Topological Insulator in the Presence of Spatially Correlated Disorder

Adrian Girschik¹, Florian Libisch² and Stefan Rotter¹

¹Institute for Theoretical Physics, Vienna University of Technology, Vienna, Austria, EU ²Dept. for Mechanical and Aerospace Engineering, Princeton University, USA contact: adrian.girschik@tuwien.ac.at

-10

Two-dimensional topological Insulators

Scaling analysis

• rolling up system to a cylinder [5]

• crossing points (small arrows) show where bulk system becomes insulating / conducting

similar phase transition can also be induced by disorder [3] \rightarrow phase is called TAI

-12 U (meV)

• correlated disorder: bulk gap is filled with localized bulk states (see inset)

• insulating region between 1st and 2nd crossing point (small arrows): TAI can still occur in infinitely large samples

 bulk states undergo localization-delocalization transition for strong disorder

• for correlated disorder: percolation transition as in Quantum Hall effect

Effective Medium Theory for Correlated Disorder

effective medium theory for uncorrelated case [4] (a ... grid constant) $\Sigma = \frac{U^2}{12} \left(\frac{a}{2\pi}\right)^2 \lim_{\kappa \to 0} \int_{-\pi/a}^{\pi/a} \int_{-\pi/a}^{\pi/a} dk_y dk_x \left(E_F + i\kappa - H_0\left(\vec{k}, a\right) - \Sigma\right)$ self energy decomposition into Pauli matrices $\Sigma = \Sigma_0 \sigma_0 + \Sigma_x \sigma_x + \Sigma_y \sigma_y + \Sigma_z \sigma_z$ $\overline{m} = m + \operatorname{Re}\Sigma_{z}$ effective parameters given by

 $E_F = E_F - \operatorname{Re}\Sigma_0$ in correlated case: correlation function of potential $\propto \exp(-\frac{r^2}{2\xi^2})$ Fourier transform of correlation function $\tilde{C}(\vec{k})$ enters self energy equation $\Sigma = \frac{U^2}{12} \left(\frac{c\xi}{2\pi}\right)^2 \lim_{\kappa \to 0} \int_{-\pi/(c\xi)}^{\pi/(c\xi)} \int_{-\pi/(c\xi)}^{\pi/(c\xi)} dk_y dk_x \tilde{C}(\vec{k}) \left(E_F + i\kappa - H_0\left(\vec{k}, a\right) - \Sigma\right)$

generalized effective medium theory for new phase boundary!

Conclusions

 correlations in the disorder destroy TAI phase edge states are not as robust as in uncorrelated case generalized effective medium theory works

• ordinary insulator with *m=2 meV* • for increasing disorder strength U: transition into TAI phase

understood in terms of effective medium 10 theory [4] with new parameters:

$$m \rightarrow \overline{m}$$
 and $E_F \rightarrow \overline{E}_F$

appearance of TAI determined by:

Spatial Correlations in the Disorder

• previous investigations: disorder with spatially uncorrelated random values • more realistic approach: correlated disorder with correlation length ξ • spatial disorder correlations always present in nature! • effects of correlations on TAI and on robustness of edge states?

correlated case

uncorrelated case

TAI disappears if correlations are present!

observation of percolation in correlated potentials

• Preprint available: arXiv:1212.0735

References

M. König, S. Wiedmann et al., Science 318, 766 (2007) M. König, H. Buhmann et al., J. Phys. Soc. Jpn. 77, 031007 (2008) [2] [3] J. Li, R. L. Chu et al., PRL 102, 136806 (2009) [4] C. W. Groth, M. Wimmer et al., PRL 103, 196805 (2009) H. Jiang, L. Wang et al., Phys. Rev. B 80, 165316 (2009) [5]

We acknowledge helpful discussions with C. W. Beenakker and M. Wimmer. Calculations were performed on the Vienna Scientific Cluster.