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1. Introduction

e The quantum adiabatic theorem is a seminal result in the history of quantum
mechanics |1].

Es besteht also bei nunendlich langsamer Storung keine
Wahrscheinlichkeit eines Quantensprunges.

e Recently, the applicability of adiabatic principles to non-Hermitian systems
with gain or loss has attracted considerable interest. The spectrum of a non-Her-
mitian system is complex and may exhibit so-called exceptional points. Excep-
tional points are associated with phenomena that contradict our physical intui-
tion, e.g., adiabatically encircling an exceptional point was predicted to etfect a
state-exchange |2|.

e We present a detailed analytic study ot quasi-adiabatically encircling exception-
al points.

2. Model

e We consider the generic model of
two coupled harmonic modes with
gain or loss:
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e We assume that at least the oscil- 0w
lation frequency and the coupling,
or the oscillation frequency and the
decay can be controlled as a func-

tion of time.
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FIG. 1. (a) Cartoon of two coupled harmonic modes
with gain or loss. (b) Example parametric path for
fixed decay. (c) Real and imaginary parts of the spec-
trum in the vicinity of an exceptional point.

3. Numerical Examples

e Let us expand the state in the (instantaneous) eigenbasis:

3 OéQ)T =c_7_(t) + cary(t).
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FIG. 2. (i, ii) Anticlockwise and clockwise encirclings. These examples exhibit chiral behaviour.
(iii) An encircling for which the net gain vanishes. This example exhibits non-trivial slaving.
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4. Theoretical Description

e In order to develop a general dynamical description we consider the evolution
operator (in the eigenbasis):
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e Adiabaticity usually requires that the non-adiabatic coupling be much smaller
than the ‘distance’ between eigenvectors:

(1) f(t)
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< 1.

e Fiven for an arbitrarily small yet non-vanishing non-adiabatic coupling the
actual solution is significantly non-adiabatic (this is evident in Fig. 2). The
non-adiabatic coupling is a singular perturbation.
e In order to describe the non-adiabatic character of the evolution operator we
focus on the following relative non-adiabatic transition amplitudes [3]:
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e These transition amplitudes are solutions to a Riccati equation [4]:

R = F2iMt)Rs Fif(t)(1+ R2),

5. Results

e Prohibition of simultaneous adia-
batic behaviour in both eigenvec-
tors [3]:
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e Separation of time-scales [4]:
R+ = F2iAR+ Fif(1+ R%),
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e Quasi-stationary fixed points (slow
time-scale solution manifolds) [4]:
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+ ( ) f(t) : M ( ) = FIG. 3. (a) A generic solution for R =:R. The arrows

denote delay times. The upper and lower horizontal
dashed grid lines denote the fixed points. The shaded
area denotes one standard deviation about the mean for
10,000 stochastic solutions. (b) Cartoons of the phase
portrait near a bifurcation. Arrows denote the direction
of time-evolution along an integral curve.

e Dynamical bifurcations [4]:
t=t,  SAt.) =0, SA(t.) #0O.

e Stability loss delay [5].

e Stokes phenomenon of asymptotics [6]. e Stability to noise [4].

e Unique long-term relaxation oscillation as a universal signature of quasi-adiabatically
encircling exceptional points [4].
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