classical and noisy quantum
channels is in sharp contrast to the case of cavities with bulk disorder where the formation of noiseless states is
hindered by stochastic scattering and all transporting channels contribute to shot noise.11, 15 As the crossovers
(1) and (2) therefore can be expected to be governed by different scattering scenarios, we should be able to find
signatures of these differences.

To uncover the presence and the decay of noiseless states in our numerical results we decide to investigate
how the transmission eigenvalues Tn are statistically distributed for the two crossovers (1) and (2).10, 11, 15 For
classically chaotic systems with a large number of transporting channels (N � 1) and time reversal symmetry,
random matrix theory (RMT) predicts that the distribution function of transmission eigenvalues, P (T ), follows
a bimodal universal form,16

PRMT (T ) = π−1 [T (1 − T )]−1/2, T ∈ [0, 1] for which F = 1/4 . (4)

The appearance of “noiseless states” in ballistic scattering systems however entails a modification8, 10 to this
formula, especially around the classical transmission eigenvalues 0 or 1,

Pα(T ) = α PRMT (T )+(1−α) [δ(T ) + δ(1−T )]/2 for which F = α/4 . (5)

The weight (1 − α) of the “noiseless states” in this “ballistic crossover” is determined by the degree with which
the quantum scattering process can resolve finite-size transmission bands in the classical transport phase space.
Ideally, the continuous crossover parameter α can take all values between the classical limit α = 0 (for λF /d → 0)
and the quantum limit α = 1 of low mode numbers, respectively.

In the presence of a uniform disorder with a correlation length smaller than the electron wavelength λF

(“short-range bulk disorder”) the formation of noiseless states is suppressed by stochastic scattering, leading to
a different crossover form,11

P γ(T ) = PRMT (T ) γ

1∫

−1

du
(1 − u2)|u|(2γ−1)

(1 + u)2 − 4Tu
, (6)

resulting in Eq. (1) with γ = τQ/τD. This stochastic crossover, Eq. (6), interpolates between the same limiting
cases PRMT (for γ → 0) and Pcl = [δ(T ) + δ(1 − T )]/2 (for γ → ∞, i.e. vanishing disorder) as the ballistic
crossover in Eq. (5). Note that in the presence of both ballistic and stochastic scattering sources, Eqs. (5)
and (6) should be appropriately combined to be predictive for our scattering system.14 Equations (5) and (6),
however, indicate qualitatively the different ways in which the transition between the limits PRMT and Pcl are
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Figure 4. Quantum-to-classical correspondence in the cavity of Fig. 1a (no disorder, V0 = 0): We compare the classi-
cal Poincaré surface of section as recorded at the left cavity opening (transmitted/reflected trajectories represented by
black/white regions) with the cumulative Husimi distributions H(x, p) of strongly transmitted scattering states, Eq. 7
(see color scale on bottom). The black frames plotted in the upper left corner of the Husimi distributions indicate the size
of the Planck cell h. For the configuration with large shutter openings (w/d = 0.4, top two bars) the size of the Planck
cell is larger than the largest transmission band in the Poincaré surface of section. “Noiseless scattering states” appear
in H(x, p) in form of pronounced density enhancements at the position of the largest transmission bands and a strongly
reduced amplitude elsewhere. In the bottom two bars the shutter openings (w/d = 0.2) are reduced, giving rise to a
classical phase space structure in which all transmission bands are smaller than the Planck cell h. For this configuration
the Husimi distribution H(x, p) practically covers the whole phase space, with only small enhancements near the largest
transmission bands.

realized in the ballistic and the stochastic limit: In the ballistic case, noiseless states should appear in P (T )
in the form of eigenvalues that accumulate right at the classical values T = 0 and T = 1. Due to stochastic
scattering, such accumulations should be suppressed in the presence of disorder.

We now search for signatures of these differences in the numerical results for P (T ) as we record them along
the crossover trajectories (1) and (2). In order to better resolve the behavior of P (T ) near the crucial value T = 1
we plot the integrated eigenvalue distribution10, 11, 15 I(T ) =

∫ 1

T P (τ)dτ . At those cavity parameters V0 = 0 and
w = d/2 from which both trajectories (1) and (2) start out, conditions are very favorable to the appearance of
noiseless scattering channels. Accordingly, we indeed find that I(T ) features a very pronounced offset at T ≈ 1
(see Fig. 3a), corresponding to a statistically significant portion of effectively noiseless eigenvalues T > 0.999.
These classical transmission eigenvalues should be due to direct scattering processes which connect the entrance
with the exit in such a way that the cavity dwell time τD is minimized. In crossover (1) the weight of these
direct processes is now gradually reduced by a decrease of the the cavity openings w. We should therefore find
that also the offset in I(T ) is gradually reduced in this crossover. Our numerical results (Fig. 3a) indeed confirm
this reasoning, demonstrating how the distribution I(T ) shifts towards its RMT-limt [Eq. (4)] for w → 0. This
behavior is all the more interesting as our sharp cavity openings do give rise to diffractive scattering12, 20, 21 which
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Figure 5. Classical phase space and Husimi distribution H(x, p) for the cavity of Fig. 1a at fixed opening ratio w/d = 0.3
(same color coding as in Fig. 4). Top two bars: No disorder. Bottom bar: Moderate disorder, V0 = 0.1EF . Bulk disorder
destroys the appearance of noiseless states due to stochastic scattering.

might suppress the formation of noiseless states. Our observation suggests, however, that noiseless transmission
can still occur when scattering states effectively bypass any diffractive corners.11, 15 In tcrossover (2) the evolution
of I(T ) should be different: Starting from the same initial values V0 = 0 and w = d/2 as for crossover (1), we now
gradually increase the bulk disorder strength up to values of V0 = 0.1×EF . Bulk disorder cannot be bypassed by
any transmitting state and should therefore destroy the noiseless channels and, consequently, the offset in I(T ).
We find that already a small disorder potential (V0 = 0.03×EF ) suppresses the offset in I(T ) entirely (Fig. 3b).
With higher values of V0 we reach the RMT-limit for I(T ). The striking difference between the ballistic crossover
(1) in Fig. 3a and the stochastic crossover (2) in Fig. 3b is best visualized by zooming into the distribution I(T )
at values close to T = 1 where the gradual vs. ”sudden” suppression of the offset becomes most apparent (see
insets in Figs. 3a,b). The observation that I(T ) depends on the specific character of the diffractive scattering
(”bulk vs. surface disorder”) is in line with recent investigations.10–12, 14, 15 To the best of our knowledge, the
present results explicitly demonstrate for the first time in a genuine 2D system, how these different noise sources
influence the emergence of noiseless scattering states.

The above results should also be reflected in the degree with which the quantum scattering process can
resolve the underlying classical phase space. To investigate this issue explicitly, we compare Husimi distributions
of scattering states with the Poincaré surface of section recorded at the entrance lead mouth.9 We calculate the
cumulative Husimi function containing those eigenstates |Ti〉 of t†t which correspond to the largest transmission
eigenvalues Ti within a given energy interval,

H(x, p) =
M∑

i

Hi(x, p) =
M∑

i

|〈Ti|x, p〉|2 . (7)

|x, p〉 is a coherent state of minimum uncertainty with its peak at the position x, p and the number of eigenstates
|Ti〉 that contribute to the above sum is chosen as M = 2N . In line with our calculations for the integrated
eigenvalue distribution I(T ) (see Fig. 3), we now probe how the cavity opening and disorder strength affect
the distribution H(x, p). In our calculations we keep the electron energy fixed in the averaging interval kF ∈
[40.1, 40.85]× π/d and vary the cavity opening w [as in crossover (1)] or, alternatively, the disorder strength V0

[as in crossover (2)].
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In the ballistic crossover (1) we can obtain a good measure for the onset thresholds of the “noiseless” states by
comparing the size of the Planck cell h (indicated by the black frames in Fig. 3) to the area Aband of the largest
transmission band (see large black regions in the classical Poincaré surface). By tuning the cavity openings at
fixed energy EF we change the size of Aband at a fixed value of h. When these two phase space areas are equal
in size, Aband = h, we can therefore obtain a threshold value for the appearance of the first noiseless state in
terms of the cavity opening: w/d ≈ 0.32. Comparing this estimate with our numerical results for H(x, p) (see
Fig. 4) yields very good agreement: Whereas for an opening of w/d = 0.2 < 0.32 the Husimi function H(x, p)
looks rather flat (Fig. 4 bottom), for w/d = 0.4 > 0.32 (Fig. 4 top) the function H(x, p) displays very clear
enhancements around the largest transmission bands and a strongly reduced amplitude elsewhere. Since the
largest transmission bands correspond to the classical “direct scattering processes”, our results confirm that the
noiseless states are indeed caused by direct processes with very short dwell times τD.

Whereas the degree of quantum-to-classical corrspondence is remarkably good in the ballistic limit, the
presence of disorder [as in crossover (2)] destroys this correspondence. In Fig. 5 we demonstrate this behavior by
comparing the Husimi distribution for a ballistic and a disordered cavity, respectively. We find that, as expected,
the bulk disorder in the cavity destroys any noiseless states by strongly reducing any pronounced enhancements
which would otherwise be present in H(x, p). The suppression of the noiseless states, in turn, impairs the degree
of quantum-to-classical correspondence of the scattering process.

5. OUTLOOK

In our eyes it would be interesting to study how the above crossovers are reflected in transport quantities like
the weak localization correction to the conductance or the parametric conductance fluctuations. For both these
quantities it was recently investigated how the emergence of noiseless scattering states modifies the previously
established predictions from random matrix theory.10, 18 The numerical model presented in this manuscript
should allow to test these predictions as well as the influence of disorder in detail. Note that such investigations
could also be extended to ballistic cavities with regular vs. chaotic classical dynamics, in line with recent shot
noise studies on such systems.12–14, 23–25

6. SUMMARY

To summarize, we have numerically determined the behavior of the Fano factor F in a realistic scattering
system with a tunable disorder potential and tunable shutters. We find that diffraction at the lead openings is
sufficient to establish the RMT prediction for shot noise suppression (F = 1/4), irrespective of disorder in the
cavity. The disordered-to-ballistic crossover in F can be estimated by a generalization of a previously proposed
dependence8 on the quantum scattering time τQ [Eq. (3)], provided that the definition of τQ is properly modified
to include diffraction at the cavity openings. We find specific signatures of ballistic vs. stochastic scattering in
the distribution of transmission eigenvalues T near the classical values T = 0, 1. We thereby provide the first
evidence for “noiseless scattering states”8 in genuine 2D-cavities and confirm predictions on the decomposition
of the electronic flow in a classical and a quantum component.10 The numerically determined onset thresholds
for the “classical” states are in very good agreement with analytical estimates based on a classical phase space
analysis. As anticipated, noiseless scattering states disappear in the presence of bulk disorder which acts as a
source of stochastic scattering.11
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