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Within Feynman's formulation of quantum mechanics transport properties of quantum billiards can be 
understood as the result of path interference. We use two-dimensional Fourier-transforms (“length-area 
spectra”) of the quantum mechanical transport amplitudes to gain information on contributing paths and their 
weights. We present a semiclassical theory that can account for quantum mechanical transport properties 
(weak localization, conductance fluctuations) on a quantitative level provided all relevant classical and non-
classical contributions to the length-area spectra are  represented. 

Semiclassical theories are intuitive – transport as interference of paths 
(classically regular/ chaotic dynamics enters).

BUT
standard theories do not give quantitative results [1] 

no prediction for weak localization in regular billiards
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g(k,B)…... conductance

T(k,B)…... total transmission

k,B……… wave number, magnetic field

N………..  number of modes in the leads

……... transmission amplitude from mode m to nnmt

Numerical solution within tight-binding discretization –
accurate but does not provide intuitive insight
Alternative semiclassical approximation since  / 1qS

Standard semiclassical approximation
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Coupling of leads
Classical:  no change in direction of propagation when 
entering/exiting (λ→0)
Diffractive: probability distribution                 
of angles (projection integrals solved 
numerically or within theories of       
diffraction)

/q q qS kL Ba c= + Sq, Dq, μq........................ classical action, deflection 
factor, Maslov index

Lq, Aq……………… length, directed enclosed area 
(can have positive and negative values) of path q

Standard semiclassics : after entering 
and before exiting the cavity the 
particle follows classical paths

Backscattered paths not 
included!!!

Quantum mechanical spectra
Fourier transform of the exact quantum S-matrix 
elements

Contains the information on contributing paths (length 
and enclosed area) and their weights
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Non-classical paths are important

Pseudo-path semiclassical
approximation
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First order perturbation (one backscattering)

Improved diffraction theory (beyond Fraunhofer
diffraction approximtion)

Geometric theory of diffraction [2] (GTD) extended by 
uniform theory of diffraction [2] (UTD)

ConclusionsConclusions

Pseudo-path semiclassicsal
approximation (PSCA)

Standard semiclassical
approximation (SCA)

k-averaged transmission and reflection [4]
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Quantum mechanical path spectra give information on 
contributing paths

This information can be implemented into a semiclassical theory

Previously not considered quantum effects (diffraction) prove to 
be essential for weak localization

Diffraction amplitude v(θ‘, θ) 
for backscattering off a lead. 
Quantum data from [3].
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Transport determined by quantum 
mechanical S-matrix elements Snm

Projection of modes m, n onto the 
Green’s function G 
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SemiclassicalSemiclassical theorytheory forfor transporttransport throughthrough clean clean quantumquantum dotsdots:                  :                  
fromfrom qualitative qualitative reasoningreasoning to quantitativeto quantitative agreement
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Phase coherent 
transport
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Semiclassical Green’s function

propagation in 
the interior

Set of classical paths

rnm

tnm

Time-reversal symmetry 
weak localization peak

Off-set between branches    
no weak  localization dip

Fluctuations reproduced within PSCA with high accuracy. 

Weak localization dip and all mode-to-mode probabilities 
reproduced on a quantitative level.

θ=π/4


