

# Non-Hermitian Focusing Deep Inside Strongly Disordered Scattering Media

Andre Brandstötter<sup>1</sup>, Konstantinos G. Makris<sup>2</sup>, Ziad H. Musslimani<sup>3</sup>, Philipp Ambichl<sup>1</sup>, D. N. Christodoulides<sup>4</sup>, and Stefan Rotter<sup>1</sup>

<sup>1</sup>Institute for Theoretical Physics, Vienna University of Technology (TU Wien), Vienna, Austria, EU

<sup>2</sup>Crete Center for Quantum Complexity and Nanotechnology, Department of Physics, University of Crete, Heraklion, Greece

<sup>3</sup>Department of Mathematics, Florida State University, Tallahassee, Florida, USA

<sup>4</sup>College of Optics–CREOL, University of Central Florida, Orlando, Florida, USA

## **Motivation & Scope**

- motivation: create scattering states with predetermined intensity pattern by introducing local absorption (loss) and amplification (gain)
- investigated systems: non-Hermitian stationary scattering systems described by Helmholtz equation
- scattered waves obey linear wave equations
   e.g.: Schrödinger equation for matter waves,
   Helmholtz equation for electromagnetic waves,
   acoustic wave equation, etc...





## **Research Goals**

**goal 1:** suppress intensity variations in entire scattering region by adding **gain** and **loss** → **constant-intensity waves**<sup>1,2</sup>

goal 2: create intensity peak inside scattering region by adding gain and loss → focusing waves³

## **Constant-Intensity Waves**

#### wave ansatz:







add corresponding gain & loss distribution

- intensity variations
- back reflections
- constant intensity
- perfect transmission

# **Focusing Waves**

same concept as constant-intensity waves but with **complex** generating function W(x) allows for arbitrary intensity patterns

modified wave ansatz:

$$\psi(x) = e^{i k \int [W_R(x') + iW_I(x')] dx'}$$

 $\left|\psi(\mathbf{x})\right|^2 = e^{-2k \int W_{\mathbf{I}}(\mathbf{x}') d\mathbf{x}'}$ 

choose  $W_I(x)$  such that intensity is peaked at a certain position:

real refractive index Re(n)



- wave intensity  $|\psi(\mathbf{x})|^2$
- intensity peak
- perfect transmission

method works for arbitrary intensity patterns

# **Envisioned Experimental Realizations**

optics: Rhodamine (6G) dye as gain material

spatially modulated pump<sup>4</sup> beam controls gain and loss components in active medium

possible realization in **discrete system**<sup>2</sup>: elements (cavities) with gain or loss and a specific real refractive index

spatial light modulator
(SLM) to shape pump beam





## Summary

- suppress backscattering and intensity variations by adding a suitable gain and loss distribution
- method even applicable in strongly disordered systems<sup>2</sup>
- procedure can be extended to design arbitrary intensity
   patterns, e.g., an intensity maximum (focus) inside a scattering
   region
- experimental realization within reach

### References

- [1] K. G. Makris, Z. H. Musslimani, D. N. Christodoulides et al., Nat.Com. 6, 7257 (2015)
- [2] K. G. Makris, A. Brandstötter, P. Ambichl et al., LSA 6, e17035 (2017)
- [3] A. Brandstötter, K. G. Makris, S. Rotter, manuscript in preparation
- [4] N. Bachelard, S.Gigan, X. Noblin et al., Nat. Phys. 10, 426 (2014)

contact: andre.brandstoetter@tuwien.ac.at