Semiclassical theory for transport through clean quantum dots: from qualitative reasoning to quantitative agreement

I. Březinová¹, C. Stampfer², L. Wirtz³, S. Rotter¹ and J. Burgdörfer¹

¹ Inst. for Theoretical Physics, Vienna University of Technology, Vienna, Austria, EU ² Solid State Physics Laboratory, ETH, Zürich, Switzerland ³Inst. for Electronics, Microelectronics, and Nanotechnology, CNRS, Villeneuve d'Asq, France, EU

Abstract

Within Feynman's formulation of quantum mechanics transport properties of quantum billiards can be understood as the result of path interference. We use two-dimensional Fourier-transforms ("length-area spectra") of the quantum mechanical transport amplitudes to gain information on contributing paths and their weights. We present a semiclassical theory that can account for quantum mechanical transport properties (weak localization, conductance fluctuations) on a quantitative level provided all relevant classical and non-classical contributions to the length-area spectra are represented.

no weak localization dip

weak localization peak

Motivation

Semiclassical theories are intuitive – transport as interference of paths (classically regular/ chaotic dynamics enters).

BUT

standard theories *do not give quantitative results* [1]

no prediction for weak localization in regular billiards

This work was supported by the Austrian Science Foundation FWF (Grants No. SFB016 and No. P17359), the Max-Kade, and the W. M. Keck foundations, and the French Partenariat Hubert Curien "Amadeus".