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We study the non-Markovian quantum dynamics of an emitter inside an open multimode cavity, focusing on the case where the emitter is resonant with 
high-frequency cavity modes. Based on a Green's function technique suited for open photonic structures, we study the crossovers between three 
distinct regimes as the coupling strength is gradually increased: (i) overdamped decay with a time scale given by the Purcell modified decay rate, (ii) 
underdamped oscillations with a time scale given by the effective vacuum Rabi frequency, and (iii) pulsed revivals. The final multimode strong coupling 
regime (iii) gives rise to quantum revivals of the atomic inversion on a time scale associated with the cavity round-trip time. We show that the crucial 
parameter to capture the crossovers between these regimes is the nonlinear Lamb shift, accounted for exactly in our formalism.  
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Laplace transformation:  

4 Laplace transformation & graphical analysis 

  

Quantum Dynamics of a two-level system (TLS) inside an complex 
open cavity: One method for all regimes 

Circuit QED setups: qubit coupled 
to a microwave cavity 

Motivation 

  

: boson creation and annihilation operators  
  of a photon in λth mode  
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2 Model 

Cavity QED based on strongly 
coupled microdisk-quantum dot 
system   

Results 
Weak coupling 
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Two-level system with transition frequency ωa inside an open cavity 

Hamiltonian: 

: Pauli operators associated with TLS 

Assumptions: RWA, number of excitation=1 

c(t): amplitude of the excited state; c(t=0)=1 
cλ(t): amplitude of a single photon in λth mode; cλ(t=0)=0  

Eq. for the Green’s function:  

 Density of states: 

Volterra equation: 

Spectral function:  

Ansatz to the Schrödinger equation 

: coupling amplitudes at r=ra (dipole interaction)  

: dimensionless coupling strength 

Example: TLA inside 1D cavity 

Constant flux (CF) 
boundary conditions [1]:  

Spectral  representation of the Green’s function:  

CF states with outgoing 
boundary conditions:  

Biorthogonality condition: 

Inverse Laplace transformation:  Contour completion: 

Solution for the amplitude of the upper level of TLS [2]: 

Kernel function: 

Nonlinear Lamb shift: 

Necessary condition for the resonances of U(ω): 

At resonances: 

3 intersections of nonlinear  
Lamb shift δ(ω) but 2 resonances (!) 

Lorentzian 

Weisskopf-Wigner exponential decay of c(t) 

Single resonance at 

t is normalized to half the cavity round-trip time L/c 

Weak coupling regime 

Kernel function & nonlinear shift for: 
 

Left column: weak coupling regime for γ=4x10-6 
with a single peak in U(ω) (Purcell modified 
spontaneous decay).  
 
Middle column: strong coupling regime for 
γ=2.5x10-with a well-resolved Rabi splitting in 
U(ω) (regime of damped Rabi oscillations).  
 
 
Right column: Multimode strong coupling regime 
for γ=1.44x10-3 with a multi-peak structure in U(ω) 
consisting of almost equidistant peaks (regime of 
revivals).  

Jaynes-Cummings energy split=> Rabi oscillations 

Many intersections=> coupling to  large number of cavity modes 
Every second intersection leads to a resonance 
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Strong coupling Multimode strong coupling 

Strong coupling regime 

Temporal evolution of the excited state probability 
|c(t)|2 of the TLS. 
 
Multi-mode strong coupling regime featuring 
pulsed revivals at multiple integers of half the 
cavity round trip time. 

Equation for the resonances: 

Multimode strong coupling regime 

Regime of revivals 

Periodic structure of U(ω) => sensitivity to a position of TLS 
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Comparison with rigorous QM formalism: system-and-bath 
Hamiltonian (Feshbach’s projector technique) [3] 

Set of Volterra equations for c(t) & cλ(t) 
Born+Markov approximations => single Volterra equation 
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Spectral function 1D geometry 

xa=L/2 

d<<L 


