
Theory of the Spatial Structure of Non-linear Modes

in Conventional and Random Lasers
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2Department of Applied Physics, P.O. Box 208284, Yale University, New Haven, CT 06520-8284, USA

tureci@phys.ethz.ch
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The nature of the electric field in a laser well above threshold has been a long-standing question in laser
theory, complicated by the difficulty of treating exactly both the non-linear interaction and the openness
of a laser cavity. Recently the authors have proposed a framework for solving this problem exactly based
on the solution of a set of non-linear integral equations for the lasing modes1, 2 and have applied it to a
simple low-finesse edge-emitting laser.2 In the current short paper we describe the basic concepts of the new
approach, their application to conventional lasers, and the initial stages of an application to random lasers.
To our knowledge this will be the first calculation of the lasing modes of a realistic coherent feedback random
laser.3

In refs. 1, 2 we considered the semiclassical Maxwell-Bloch equations in the standard rotating wave and
slowly varying envelope approximations for a medium with uniform gain confined in a background (host
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Fig. 1. (a) Convergence and solution of the multimode lasing map for 1D edge emitting
laser resonator of length a = 1, index n0 = 1.5, atomic frequency ka = 19.89 and gain
width γ⊥ = 4.0 vs. pump D0. Three modes lase in this range. At threshold they correspond

to CF states m = 8, 9, 10 with threshold lasing frequencies k
(8)
t = 18.08, k

(9)
t = 19.91, and

k
(10)
t = 21.76, and non-interacting thresholds D

(9)
0 = 1.204, D

(10)
0 = 1.445, D

(8)
0 = 1.482

(green dots). Since k
(9)
t is closest to ka, mode m = 9 thus has the lowest threshold. Due

to mode competition, modes 2,3 do not lase until much higher values (D0 = 2.25, 2.53).
Each mode is represented by an 11 component vector of CF states; we plot the sum of |am|2

vs. pump D0. Below threshold the vectors flow to zero (blue dots). For D0 ≥ 1.204 the
sum flows (red dots) to a non-zero value (black dashed line), and above D0 = 2.25, 2.53,
two additional non-zero vector fixed points (modes) are found (convergence only shown for
modes 1,2). (b) Non-linear electric field intensity for this laser in the single-mode regime
(γ⊥ = 0.5, D0 = 9. ) The full field (red line) has an appreciably larger amplitude at the
output x = a than the “single-pole” approximation (blue) which neglects the sideband CF
components. Left inset: The ratio of the two largest CF sideband components to that of
the central pole for n0 = 1.5 (�, ×) and n0 = 3 (�,+) vs. pump strength D0. Right inset:
schematic of the edge-emitting laser cavity.
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medium) of arbitrary spatially varying index of refraction, n(x). We assumed a general multi-periodic form
for the electric field e(x, t) =

∑
µ Ψµ(x)e−iΩµt and showed that the stationary non-linear lasing modes we

were looking for satisfy a set of self-consistent integral equations,

Ψµ(x) =
i
4πk2

a
d2

~
D̃0

−iΩµ + γ⊥

∫
D

dx
′

G(x, x′|Ωµ)Ψµ(x′)

1 +
∑

ν g(Ων)|Ψν(x′)|2
, (1)

where g(Ωµ) is the gain profile evaluated at the lasing frequency, D is the cavity domain and G is the Green
function of the cavity wave equation [∇2 + n2(x)k2

µ] G(x, x′|ω) = δ3(x−x
′) with purely outgoing boundary

conditions and kµ = Ωµ/c is the wavevector of the lasing solution at infinity. The remaining variables are:
ka = ωa/c where ωa is the atomic transition frequency, γ⊥ is the homogeneous broadening of the gain
medium, d is the dipole matrix element, and D̃0 is the pump strength.

This non-hermitian outgoing cavity Green function can be expressed in a spectral representation in terms
of a dual set of biorthogonal linear modes,1 which correspond to complex-wavevector solutions inside the
cavity and flux-conserving outgoing waves of wavevector kµ outside the cavity. This set is complete and
can be used to express any lasing mode, Ψµ(x) =

∑
aµ

mϕµ
m(x). We refer to these biorthogonal states as

constant-flux (CF) states. Note that these states are not the resonances of the cavity, which have complex
wavevectors outside the cavity and are not an appropriate set for expressing the lasing state. In ref. 1 it
was shown that when the cavity has high finesse a single CF state represents the lasing mode, but in a low
finesse cavity2 we find that several CF states contribute to the lasing state, particularly far above threshold.
This new method for calculating exact non-linear lasing states should be useful across the range of complex
cavity lasers currently being studied: wave-chaotic microcavity lasers,4, 5, 6 random lasers3, 7, 8 and photonic
bandgap lasers.9, 10

The self-consistent lasing equation expressed in terms of this vector of components of the CF states, aµ,
takes the rescaled form:2

aµ
m =

iD0γ⊥
(γ⊥ − ikµ)

1

(kµ − kµ
m)

∫
cavity

dx ϕ̄µ∗
m (x)

∑
p aµ

pϕµ
p (x)

1 +
∑

ν,q,r g(kν)aν
q aν∗

r ϕν
q (x)ϕν∗

r (x)
, (2)

where {kµ
m} are the complex CF wavevectors (different for each lasing mode µ), ϕ̄µ

m are the dual functions to
the ϕµ

m CF states and D0 is the scaled pump strength. This defines a non-linear map of the vector aµ whose
fixed points are the lasing solutions. Note that the map of aµ depends on all the other non-zero aν , reflecting
effects of modal interactions and “spatial hole-burning” and that the non-linearity is treated exactly.

Fig. 1a shows the calculation of the vectors a by iterative solution of this equation for a 1D uniform index
laser.2 We are able to find the exact linear behavior of the output intensity far above threshold and include
the effects of mode competition as the thresholds for the 2nd and 3rd mode are increased by factors of 4
or more. The solution vector is dominated by three CF states, one ”central pole” and the two nearest in
frequency on each side (spatial “sidebands”); Fig. 1b shows that neglecting these sidebands leads to a 50%
underestimate of the output power of the mode well above threshold.

A major puzzle has been how to understand the lasing modes of a random cavity in the diffusive (delocal-
ized) regime when the linear problem has no distinct resonances (cavity finesse f is parametrically smaller
than unity), yet the lasing mode has a narrow line and Poisson photon statistics well above threshold.3, 7 Our
formalism suggests that in this case g = 1/f CF states contribute almost equally to the lasing state, which
thus does not correspond to any single solution of the linear wave equation, but is instead a “composite”
mode. To demonstrate this we have defined the following model: a circular disk of gain material of radius
R contains a dielectric material with randomly placed voids of a certain density (this is similar to the ZnO
nanoparticle clusters of Ref.3 except that we take the clusters to terminate on a circular boundary and
assume gain everywhere in the cluster for convenience). The non-hermitian CF boundary condition is then
expressed by the condition that at the cluster boundary the solution is continuous and may be expressed as
a superposition of only outgoing Hankel functions of wavevector kµ. This calculation can be discretized and
expressed as a generalized eigenvalue problem.11 An example of a single random CF state and a typical CF
spectrum are shown in Fig. 2. It is evident that we are in the regime of fractional finesse (resonance width
larger than spacing). Thus we expect lasing modes to be superpositions of many such random CF states, the
“composite modes” discussed above. Currently we are solving Eq. (2) for such random CF states to test this
expectation and study the statistical properties of such lasing modes, which are expected to be substantially
different from those of single linear diffusive modes.
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Fig. 2. Microdisk laser with index of refraction n0 = 1.5 in which voids with n = 1 are
placed randomly. The radius of the disk is R = 1 and the external frequency kµ = 30. (a)
Configuration of refractive index n(x) in the disk. The black grid indicates the employed
polar-coordinate discretization. (b) The intensity of a constant-flux state corresponding to
the eigenvalue km = 30.042−0.209i is shown in the radial interval r ∈ [0, 2R]. (c) Distribution
of CF-eigenvalues km in an interval around Re(kµ) = 30. Note the mean eigenvalue spacing
in the interval is ≈ 0.03 while the mean absolute value of the imaginary part of km is ≈ 0.3
so the random laser cavity has fractional finesse f ≈ 0.1.
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[2] H. E. Türeci, A. D. Stone and L. Ge, “Theory of the spatial structure of non-linear lasing modes,” submitted to
PRL, cond-mat/0610229.

[3] H. Cao, Y. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, R. P. H. Chang, “Random Laser Action in Semiconductor
Powder,” Phys. Rev. Lett. 82, 2278 (1999).
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