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ABSTRACT

A new formalism [1,2] for calculating exact steady-state non-linear multi-mode lasing states for complex
resonators 1s developed and applied to conventional edge-emitting lasers and to lasers with chaotic or random
cavities. The theory solves a long-standing problem in lasing theory: how to describe the multi-mode lasing
states of an open cavity. Moreover it includes the effects of mode competition and spatial hole-burning to all
orders within the approximation of stationary inversion. Lasing modes are expanded in terms of sets of
biorthogonal “constant flux™ (CF) states and satisfy a self-consistent equation. For high finesse cavities each
lasing mode 1is proportional to one CF state which inside the cavity behaves like a linear resonance; for low
finesse as in a random laser, novel composite modes are predicted which do not correspond to any passive cavity
resonance.
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1. INTRODUCTION

The nature of the electric field in a laser well above threshold has been a long-standing question in laser theory,
complicated by the difficulty of treating exactly both the non-linear interaction and the openness of a laser
cavity. Recently the authors have proposed a framework for solving this problem based on the solution of a set
of non-linear integral equations for the lasing modes [1,2] and have applied it to a simple low-finesse edge-
emitting laser [2]. In the current short paper we describe the basic concepts of the new approach, their
application to conventional lasers, and the initial stages of an application to random lasers. To our knowledge
this will be the first calculation of the lasing modes of a realistic coherent feedback random laser [3].

2. SELF-CONSISTENT EQUATION FOR MULTI-MODE LASING

In refs [1,2] we considered the semiclassical Maxwell-Bloch equations in the standard rotating wave and slowly
varying envelope approximations for a medium with uniform gain confined in a background (host medium) of

arbitrary spatially varying index of refraction, n°(x) = £(x). We assumed a general multi-periodic form for the
electric field e(x,f)= Z#‘P #(x)eﬂg"i , made the rather general approximation of stationary inversion, and
showed that the non-linear lasing modes we were looking for satisfy a set of self-consistent integral equations,
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where g, = g(€),) is the gain profile evaluated at the lasing frequency, D, is the scaled pump strength, ¥, is
the transverse relaxation rate of the atomic line and g 1s the dipole matrix element (henceforth we will use only

wavevector &, and not frequency). G 1s the Green function of the cavity wave equation

1
e(x)

(k, = @ /c where @, 1s the atomic transition frequency),with spectral representation
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This Green function satisfies the non-hermitian boundary condition that it contains only outgoing waves at

infinity [1]. Due to this the functions in the numerator of its spectral representation form a dual set of
biorthogonal linear solutions of the homogeneous cavity wave equation [1] with only outgoing waves (¢, ) or

incoming (@,) waves at infinity. These solutions, which we refer to as constant flux (CF) states, have complex-

wavevectors (amplifying or absorbing) inside the cavity and the real (flux-conserving) wavevector &, outside
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the cavity. The set {g,} is complete and can be used to express any lasing mode, W, (x) = Zaﬁgoﬁ (x). Note

that these states are not the resonances of the cavity, which have complex wavevectors even outside the cavity
and are not an appropriate set for expressing the lasing state. In ref. [1] it was shown that when the cavity has
high finesse a single CF state represents the lasing mode, but in a low finesse cavity [2] we find that several CF
states contribute to the lasing state, particularly far above threshold. This new method for calculating exact non-
linear lasing states should be useful across the range of complex cavity lasers currently being studied: wave-
chaotic microcavity lasers [4-6], random lasers [3,7,8] and photonic bandgap lasers [9,10]. By expanding in CF
states and truncating over some reasonable range of wavevectors the self-consistent lasing equation can be

expressed in terms of the complex vector of components of the CF states, a”, in the form [2]:
a* =D I ({a" ;. {k,}) (4
where F is an infinite-order non-linear function of {¢"} This defines a non-linear map of the vector a* whose

fixed points are the lasing solutions. Note that the map of a” depends on all the other non-zero a”, reflecting
the effects of modal interactions and spatial hole-burning.

3. RESULTS FOR 1D EDGE-EMITTING LASER
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Figure 1. (a) Convergence and solution of the multimode lasing map for 1D edge emitting laser resonaior of
length a=1, index n, =1.5, atomic frequency k, =19.89 and gain width y, = 4.0 vs. pump D,. Three modes
lase in this range. At threshold they correspond to CF states m = 8,910 with threshold lasing frequencies
k9 =18.08,k° =1991, and k™ =21.76, and non-interacting thresholds D =1.204, D{” =1.445,
DP =1.482 (green dots). k' =k, and m=9 and thus has the lowest threshold Due to mode competition,
modes 2,3 do not lase until much higher values (D, =2.25,2.53). Each mode is represented by an 1l
component vector of CF states; we plot the sum of |a, | vs. pump D,. Below threshold the vectors flow to zero
{biue dots). For D, 21.204 the sum flows (red dots) to a non-zero value (black dashed line), and above
D, = 225,253, two additional non-zero vector fixed points (modes) are found (convergence only shown for
modes 1,2). (b) Non-linear electric field intensity for this laser in the single-mode regime (y, =05,D, =9.) The
full field (red line) has an appreciably larger amplitude at the output x=a than the “single-pole”
approximation (blue) which neglects the sideband CI components. Upper inset: The ratio of the two largest CF
sideband components to that of the central pole for n, =1.5 (O, x) and 1, =3 {0, +) vs. pump strength D,.
Lower inset: schemualic of the edge-emiliing laser cavity.

To test this new formalism we apply it first to a simple one-dimensional edge-emitting laser consisting of a
perfect mirror at the origin and a dielectric interface as x=a. Fig. 1 a shows the calculation of the vectors a by
iterative solution of this equation for this 1D uniform index laser [2]. We are able to find the exact linear
(saturation) behavior of the output intensity far above threshold. Our results show that mode competition has
a large effect on the higher thresholds, as the thresholds for the 2nd and 3rd mode are increased by factors of 4 or
more. The solution vector 1s dominated by three CF states, one “central pole” and the two nearest in frequency
on each side (spatial “sidebands™); 1 b shows that neglecting these sidebands leads to a 50% underestimate of the
output power of the mode well above threshold.
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Figure 2. Microdisk laser with index of refraction n, =1.5 in which voids with n=1 are placed randomly. The

radius of the disk is R=1 and the external frequency k=30. (a) Configuration of refractive index n in the
disk. The black grid indicates the employed polar-coordinate discretization.[7] (b) The intensity of a constant-
Slux state corresponding to the eigenvalue k, =30.042—0.209i is shown in the radial interval v e [0,2R]. (c)

Distribution of CF-eigenvalues k, in an interval around Re(k,). Note the mean eigenvalue spacing in the
interval is =0.03 while the mean value of the absolute value of the imaginary part Im(k, ) <0 is =0.3 so the

random laser cavity has fractional finesse [ =0.1.

4. RANDOM LASERS

A major puzzle has been how to understand the lasing modes of a random cavity in the diffusive (delocalized)
regime when the linear problem has no distinct resonances (cavity finesse f is parametrically smaller than
unity), yet the lasing mode has a narrow line and Poisson photon statistics well above threshold [3,7]. Our
formalism suggests that in this case 1/f >1 CF states contribute almost equally to the lasing state, which thus

does not correspond to any single solution of the linear wave equation, but is instead a “composite” mode. To
demonstrate this we have defined the following model: a circular disk of gain material of radius R contains
arandomly distributed group dielectric "particles" of a certain density. (This is similar to the ZnO nanoparticle
clusters studied by Cao, et al. [3] except that we take the clusters to terminate on a circular boundary and assume
gain everywhere in the cluster for convenience). The non-hermitian CF boundary condition is then expressed by
the condition that at the cluster boundary the solution is continuous and may be expressed as a superposition of
only outgoing Hankel functions of wavevector k, . This calculation can be discretized and expressed as a non-

symmetric eigenvalue problem [11]. An example of a single random CF state and a typical CF spectrum are
shown in Fig. 2. It is evident that we are in the regime of fractional finesse (resonance width larger than
spacing). Thus we expect lasing modes to be superpositions of many such random CF states, the “composite
modes” discussed above.
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Figure 3. Lefi: distribution of index n=1.5 “particles” defining the random laser cavity. Center: false color
representation of the vandom lasing state. Right: Distribution of components |a, | of the 8 CF states which

contribute substantially to this lasing solution. =0.5,k, =10,k =10.0725 in units of the inverse cavity radius
(r=1), D, =40.0.

Recently we have succeeded in implementation and solution of the self-consistent equation (1) for this model.
An example of single-mode random lasing is given in Fig. 3 above. Hight CF states contribute significantly to
the random lasing mode at a pump strength three times the threshold pump strength, illustration the emergence
of composite modes in a laser cavity with no sharp resonances at all {fractional finesse). Future work will
analyze the statistical properties of the first and higher thresholds and of the lasing states in space and in
frequency.
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