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This document provides supplementary information to ‘Angular memory effect of transmission eigenchannels’. Here,
we elaborate on the experimental setup and measurement procedure, provide details of the numerical simulations and
the phenomenological model.
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FIG. S1. A detailed sketch of the experimental setup. A reflective phase-only SLM modulates separately the phase-fronts of
two orthogonal linear polarization components of a monochromatic laser beam (λ = 532 nm). The field transmission matrix of
the scattering sample is measured in k space with the SLM and the camera CCD1. Inset: an optical image of the scattering
sample: a 10 µm-thick film of ZnO nanoparticles on a glass substrate. The camera CCD2 captures the spatial intensity profile
of reflected light in k space. λ/2: half-wave plate. BS: beam splitter. PBS: polarizing beam splitter. MO1,2: microscope
objectives. L1−6: lenses. ID: iris diaphragm.

Experiment

The sample is made of densely-packed zinc oxide (ZnO) nanoparticles (average diameter ' 200 nm), deposited on
a cover slip of thickness 170 µm. The average transmittance is approximately 0.2. The effective refractive index of
the ZnO nanoparticle layer is about 1.4 [1], which closely matches the refractive index of the glass substrate.
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FIG. S2. Experimentally measured transmittance and reflectance of transmission eigenchannels, normalized to the values of
random incident wavefronts. (a) The ten highest transmission eigenchannels all have normalized reflectance R/R < 1. (b) The
ten lowest transmission eigenchannels all have normalized reflectance R/R > 1. The black dashed lines represent T/T = R/R
= 1.

A detailed sketch of the experimental setup is presented in Fig. S1. A linearly-polarized monochromatic laser beam
(Coherent, Compass 215M-50 SL) with wavelength λ = 532 nm is expanded and collimated. Its polarization direction
is rotated from vertical to 45◦ by a half-wave (λ/2) plate, and split into vertical and horizontal polarizations by a
polarizing beam splitter (PBS). The horizontal-polarized component of the beam illuminates one part of the SLM
(Hamamatsu, X10468-01). Since the SLM only modulates horizontal polarization, the vertically-polarized component
of the beam is converted into horizontal polarization by another λ/2 plate before impinging onto the second part of
the SLM; the modulated reflected beam is converted back to vertical polarization after passing through the same λ/2
plate again. The two polarizations are recombined at the PBS, and the SLM plane is imaged onto the pupil of a
microscope objective MO1 (Nikon CF Plan 100× with a numerical aperture NAin = 0.95) by a pair of lenses L1 and
L2 (with focal lengths f1 = 100 mm and f2 = 250 mm). The reflected light from the ZnO sample is collected by
the same objective MO1, and the far-field intensity distribution on its pupil is imaged onto a camera CCD2 (Allied
Vision, Mako G-032B) by a pair of lenses L3−4 with focal lengths of f3 = f4 = 200 mm. A linear polarizer is placed
before the camera to select only one polarization of the reflected light.

In transmission, the Fourier transform of the transmitted field on the back (output) surface of the sample is imaged
onto another camera CCD1 (Allied Vision, Manta G-031B) by an oil-immersion microscope objective MO2 (Edmund
Optics DIN Achromatic 100×, NAout = 1.25) and a pair of lens L5 (f5 = 200 mm) and L6 (f6 = 150 mm). The field
of view of MO2 on the back surface of the sample has a diameter of 180 µm. A linear polarizer is placed right after
MO2 to filter out one polarization component of the transmitted light.

The field transmission matrix from the SLM to the CCD1 is measured in Hadamard basis, with a common-path
interferometry method [2–4]. 4830 SLM macropixels (2415 per polarization) are imaged onto the entrance pupil of
MO1, covering the entire pupil. Among them, we use 2048 macropixels (1024 per polarization) for the signal field and
2782 macropixels for the reference field in the transmission matrix measurement. Each macropixel consists of 9 × 9
SLM pixels. A uniform (but fixed) phase pattern is displayed on the reference pixels. To measure the transmitted
intensity of the signal field in each Hadamard basis vector, a high-spatial-frequency phase grating is written to the
reference region of the SLM so that the reference field is diffracted away from the iris ID.

After measuring the field transmission matrix, we calculate the eigenvectors which represent the input wavefronts
for individual transmission eigenchannels using the relation t†tVn = τnVn, where Vn is the n-th eigenvector, and τn is
the corresponding eigenvalue that gives the transmittance of the n-th eigenchannel. After finding the eigenvectors, we
block the reference field by imposing a high-spatial-frequency phase grating on the reference region of the SLM. Then
we display the phase patterns of the phase-only modulated eigenvectors with the 10 highest and lowest transmittance
on the 2048 macropixels of the SLM, and record the transmitted and reflected intensity patterns with CCD1 and
CCD2. The transmittance T and reflectance R for these channels are obtained by integrating the patterns, and
normalized by the average values shown in Fig. S2. These data confirm that the high (or low) transmission channels
have reduced (or enhanced) reflection. Next we gradually shift the phase pattern of each channel on the SLM to tilt
its incident wavefront, and record the transmitted and reflected intensity patterns in far field. Each step of the tilt is
about 0.2°, and the total range is 3.5°, which is significantly larger than the angular correlation width of the random
wavefronts. We repeat this measurement for 20 random incident wavefronts to find the angular memory-effect range.
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In principle, adding a linear phase ramp to the incident field on the sample surface by translating the SLM phase
pattern does not modify the intensity pattern on the sample surface. However, due to optical aberrations in the
setup, the translation in k space slightly modifies the illumination pattern on the sample surface. Such modification
depends on the incident beam width on the sample surface, therefore it is different for high-transmission channels
which have smaller beam width than low-transmission channels [4]. The modification of the incident intensity pattern
would accelerate the decorrelation of transmitted pattern and reduce the angular correlation width. In order to have
a fair comparison of the memory-effect range between random wavefronts and transmission eigenchannels, we use
the phase-conjugate of the SLM phase patterns of the high/low-transmission eigenchannels as random wavefronts.
The transmission eigenchannels and their phase-conjugates have equal incident beam width on the sample surface.
However, the phase-conjugate inputs have a transmittance close to the average value, T/T = 1, as expected from the
random wavefronts. We normalize the tilt angle θ in the plot of high/low-transmission channels’ intensity correlation

functions by the width of their phase-conjugate incident wavefronts’ intensity correlation functions, denoted as θ/θ
(r)
0

in Fig. 1(c) of the main text.

Numerical simulations
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FIG. S3. Numerically calculated intensity correlation function C(θ) of transmission eigenchannels, in comparison to the random
wavefronts and the analytical expression are presented. While C(θ) of random incident wavefronts (black solid line) agrees well
to the analytical expression (black dashed line), an eigenchannel of τn = 0.999 (blue solid curve) exhibits a slower decay of
C(θ), while an eigenchannel of τn = 0.01 (solid red curve) a faster decay. Each numerical curve represents an average over 10
disorder realizations. Simulation parameters are identical to those in Fig. 2 of the main text.

In our numerical simulations, we calculate wave propagation through two-dimensional (2D) diffusive slabs, W �
L� lt. The sample is discretized on a 2D square grid, and the grid size is (λ/2π)× (λ/2π). The dielectric constant
at each grid point is ε(r) = n2

0 + δε(r), where n0 is the average refractive index of the sample, δε(r) a random
number between [−Σ,Σ] with uniform probability. The sample is sandwiched between two homogeneous media with
refractive indices of n1 and n2. Periodic boundary conditions are applied to the transverse boundaries. To obtain
the field transmission matrix t at wavelength λ, we solve the scalar wave equation

[
∇2 + k2

0ε(r)
]
ψ(r) = 0 with the

recursive Green’s function method [5, 6].
After finding incident wavefronts from the eigenvectors of t†t, we calculate the output fields of each eigenchannel

by tilting its incident wavefront. The transmitted field is then tilted back by the same angle θ, and its Pearson

correlation with the original transmitted field is computed. From the field correlation C
(E)
n (θ), the intensity correlation

Cn(θ) = |C(E)
n (θ)|2 is obtained. Fig. S3 shows the numerically calculated intensity correlation function Cn(θ) of

random incident wavefronts and of high/low-transmission eigenchannels, as well as the analytical expression given in
reference [7] with no freely adjustable parameters. While the analytical correlation function C(θ) agrees well with the
C(θ) for random incident wavefronts, we observe distinct differences for the high/low-transmission eigenchannels.

We further investigate the scaling of the angular memory-effect range with the sample thickness. We numerically

calculate the angular width θ
(h)
0 of the intensity correlation function for the average high-transmission channels with

τn > τ in diffusive slabs with different thickness L and transport mean free path lt. As shown in Fig. S4, θ
(h)
0 is

inversely proportional to the effective sample thickness, Leff = L+ 2ze, where ze = 0.818lt is the extrapolation length

for the index-matched interfaces. Hence, θ
(h)
0 becomes independent of lt for L� lt.

The slab parameters (refractive indices, transport mean free path, slab thickness) and the parameters that define
incomplete channel control used in the numerical simulations for Fig. 3 of the main text, are chosen to be close to those
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FIG. S4. Scaling of angular correlation width with sample thickness. Numerically calculated angular width θ
(h)
0 of the intensity

correlation function averaged over high-transmission channels with τn > τ , versus the effective sample thickness, Leff = L+2ze,
where ze = 0.818lt. The slabs have different L and lt, but the same width k0W = 3000 and average refractive index n0 = 1.5.
Each data point represents an average over 10 disorder realizations.

of our experiment with the ZnO nanoparticle layer. The slab (n0 = 1.4) is sandwiched between air (n1 = 1.0) and glass
(n2 = 1.5). In case of complete control, the number of input modes (from the air) is M1 = 1999 ≈ 2n1W/λ, and the
number of output modes (to the glass) M2 = 3239. To model the effect of incomplete control on the angular-memory
effect of transmission eigenchannels, we apply the following procedures on the complete transmission matrices. Due
to the limited numerical aperture (NA) in the illumination and the detection, and single polarization detection, the
number of experimentally accessible columns (input modes) and rows (output modes) of the transmission matrix is
reduced. To numerically model such reduction of the transmission-matrix size, we take only 1024 columns and 1155
rows of the k-space transmission matrices in our simulations. Moreover, to model the binning of SLM pixels into
macropixels, we group the columns in k-space. The number of columns in one group, m1 = 32, is chosen such that the
corresponding illumination width on the front surface of the slab is similar to that in the experiment. Such truncation

and grouping the columns effectively reduce the number of degrees of freedom to M
(eff)
1 = 32 at the input. We did

not group the output modes, since the detection field of view is larger than the beam width at the output in the
experiment. To model the incomplete detection for the reflection memory effect in the simulations (Fig. 3(b) in the
main text), we apply exactly the same truncation and grouping to the columns of the reflection matrices, but take
only 1024 out of 1999 number of rows of the reflection matrices.

Phenomenological model

Here we present the details of our phenomonological model for the angular memory effect of transmission eigen-
channels and the complete derivation of the intensity correlation function Cn in Eq. (1) of the main text.

The n-th transmission eigenchannel has the input state |Vn〉, which is associated to the transmission eigenvalue τn
by the relation:

t†t |Vn〉 = τn |Vn〉 . (S1)

Here t is the field transmission matrix whose singular value decomposition reads

t = Uτ1/2V †

=
∑
k

|Uk〉 τ1/2
k 〈Vk| , (S2)

so that t |Vn〉 =
√
τn |Un〉 is the output associated to Vn.

When the diffusive slab is tilted by an angle θ, the output state becomes tθ |Vn〉. We define the intensity correlation
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function between the two output states as

Cn(θ) ≡ | 〈Vn| t†tθ |Vn〉 |2

〈Vn| t†t |Vn〉 〈Vn| t†θtθ |Vn〉

=
| 〈Un| tθ |Vn〉 |2

〈Vn| t†θtθ |Vn〉
.

(S3)

The sample tilt is equivalent to the operation that consists in tilting the illumination wavefront by an angle θ,
applying the transmission matrix t, and tilting back the scattered wavefront by −θ. Thus tθ can be expressed as

tθ = R†θ tRθ, (S4)

where Rθ is the tilting matrix and can be written in real space as

Rθ = eikθρ̂, (S5)

where ρ̂ represents the transverse coordinate on the front surface of the sample. For θ � 1, Rθ ' 1 + ikθρ̂, where 1
is the identity matrix. This suggests to model the tilting matrix Rθ as

Rθ = 1 +X, (S6)

where X is an N ×N complex Gaussian random matrix, whose elements satisfy the following relations in the channel
basis:

Xij = 0, (S7)

XijX∗i′j′ = (σ2/N)δii′δjj′ . (S8)

Here the random matrix elements are averaged over ensembles. This model is phenomenological because we replace
the deterministic matrix Rθ by a random matrix. According to the decompositions (S2) and (S4), and the model (S6),
the numerator of the correlation function Cn becomes

| 〈Un| tθ |Vn〉 |2 = | 〈Un| (1 +X†)t(1 +X) |Vn〉 |2

= |
√
τn +

√
τn 〈Un|X† |Un〉+

√
τn 〈Vn|X |Vn〉+ 〈Un|X†tX |Vn〉 |2

= τn|1 + 〈Un|X† |Un〉+ 〈Vn|X |Vn〉 |2 + | 〈Un|X†tX |Vn〉 |2

+ 2Re
[(

1 + 〈Un|X† |Un〉+ 〈Vn|X |Vn〉
)
〈Vn|X†t†X |Un〉

]
. (S9)

We expand each term in the channel basis and proceed to the average over the matrix X, using Gaussian contraction
rules and Eqs. (S7) and (S8). The average of the numerator becomes

| 〈Un| tθ |Vn〉 |2 = (1 + 2σ2/N)τn + σ4τ̄ /N, (S10)

where τ = Tr(t†t)/N . Similarly, the expression for the denominator of the correlation function Cn is written as

〈Vn| t†θtθ |Vn〉 = 〈Vn| (1 +X†)t†(1 +X)(1 +X†)t(1 +X) |Vn〉 . (S11)

We average this expression, keeping only the terms that involve the same number of matrices X and X†, and using
Tr(t) ' 0 we obtain

〈Vn| t†θtθ |Vn〉 ' (1 + σ2)(τn + σ2τ̄). (S12)

Finally, by combining Eqs. (S10) and (S12), we get the following expression for the mean of the correlation function:

Cn =
(1 + 2σ2/N)τn + σ4τ̄ /N

(1 + σ2)(τn + σ2τ̄)
. (S13)

For σ2 � N , Cn is well approximated by

Cn '
1

1 + σ2

τn + σ4τ̄ /N

τn + σ2τ̄
. (S14)
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We found that this result provides a good fit of our simulations for arbitrary tilt angle θ. For θ � 1 rad, the

decomposition (S6) applies with X ' ik0θρ̂. Hence, we expect in this limit the scaling σ2 = TrX†X/N ∝ θ2. Our

numerical analysis reveals that the scaling prefactor is σ2/θ2 ∝ (k0Leff)
2
. This is consistent with the numerical results

showing that the angular correlation width of the open channels scales as θ
(h)
0 ∝ 1/ (k0Leff) (see Fig. S4).

The phenomenological model can be applied to reflection matrices r, and the mean of the intensity correlation

function in reflection C
(R)
n can be derived in the same way:

C
(R)
n ' 1

1 + σ2

(1− τn) + σ4(1− τ̄)/N

(1− τn) + σ2(1− τ̄)
. (S15)

Hence, the reflected pattern stays more correlated for low-transmission channels (with high reflectance); when the

reflection eigenvalue ρn = 1 − τn � σ2, C
(R)
n approaches unity. In contrast, the reflected pattern decorrelates faster

for high-transmission channels (low reflectance); for ρn = 1 − τn → 0, the correlation function C
(R)
n is on the order

of 1/N , which is the expected value between two uncorrelated speckle patterns with N speckle grains. Although we
do not probe the reflection eigenchannels explicitly in our experiment, we measure the reflectance of transmission
eigenchannels and find that high (low) transmission channels have low (high) reflectance (Fig. S2). According to
the phenomenological model, the reflection eigenchannels with high reflectance (low transmittance) have stronger
correlation and larger memory effect than the eigenchannels with low reflectance (high transmittance).
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