Route from spontaneous decay to complex multimode dynamics in cavity QED

TU WIEN

Dmitry O. Krimer¹, Matthias Liertzer¹, Stefan Rotter¹, and Hakan E. Tureci²

¹Institute for Theoretical Physics, Vienna University of Technology, A-1040, Vienna, Austria, EU ²Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA

We study the non-Markovian quantum dynamics of an emitter inside an open multimode cavity, focusing on the case where the emitter is resonant with high-frequency cavity modes. Based on a Green's function technique suited for open photonic structures, we study the crossovers between three distinct regimes as the coupling strength is gradually increased: (i) overdamped decay with a time scale given by the Purcell modified decay rate, (ii) underdamped oscillations with a time scale given by the effective vacuum Rabi frequency, and (iii) pulsed revivals. The final multimode strong coupling regime (iii) gives rise to quantum revivals of the atomic inversion on a time scale associated with the cavity round-trip time. We show that the crucial parameter to capture the crossovers between these regimes is the nonlinear Lamb shift, accounted for exactly in our formalism.

Motivation

Quantum Dynamics of a two-level system (TLS) inside an complex open cavity: One method for all regimes

Circuit QED setups: qubit coupled to a microwave cavity

> Fink et al. Nature 454, 315 (2008)

Cavity QED based on a quantum dot coupled to disordered photonic crystal waveguide

Sapienza et al. Science, 1352 (2010)

Cavity QED based on strongly coupled microdisk-quantum dot system

> Srinivasan & Painter Nature 450, 862 (2007)

Laplace transformation & graphical analysis

Laplace transformation: $\tilde{c}(s) = \int_0^\infty dt \, e^{-st} c(t)$

 $\tilde{c}(s+i\omega_a) = \frac{1}{s+i\omega_a + \frac{\gamma}{\pi} \int_0^\infty d\omega \frac{F(\omega)}{s+i\omega}} \qquad s = \frac{\sigma + i\omega}{s+i\omega} + 0 + i\omega$ Inverse Laplace transformation: $c(t) = \frac{e^{i\omega_a t}}{2\pi i} \int_{\sigma - i\infty}^{\sigma + i\infty}$

Contour completion:

Solution for the amplitude of the upper level of TLS [2]: $c(t) = \frac{\gamma}{\pi} e^{i\omega_a t} \int_0^\infty d\omega \, U(\omega) \, e^{-i\omega t}$

Kernel function: $U(\omega) = \lim_{\varepsilon \to 0^+} \frac{F'(\omega)}{[\omega - \omega_a - \gamma \delta(\omega)]^2 + [\gamma F(\omega) + \varepsilon]^2}$

Nonlinear Lamb shift: $\delta(\omega) = \frac{1}{\pi} \mathcal{P} \int d\tilde{\omega} \, \frac{F(\tilde{\omega})}{\omega - \tilde{\omega}}$

Necessary condition for the resonances of U(ω): $\frac{\omega_r - \omega_a}{\gamma} = \delta(\omega_r)$

75×10³

Strong coupling

At resonances: $U(\omega_r) = \frac{1}{\gamma^2 F(\omega_r)}$

Weak coupling

6×10

 2×10^7

500

 $\delta(\omega)$

3 4×10 +

Model

Two-level system with transition frequency ω_a inside an open cavity

Hamiltonian:

$$\mathcal{H} = \sum_{\lambda} \hbar \omega_{\lambda} a_{\lambda}^{\dagger} a_{\lambda} + \frac{\hbar \omega_{a}}{2} \cdot \sigma_{z} + \hbar \sqrt{\frac{\gamma}{\pi}} \cdot \sum_{\lambda} [g_{\lambda} a_{\lambda} \sigma_{+} + g_{\lambda}^{\star} a_{\lambda}^{\dagger} \sigma_{-}]$$

: boson creation and annihilation operators of a photon in λth mode

 $\sigma_+, \sigma_-, \sigma_z$: Pauli operators associated with TLS

 g_{λ} : coupling amplitudes at $r=r_a$ (dipole interaction)

 $\gamma = \mu^2/arepsilon_0 \hbar$: dimensionless coupling strength

Ansatz to the Schrödinger equation

$$|\Psi(t)\rangle = c(t)e^{-i\omega_a t/2}|u\rangle|0\rangle + \sum_{\lambda} c_{\lambda}(t)|l\rangle|1_{\lambda}\rangle e^{-i(\omega_{\lambda} - \omega_a/2)t}$$

Assumptions: RWA, number of excitation=1

c(t): amplitude of the excited state; c(t=0)=1

 $c_{\lambda}(t)$: amplitude of a single photon in λ th mode; $c_{\lambda}(t=0)=0$

Volterra equation: $\dot{c}(t) = -\frac{\gamma}{\pi} \int_0^t dt' \int_0^\infty d\omega F(\omega) e^{-i(\omega-\omega_a)(t-t')} c(t')$

Spectral function: $F(\omega) = \rho(\mathbf{r}_a, \omega) \cdot |g(\omega)|^2$

Density of states: $\rho(x_a, \omega) = \operatorname{Im} G(x_a, x_a, \omega) / \pi$

Results

0.6

Multimode strong coupling

Kernel function & nonlinear shift for:

Left column: weak coupling regime for $\gamma=4x10^{-6}$ with a single peak in $U(\omega)$ (Purcell modified spontaneous decay).

Middle column: strong coupling regime for γ=2.5x10-with a well-resolved Rabi splitting in $U(\omega)$ (regime of damped Rabi oscillations).

Right column: Multimode strong coupling regime for γ=1.44x10⁻³ with a multi-peak structure in U(ω) consisting of almost equidistant peaks (regime of revivals).

-500 19.08 19.12 18.8 19 19.2 ω/π ω/π ω/π 0.8 -0.6 (£) 0.4 500 1000 0.2500 1000 0 10 20 30

Temporal evolution of the excited state probability $|c(t)|^2$ of the TLS.

Multi-mode strong coupling regime featuring pulsed revivals at multiple integers of half the cavity round trip time.

t is normalized to half the cavity round-trip time L/c

Lorentzian $U(\omega) = \frac{F(\omega_a)}{\left[\omega - \omega_a - \gamma \delta(\omega_a)\right]^2 + \gamma^2 F(\omega_a)^2}$ Weak coupling regime Single resonance at $\omega_r \approx \omega_a$

Weisskopf-Wigner exponential decay of c(t)

3 intersections of nonlinear Strong coupling regime Equation for the resonances: $\omega_r - \omega_a - \gamma \delta(\omega) = 0$ Lamb shift $\delta(\omega)$ but 2 resonances (!) $\omega_r \approx \omega_a \pm \sqrt{2\gamma\omega_a}$ Jaynes-Cummings energy split=> Rabi oscillations

Many intersections=> coupling to large number of cavity modes Multimode strong coupling regime Every second intersection leads to a resonance

> Periodic structure of $U(\omega) =>$ sensitivity to a position of TLS Regime of revivals

Comparison with rigorous QM formalism: system-and-bath Hamiltonian (Feshbach's projector technique) [3]

Set of Volterra equations for $c(t) \& c_{\lambda}(t)$ Born+Markov approximations => single Volterra equation

References:

[1] H. E. Türeci, L. Ge, S. Rotter & A.D. Stone, Science 320, 643 (2008);

[2] D.O. Krimer, M. Liertzer, S. Rotter, &H. E. Türeci, arXiv:1306.4787 (2013) [3] C. Viviescas & G. Hackenbroich, PRA 67, 013805 (2003); J.Opt. B 6, 211 (2004)

 $\frac{2}{2}$ 20 0

Example: TLA inside 1D cavity 3

1D geometry

 $(\partial_x^2 + n^2 \omega^2) G(x, x_a, \omega) = -\delta(x - x_a)$ Eq. for the Green's function:

 $\partial_x G(x = L, x_a, \omega) = i\omega G(x = L, x_a, \omega)$ Constant flux (CF) boundary conditions [1]: $\partial_x G(x=0,x_a,\omega) = -i\omega G(x=0,x_a,\omega)$

Spectral representation of the Green's function:

$$G(x, x', \omega) = -\sum_{m} \phi_{m}(x, \omega) \overline{\phi}_{m}^{*}(x', \omega) / [\omega^{2} - \omega_{m}^{2}(\omega)]$$

CF states with outgoing $(\partial_x^2 + n^2 \omega_m(\omega)^2) \phi_m(x) = 0$ boundary conditions: $\partial_x \phi_m(x) = \pm i\omega \phi_m(x)$

 $\int_0^L dx \, n^2 \bar{\phi}_m^* \phi_n = \delta_{mn}$ Biorthogonality condition: