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FEM Discretization

Solution strategy

» Path-following technique in which the pump parameter d
Is increased continuously

» How to simulate a laser? Matrix formulation:

[ — L+ ikuR+k2M% + k2 y(ky) Q(X)]uy =0

foru =1,..., M with X := (X1,...,X ) and

Below threshold

» Maxwell-Bloch equations I

> Semi-classical description

Gain medium

> [O < d<dq :) no active modes, only inactive modes

A+ k2 (e(x) + Y(kn) Do(x, d))] un(x) = 0
o L:=(Jq VS@iVS"jdw)@,j' R:= (foq SDiSOdefL')i,j

> Frequency-restricted gain curve - .

> Set of nonlinear coupled, time-dependent PDEs

> Long time-integration required for the steady-

state regime > Spurious solutions at k = kg — v

» Multi-periodic, time-harmonic ansatz more efficient:
E(x,t) = Zuu(x)e_ik“t
3

> Super-position of a finite number of active modes
{uu, ku} with k, € R » T he resulting equation has only eigenpairs with eigenval-

ues in the negative complex plane, i.e. S(kyp) <0

. . - . Mee = ([ ec(z)pipjdz),
> Eigenvalues k,, of interest within bounded domain ’

Do(z,d)p;(x)p;(x)

» Contour integral method
Q(X) := / dx
( o 1+2, Tk)| 22wy wi(2)]? )w

m) Steady-state Ab-initio Laser Theory [1]

» When increasing the pump these eigenvalues move “up-
wards” to the real axis

Contour Integral Method [2]

{>

0

PDE SyStem » As soon as the .imaginary & Nonlinear EVP of the form T(k)u =0
part of one of the eigenvalues : - o ) | o
Find {u,, ku}M | such that become§ positive, the cor- = 05| A - I'he roots of the operator I’ are the poles of the
= responding laser mode must ; g INVErse
have been activated, and we -1jle o 0 | 1 1 e
[A + ke (x, {u,, k,,},f)il)] uy, (x) = 0 proceed with the nonlinear 6 s 10 12 1 T (k) = Z k— 2\, in + R(k)
system R(k)

lim (Opuy(x) —tkyu,(x)) =0

| x| — 00

Initial data at threshold di: (u1, k1) with k1 € R

with A\, being the eigenvalues, v,,, w, being the
left and right eigenvectors and R being a holo-

(k) =0 morphic remainder
Above threshold _ _
Via Residue Theorem
» Set of M nonlinear coupled Helmholtz equations [d1 < d <d2 I) one active mode 1 . o -
: Ag:=— | T (2)dz = vpw,, = VW

for the M active laser modes » SALT system reduces to one nonlinear PDE.: ’ 21 Je (2) ;
» Nonlinear coupling through the complex-valued ) Do (x,d) 1 1 B H 7

dielectric function (A + k2 (ee(0) + (k) T Ok )Ju(x) =0 Ari= o | ZT7 N (2)dz = zn: AnUnw, = VAW

_ p
e (X, {kv,uv }) = ec(x) + e (x, {kv,uv }) Use reduced SVD Ag = VZEZWZH with [ being

the number of eigenvalues inside the contour
A similar to B := VZHAllel_l c Clx!

Projection method avoids computing the inverse
of the sparse matrix T

» Newton method

» Passive contribution from cavity configuration: » Verification of new mode activation

ec(x) = n?(x) > Insert solution (u7, k7 ) into denominator and omit

: oL _ the condition (k) =0
» Active contribution refers to pump-induced

amplification:

ey (%, {kv,uv}) = v(ku)D (x,{kv,uv })

Do (x,d)
1+ I'(kT)|u] (%)

» Contour integral method

[A i k,,% (gc(x) + v(kn) Trapezoidal rule for exponential convergence

P)]un(x) =0

Newton-Raphson method

> Susceptibility and gain curve: » In analogy to the linear case we include an additional laser

mode as soon as the imaginary part of one of the eigen- Initial guess from previous pump step

YL 2
ku) = . (k) .= |v(k ..
v (k) kuy — ko +iv1 (k) = (k) values becomes positive Jacobian can be calculated analytically
with 7| . ks € R the gain width and frequency > [dQ < d < ds ;] two active modes Additional stability conditions needed
at the center of the gain Do(x,d > wu, phase invariant solutions
Ak e (R0 T ) ) = O clusion of trivi -
> Population inversion: v v )| Up X > Exclusion of trivial zero solutions
= 211 R [A+EZ (ec(%)+7(En) Do, d) )Jun(x) =0
= - EclX n Un (X) = .
D (x,{kv,uv}) = Do(x,d) |1 + I; T(ky ) |uw (x)]7] n AT ST (k)|u (x)2 Conclusions

with Dg(x, d) the external pump profile » For higher numbers of modes: analogous procedure Efficient method for the steady-state solutions of

the time-dependent Maxwell-Bloch equations

FEM for geometric flexibility in applications

Numerical results and physical applications

Stable computation with Newton method

Convergence Two cavity laser

Contour integral method suitable for verification

» Comparison with constant flux method [1]:
of mode activation

» Cavity and pump configuration:

Pump trajectory
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» Laser shut-off due to exceptional point in the

.y . ALT tor |4]:
» h-FEM: rate of convergence similar to linear case > operator [4]

1072
T T

p:]_ p:2 2
]_02 T T T T TTT]

:X e Ky =20
10—2A\\\ N

j ~~ —— kq = 100
0 el

m \\\

- - O(N—(pth)

I [ =
0.3 || —— laser mode ¥, %

T T T T T 7
| 1
| 1
" | I
- N | / _
\ 1 /
\ I /
\ ] /
\ 1 //
—— laser mode Uo 0 —v-\j| /Aﬂ_
0.2 | N \ ) \ \ \ L
T \ T T T T
[ =

9.42 9.44 9.46 9.48 9.5 9.52 9.54 9.56

0.1} . 0
—0.4 =
0 | | | |

Ll | [ R N 0—10 | . | | | l l
102 10} 0.8 1 1.2 1.4 1.6 1.8 2 9.35 9.4 9.45 9.5 9.55 9.6
Pump parameter d Re(k)

Intensity of ¥,

Im(k)
|

10—6 \ Lol \ I N B B |
10! 102 103 10!

NDOF per wave length NDOF per wave length

» Flexible and successful method for a wide range of

» Robust and powerful numerical implementation complex applications




