

Controlling the Branched Flow of Light through Disordered Media

Andre Brandstötter[†], Adrian Girschik, Philipp Ambichl and Stefan Rotter

Institute for Theoretical Physics, Vienna University of Technology, Vienna, Austria, EU

†contact: andre.brandstoetter@student.tuwien.ac.at

What is Branched Flow?

- first discovered in 2D electron gas of semiconductor heterostructures¹
- universal phenomenon occurring for many types of waves²
- wave shows branching behavior due to the underlying weak and smooth disorder potential

Research Question

- branched flow also possible in optics?
- can we control branched flow with wavefront shaping techniques?
- prerequisite: weak, long-ranged and disordered refractive index $n(\vec{r})$

goal: transmission of focused light beams along individual branches

solution: states with well-defined time delay and well-defined output position ("particle-like states" 3)

Transmission Matrix and Time Delay

transmission matrix t: matrix elements connect incoming wave in *n*-th channel to outgoing wave in *m*-th channel^{4,5}

$$\longrightarrow t_{mn} = |t_{mn}| e^{i\varphi_{mn}^t}$$

time delay: duration of scattering event from phase derivative⁶

$$\tau = \frac{d\varphi_{mn}^t}{d\omega}$$

eigenstates of q have well-defined time delay

effective inversion of transmission matrix using singular value decomposition

transmitted flux: proportional to transmittivity

eigenstates of T have well-defined transmittivity

1st approach: Separation by Time Delay

eigenstates of q injected from the left

achieved: addressing branches with similar time delay

2nd approach: Separation by Branch Position

- 1) take part of t: input \rightarrow position of desired branch at output $\rightarrow t_n$
- 2) calculate eigenstates of $T_n = t_n^{\dagger} t_n$

eigenstate of T_n with highest eigenvalue

selected region

achieved: addressing branches with similar transmittivity into selected region

Solution: Combined Method⁷

separation by time delay + branch position

selection by branch position:

contribution with large time delay

selection by branch position + time delay: contribution

vanished

example for different system

achieved: addressing individual branches

Summary

- method to address individual branches in branched flow systems
- requires only t-matrix -> feasible experimental protocol
- procedure applicable to all waves obeying linear wave equation

References

- [1] M. Topinka et al., Nature **410**, pp. 183-186 (2001)
- [2] J. J. Metzger, R. Fleischmann, T. Geisel, Phys. Rev. Lett. 105, 020601 (2010)
- [3] S. Rotter, P. Ambichl, F. Libisch, Phys. Rev. Lett. **106**, 120602 (2011)
- [4] S. M. Popoff et al., Phys. Rev. Lett. **104**, 100601 (2010)
- [5] B. Gérardin et al., Phys. Rev. Lett. **113**, 173901 (2014)
- [6] E. P. Wigner, Phys. Rev. **98**, 145 (1955); F.T. Smith, Phys. Rev. **118**, 349 (1960)
- [7] A. Girschik, A. Brandstötter, P. Ambichl, S. Rotter, in preparation (2015)