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I. EFFECT OF PULSE IMPERFECTIONS AND
COUPLING STRENGTH

Fully avoiding pulse errors in an inhomogeneously
broadened spin ensemble is a challenging task that de-
pends on the distribution of coupling strengths and spin
frequencies as well as on the experimental circumstances.
In particular, pulses of finite lengths and simple shapes
typically result in imperfect rotation angles of individual
spins in the experiment. However, as outlined in the main
text, rotation errors are also proving to be an important
part of the multi-echo formation process.

To determine the impact of rotation errors we present
here additional simulations, where the action of the two
microwave pulses in the Hahn echo sequence is included
in the initial conditions of our theoretical model. The
purpose of this procedure is to disentangle the intricate
strong coupling dynamics during the π/2- and π-pulses
from the subsequent dynamics. To be specific, we solve
the Maxwell-Bloch equations for the initial conditions
〈a〉 = 0, 〈σxj 〉 = − cos(∆jτ) cos(α), 〈σyj 〉 = − sin(∆jτ),

and 〈σzj 〉 = cos(∆jτ) sin(α) at t = 0, where ∆j = ωj−ωp
is the detuning between the spin frequency and the ref-
erence rotating frame, τ = 20µs is now the inter pulse
delay, and α is the rotation angle of the second pulse.
Note that these specific initial conditions correspond to
a situation where all spins are collectively brought into
the xy-plane using a perfect π/2-rotation along the y-axis
for the first pulse. Then, after a free evolution time τ , the
spin ensemble is artificially rotated by an angle α along
the y-axis. Note that with this procedure we effectively
switch off the collective coupling between the spin en-
semble and the resonator during this entire preparation
period. As a result, we can study the impact of the spin-
resonator coupling and rotation errors independently of
the imperfections imposed by the microwave pulses.

In Fig. S1 we present the results for the average spin
expectation values Sx,zav =

∑
j〈σ

x,z
j 〉/N for a Gaussian
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spin distribution, where we distinguish two different set-
tings: (i) We consider a strongly coupled spin ensemble
(geff/2π = 1.56 MHz) and compare the evolution involv-
ing a perfect (α = π) and a slightly imperfect (α = 0.95π)
refocusing pulse. (ii) We compare the dynamic evolution
involving an imperfect rotation (α = 0.95π) for strong
(geff/2π = 1.56 MHz) and very weak (geff/2π = 1.56 kHz)
coupling to the resonator. We first note, that the conven-
tional Hahn echo at t = 20µs is observed in Sxav, regard-
less of both the coupling strength and the rotation error.
Next, we compare the impact of the pulse rotation angle
under strong coupling. While the results for the perfect
and the imperfect rotation almost overlap during the con-
ventional Hahn echo, additional echos at t = 40µs and
t = 60µs arise only for α = 0.95π, indicating that the
pulse imperfections are relevant for the multi-echo forma-
tion. Staying with α = 0.95π, but reducing the coupling
strength to geff/2π = 1.56 kHz reveals the key role of the
spin-resonator coupling. Although the spins build up a
large dipole moment Sxav during the conventional Hahn
echo, the coupling to the resonator is too weak to cause a
significant rotation of the spins on the Bloch sphere and
therefore no visible echos are produced at later times.
Our findings thus suggest that the enhanced rotation of
the spins during the echos in combination with an imper-
fect refocusing pulse are the key building blocks for the
formation of multiple echos.

II. VARIATION OF THE PULSE DELAY TIME τ

One key parameter in the Hahn echo sequence is the
inter-pulse delay τ , which is varied in experiments to
determine the coherence time of the spin ensemble. In
particular, the analysis of the decay of the conventional
Hahn echo gives access to this characteristic time. In
this spirit, we present in Fig. S2 the experimentally de-
termined echo areas as a function of their arrival time for
various τ recorded at a fixed magnetic feld of 170.18 mT
using a wait time of 180 s between measurements. We
find for the experimental data that the subsequent echos
show a decreasing amplitude, which can be well described
by an exponential decay (lines in Fig. S2 (a)). The cor-
responding characteristic decay times Tdecay increase for
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Figure S1. Average spin expectation values Sx,z
av =∑

j〈σ
x,z
j 〉/N versus time for a spin ensemble starting from

an initial condition that imitates a Hahn echo sequence of
a perfect π/2-rotation followed by an α-rotation right be-
fore t = 0. (a) Sx

av for a strongly coupled spin ensemble,
Ω/2π = 1.56 MHz, after a perfect rotation α = π (blue
dashed) and an imperfect rotation α = 0.95 × π (red). The
imperfect rotation α = 0.95π is also shown for weak coupling
Ω/2π = 1.56 kHz (yellow). The conventional Hahn echo at
t = 20µs is present in all situations, while additional echos at
t = 40µs and t = 60µs (insets) are visible only for the combi-
nation of imperfect rotations and strong coupling. (b) Due to
the strong coupling (blue and red) Sz

av changes significantly
during the conventional Hahn echo. This effective rotation
of the spin ensemble is absent for weak coupling (yellow).
Much smaller but similar rotations are visible at t = 40µs
and t = 60µs (insets) for α = 0.95π (red), but not for α = π
(blue). (Also in the right inset, the blue dashed line shows no
variation, but falls outside of the zoom window.)

longer inter-pulse delays τ . This can be rationalized by
the observation that the formation of an echo constitutes
an effective decay channel. Thus, we expect that Tdecay

should be fundamentally limited by the coherence time
T2, which is the case for the data presented here. In
addition, we can compare the experimental observations
with our theoretical model. In particular, we choose a
Lorentzian and a Gaussian spin distribution of the same
width γs to study their impact on the echo decay. For
both spin distributions the amplitude of the driving is
chosen such that the first pulse corresponds to an effec-
tive π/2-rotation. On a first glance, we find that both
spin distributions corroborate the experimental data, as
both predict an initial exponential decay. However, we
also find characteristic differences in the decay. For in-
stance, while the Gaussian-shaped distribution can be
well described by an exponential decay, the Lorentzian-
shaped distribution initially falls off with a fast rate and
decays at later times with a noticeably smaller rate. On a
quantitative level, the initial decay rates observed in the
experiment are in reasonable agreement with the initial
decay rates of the Lorentzian-shaped spin distribution
(maximum deviation of 20%). For the Gaussian spin dis-
tribution the decay times of the individual echo trains ex-
ceed those observed in the experiment by approximately

Figure S2. (a) Experimental data: Integrated echo area for
the individual echos as a function of time, shown for several
echo spacings τ . Solid lines are fits to an exponential decay
law. (b,c) Simulation: Maxima of the individual echos as a
function of time, shown for several echo spacings τ assuming
(b) a Lorentzian and (c) a Gaussian spin distribution. For
comparison we show the fits to the experimental data again
in (b) (gray dashed lines). All data points are normalized to
the area/hight of the first echo of the τ = 80µs dataset.

a factor of 10. In general, we note that the decay of the
echo train does not only depend on τ and the character-
istic parameters of the system, such as κ, κext, γs, but
also strongly depends on the exact shape of the spin dis-
tribution. In addition, we suspect that the dipole-dipole
interaction present within the spin ensemble could ad-
ditionally affect the characteristic decay time and specu-
late that the details of the experiment such as the spatial
distribution of the excitation field B1 as well as the am-
plitude and temporal shape the microwave pulses have
the potential to modify this decay. A detailed analysis of
these dependencies will be the subject of future work.

III. EXPERIMENTAL SETUP

Below, we describe in detail the experimental setup
used to obtain the results presented in the main text.
We first describe the sample preparation, followed by a
description of the cryogenic and room-temperature mi-
crowave circuitry. The sub-section III C describes the
digital down-conversion of the signal after digitization.
Finally, we describe how we determine the integration
window for the echo area integration of the echo trains.

A. Sample preparation

The sample investigated in the main part consists of
two parts: a superconducting planar microwave resonator
and a paramagnetic electron spin ensemble.
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The microwave resonator is fabricated on top of a
6×10 mm2 high-resistivity (> 10 kΩcm) silicon substrate
with natural isotope composition. The substrate is first
cleaned in an ultrasonic bath using acetone and isopropyl
alcohol. Then, a 150 nm thick niobium layer is deposited
onto the substrate in a sputter process. Next, the chip is
spin-coated with photo resist and the resonator structure
is defined via optical lithography. After development, the
structure is transferred into the superconducting film us-
ing a reactive ion etching process. The chip is then placed
into a gold-plated (oxygen-free highly-conductive) cop-
per box and connected to this enclosure using conductive
silver-glue at its boundaries. This forms the ground con-
nection of the resonator. SMA end launch connectors are
then inserted from both ends and the center pin of the
end-launch is connected to the coplanar waveguide using
silver glue.

As paramagnetic electron spin ensemble, we use phos-
phorus donors with a doping concentration of [P ] =
1× 1017 cm−3 embedded in an isotopically purified 28Si
host crystal with a residual 29Si concentration of 0.1 %.
The 28Si:P crystal has a thickness of 20 µm and was orig-
inally grown on top of a heavily boron-doped natSi sub-
strate. An additional 500 nm thick arsenic doped natSi
layer was grown on top of the 28Si:P layer. We remove
these additional layers by a combination of mechanical
polishing and reactive ion etching. The resulting 20 µm
thick flakes are then placed with the utmost care on top
of the resonator. The flakes are pressed onto the res-
onator using an additional piece of an natSi wafer and a
PTFE screw in the lid of the sample box.

B. Microwave circuit

The microwave circuitry used in this work is presented
in Figure S3.

The main goal of the cryogenic microwave circuitry is
to suppress room temperature noise photons from reach-
ing the sample under investigation. To this end, the input
lines are attenuated by 70 dB at the various temperature
stages. On the output side, we use two cryogenic circu-
lators on the mixing chamber stage as well as one at the
still level. The outgoing signal is amplified by a cryo-
genic HEMT amplifier (Low Noise Factory LNC4 8A) at
the 4K stage.

The microwave circuitry at room temperature to per-
form both continuous-wave (CW) as well as pulsed
ESR measurement via two latching electromechanical RF
switches (Keysight 8765B). The signal entering the cryo-
stat is bandpass-filtered (MiniCircuits VBFZ-5500-S+)
to the relevant frequency range to reduce the power load
on the subsequent cryogenic stages. The output signal
is bandpass-filtered as well before entering a fast PIN
diode switch (Analog Devices HMC-C019). This switch
blanks out the high-power microwave pulses from enter-
ing the sensitive down-conversion setup. The signal is
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Figure S3. Microwave setup for continuous-wave (red) and
pulsed (green) electron spin resonance experiments. Details
of the pulse bridge and detection scheme are given in the text.

then further amplified at room-temperature (B&Z Tech-
nology BZP110UC1).

To perform CW ESR measurements, we connect a vec-
tor network analyzer (Rhode & Schwarz ZVA8) to the
input and output line and measure the transmission scat-
tering parameter |S21|2.

Pulsed ESR measurements are performed using a in-
house built microwave bridge. We generate in-phase
and quadrature signals of Gaussian-shaped pulses using
a fast arbitrary waveform generator (Agilent M8190A,
12 GS/s) at an intermediate frequency of fIF = 42.5 MHz.
The pulses are then up-converted to the resonance fre-
quency using a vector signal generator (Rhode & Schwarz
SGS100A) and further amplified (CTT AGX0218-3964)
before reaching the input side of the cryostat. The pulse
power before the microwave switch at the input of the
cryostat is +25 dBm, resulting in a maximum echo sig-
nal for pulse times of 1 µs and 2 µs.

Detection of the resulting spin echos is performed
by a heterodyne down-conversion setup. The signal is
down-converted using an IQ mixer (Marki IQ-0307L).
The down-converted signal with frequency fIF is then
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lowpass-filtered to reduce LO leakage. The signal is am-
plified with variable gain between 10 and 60 dB (FEMTO
DHPVA-200) to utilize the full dynamic range of the
analog-to-digital converter (Spectrum M4i.4451-x8). The
digitizer card records both the in-phase and quadrature
component at a sample rate of 500 MS/s.

To ensure a stable phase synchronization between the
devices, all devices are synchronized using an oven-
stabilized 10 MHz reference signal (Stanford Research
Systems FS725). The LO signal (Agilent E8257D) is pro-
vided to both the vector network source as well as the IQ
mixer using a power divider.

C. Signal demodulation

In this section we describe our algorithm to demodu-
late the signal at the intermediate frequency (here fIF =
42.5 MHz) to baseband (DC). We first calculate the com-
plex signal Z = I(t) + iQ(t) from the recorded in-phase
and quadrature signal. The microwave transmission sig-
nal S21 is obtained by multiplying Z with a complex si-
nusoidal

S21 = Z · exp (−i (2πfIF + φ)) , (S1)

where fIF is the intermediate frequency and φ is the de-
modulation phase. This shifts the frequency of the signal
to the baseband. We choose φ in such a way that the
signal in the real part of S21 is maximized. After the
frequency conversion, we apply a lowpass filter (digital
Butterworth filter of 5th order) with a cutoff frequency
of 10 MHz and re-sample the signal at a sample rate of
20 MS/s to reduce the file size of the measured signals.

D. Echo integration

In the following we describe our procedure to integrate
the echo signal. The key here is to determine the length
of the integration window, ∆t, given the following two
challenges:

1. For short τ , we cannot use a very broad integration
window, as the echo peaks are close to each other.
Therefore, the integration window has to be chosen
for each value of τ individually.

2. As we integrate the magnitude of the signal |S21|,
there is a finite DC offset Voffset present in the sig-
nal. This offset adds a finite contribution VDC ·∆t
to the integrated echo area, where ∆t is the length
of the integration window.

Our algorithm works as follows: First, we determine all
echo peaks using a peak-detection algorithm. In the next
step, we integrate the signal using a numerical trapezoid
integration, centered around the second detected echo
peak with varying integration window ∆t. When plotting
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Figure S4. Determining the integration window ∆t and DC
offset Voffset. For details see text.

Aecho as a function of ∆t, we can distinguish three regions
(c.f. Figure S4):

A steep increase for small (large) values of ∆t. These
are caused by partial integration of the investigated
(next) echo peak. In the intermediate region, we observe
a linear increase of Aecho with ∆t. Here, the investigated
echo peak is completely inside the integration window
and the increase of the echo area is due to the integration
of the DC offset. To determine the optimal integration
window, we calculate the minimum of the first derivative
dAecho/d∆t (dashed line in Figure S4). The DC offset is
determined as the slope of a linear fit in the linear regime
(solid line in Figure S4).

For the final integration, we subtract the DC offset
from the magnitude signal and integrate each detected
echo peak using the previously determined integration
window.

IV. SPIN-RESONATOR COUPLING

In this section, we discuss the spin-resonator coupling.
The planar resonator structure used in our experiments
creates an inhomogenous microwave magnetic field and
leads therefore to a distribution of the spin-resonator cou-
pling rate. The analysis of the coupling rate in the pres-
ence of an inhomogeneous microwave magnetic field dis-
tribution is based on our work described in Ref. [R1].

A schematic of the resonator used in the experiment
is displayed Fig. S5 (a). The resonator is embedded in
the ground plane of a coplanar waveguide (signal line
width w = 20µm, gap width s = 12µm). The res-
onator is separated from the signal line by a screening
line (width wgs = 10µm), which defines the external
coupling rate [R1]. The resonator consists of an inductor
(wire width wi = 5µm, pitch distance p = 20µm) with
a total length of lind = 11.35 mm and a finger capacitor.
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amplitude decayed to 0.5 % of the maximum amplitude. (d)-(f) Distribution of the collective coupling rate for (d) 0 < z ≤ 20µm,
(e) 0 < z ≤ 1µm and (f) 19µm < z ≤ 20µm. The dashed line indicates the average coupling strength in this sample region.

By changing the length lcap of the capacitor finger the
resonance frequency can be tuned.

For a further analysis, we perform finite element simu-
lations using CST Microwave Studio 2016 [R2] to extract
the three-dimensional microwave magnetic field distribu-
tions of the resonator. Figures S5 (b) and (c) show the
spatial distribution of the magnitude of the vacuum mag-
netic field fluctuations |Byz1 |, i.e. the field component that
is perpendicular to the static magnetic field B0 along the
x-direction. The data is exported from CST Microwave
Studio in volume elements of 1× 1× 1µm3. The dashed
line in panel (c) marks the region where the field ampli-
tude decayed to 0.5 % of the maximum field amplitude.
We define this volume as the mode volume of the res-
onator Vm = 1.41× 10−11 m3. Due to the anti-parallel
current flow in the inductor wires, the dynamic magnetic
field interferes destructively in the far-field. This limits
how far the magnetic field reaches into the z-direction
and enhances the sensitivity of the resonator to spins
close to the superconducting resonator.

The single spin-resonator coupling is given by [R3]

g0 = gsµBB1,0/~, (S2)

where gs = 1.9985 is the electron g-factor of phospho-
rus donors in silicon [R4] and µB is the Bohr magne-

ton. B1,0 describes the magnetic field generated by vac-
uum fluctuations in the resonator. B1,0 is given by [R5]

B1,0 =
√
µ0~ωr/(2Vm), where µ0 is the vacuum perme-

ability, ~ is the reduced Planck constant and ωr is the
resonance frequency of the resonator. Collective cou-
pling effects lead to an enhancement of the single-spin
coupling rate by a factor

√
N , where N is the number of

spins. Thus, the collective coupling strength is given as

geff =
gsµB

2~

√
1

2
µ0~ωrρeffν. (S3)

In this expression, the number of spins, N , is replaced by
N = ρeffV = ρP (T )V , where ρ is the donor concentra-
tion, P (T ) is the thermal spin polarization and V is the
sample volume. The filling factor ν = V/Vm describes the
ratio between the sample volume and the mode volume
of the resonator.

The planar resonator structures used in this exper-
iment generate an inhomogeneous microwave magnetic
field B1, which has to be taken into account in the filling
factor

ν =

∫
Sample

B2
1(~r) dV∫

Mode
B2

1(~r) dV
. (S4)
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We can calculate the filling factor from the exported
three-dimensional distribution of the microwave mag-
netic field using the expression

ν =

∑
V

∣∣∣Byz1,sim(~r)
∣∣∣2∑

Vm

∣∣∣Bxyz1,sim(~r)
∣∣∣2 . (S5)

With this approach, we obtain a theoretically expected
spin-resonator coupling of 2.33 MHz, which somewhat
over-estimates our experimentally defined value. We ex-
plain this by a small gap between the resonator and the
spin sample [R6]. Assuming a gap of (2.91± 0.02) µm,
we obtain a quantitative agreement between the theoret-
ically expected spin-resonator coupling and the exper-
imentally determined value of 1.54 MHz. However, we
want to emphasize, that one ingredient for the observa-
tion of the phenomenon of a self stimulated echo train
is a sufficiently large coupling rate geff , i.e. placing the
system in the strong coupling regime.

Using Eq. S2 we can calculate the distribution of the
single spin-resonator coupling g0. We present the data
in Fig. S5 (d) to (f) for different regions above the
resonator. Note that we included the finite gap be-
tween the resonator and the sample in these calcula-
tions. Panel (d) presents the coupling distribution over
the entire sample region with a mean coupling strength
of g0,mean = 14.93 Hz (dashed line). This results in a
number of spins contributing to the signal according to
N ≈ (geff/g0,mean)2 = 1.06× 1010. For a thin layer of
the spin ensemble facing the resonator we compute an
enhanced single spin-resonator coupling strength with
a mean value of 33.74 Hz, while spins on the opposite
side (panel (f)) couple relatively weakly with on average
5.33 Hz. The low-frequency peak in the coupling distri-
bution can be attributed to spins outside the resonator
dimensions, at the edges of the sample.

V. ESTIMATE OF THE DRIVEN RABI
FREQUENCIES AND PULSE LENGTHS

The finite element simulation of the microwave res-
onator also allows us to estimate the microwave B1 fields
present during the microwave pulses and correspondingly
the expected pulse durations for the π/2 and π pulses.
In a simplifying estimate, we can utilize the computed g0

from Fig. S5 to estimate the driven Rabi frequency ω1,
as the latter is given by g0

√
nc (cf. Eq. S2) [R1, R7, R8].

For an initial estimate for nc, we turn to the Maxwell-
Bloch equations and in particular (S13). In detail, we

relate the driving amplitude η =
√

2κextPmw

~ωc
to the ex-

perimental microwave power Pmw. For a coarse estimate,
we further assume a resonant excitation of the microwave
resonator with the external microwave tone (∆c = 0) and
neglect the modifications of the microwave susceptibility
of the system stemming from the strong coupling between

the spin ensemble to microwave radiation. Note, that
these reduce the photon number nc in a complex fash-
ion, and hence we expect to overestimate our driven Rabi
frequency. Using the parameters given in the main text,
we find nc = 2.1× 1010 for a peak microwave power of
+25dBm at the input of the dilution refrigerator, where
we assume that attenuation is solely given by the mi-
crowave attenuators presented in Fig. S3 (a total of 70dB
attenuation).

In the driven Rabi regime, we next quantitatively es-
timate ω1 by g0

√
nc. Using the peak in Fig. S5 (d) at

g0/2π = 8 Hz, we obtain ω1/2π = 1.2 MHz correspond-
ing to a π/2-time of 200 ns. This is a factor of 5 shorter
than our experimentally chosen π/2 time, however it is
worth to point out that this estimate is purely based on
the design parameters of the resonator and the attenu-
ators mounted in microwave delivery lines in the setup.
Hence, this estimate neglects the additional input losses
of the microwave lines, the insertion-loss of the microwave
switch and the band pass filter as well as cable connec-
tors, all of which are part of the microwave input cir-
cuitry. Those will further reduce the input power sup-
plied to the resonator (we estimate this to be of the order
of 5-10dB, corresponding to a reduction in ω1 between a
factor of roughly 2-3). In addition, this estimate also
neglects the modified transmission when the spin ensem-
ble is set in resonance with the microwave resonator. In
summary, our crude estimate for the pulse durations for
a π/2 and π pulse agrees well with our selected pulse
times. Moreover, this estimate also emphasizes that the
pulses have a significant B1 distribution as can be seen
in Fig. S5 d).

VI. EXPERIMENTAL PULSE OPTIMIZATION

Experimentally, we optimize the pulse angles via the
detected echo amplitude. In detail, we vary the pulse
length of the first pulse tduration and second pulse 2 ·
tduration until we observe a maximum in the echo am-
plitude. Although this analysis does not give direct in-
formation about the pulse angles of the first and second
pulse, we experimentally notice that our pulse settings al-
low for a partial inversion of the echo, as seen in Sec. IX.
This observation suggests that we indeed obtain a rota-
tion angle of the order of 180◦ for our effective π-pulse
and hence confirms the rotation angles of the order of
90◦ for our effective π/2-pulse.

VII. PHASE CYCLING EXPERIMENTS

The experimental data in the main text were recorded
with a “+x/+ x” pulse sequence, i.e. the two microwave
pulses are in phase. We have additionally recorded echo
trains where a relative phase shift between the two pulses
has been applied. In order to verify the occurence of the
echo train phenomenon, a second sample has been used,
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Figure S6. Phase cycling measurements. Quadratures I and Q of the recorded and simulated microwave transmission for (a),
(e) +x/+x, (b), (e) +x/+ y (90◦ phase shift), (c), (f) +x/−x (180◦ phase shift) and (d), (g) +x/− y (270◦ phase shift). The
magnetic field was set to the low-field hyperfine transition, which is strongly coupled to the microwave resonator. The echo
signal is contained in both microwave signal quadratures and no clear phase relation between subsequent echos is visible.

which is nominally identical to the sample used in the
main text. The experiments were performed with the
magnetic field centered on the low-field hyperfine transi-
tion of the phosphorus donors, which is strongly coupled
to the microwave resonator. In Fig. S6, we show the
recorded quadratures, I and Q of the microwave trans-
mission signal as a function of time for (a) +x/ + x,
(b) +x/ + y (90◦ phase shift), (c) +x/ − x (180◦ phase
shift and (d) +x/ − y (270◦ phase shift). In contrast to
conventional ESR experiments, where the ESR signal is
typically contained in a single phase, in the strong cou-

pling regime the microwave signal is contained in both
quadratures. Additionally, no clear phase relation be-
tween subsequent echos is observable but rather a phase
rotation from one echo to the next. We plot the quadra-
tures of the simulated microwave transmission signal for
+x/ + x and +x/ + y in panel (e) and (f), respectively.
Our simulations can qualitatively reproduce the compli-
cated phase relation of the echos.
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VIII. CONVENTIONAL T2 MEASUREMENTS

In a conventional ESR experiment, the coherence time
T2 is measured by Hahn echo spectroscopy. A series of
Hahn echo pulse sequences consisting of two pulses are
performed, where the pulse spacing τ is varied. The re-
sulting echo appearing τ after the refocussing pulse is
digitized and integrated. The echo area Aecho then de-
creases with the characteristic coherence time T2 in an
exponential fashion. We use this experimental approach
to determine the coherence time T2.

In Figure S7, we show such conventional T2 measure-
ments of the spin ensembles in our sample. Panel (a)
shows the integrated echo area of the first (conventional)
echo of the data presented in Fig. S2 (a). The exponen-
tial fit (solid line) results in T2,conv. = (2.37± 0.08) ms.
As this fit contains only a small number of points due
to the limited τ resolution, we have performed an addi-
tional measurement for increased τ , where we have only
digitized the first echo. The evaluation of the T2 time
for this measurement presented in panel (b) results in
T2,add. = (2.46± 0.05) ms, which is in agreement with
the first measurement. In panel (c), we present the same
measurement as in (b), with the magnetic field set to
the resonance field of the P2 dimer transition. Here,
we extract a coherence time T2,P2

= (4.67± 0.13) ms.
Panel (d) shows the coherence time measurement of the
Pb0/Pb1 defects with T2,Pb0/Pb1

= (22.6± 1.6)µs.
In samples with a large donor concentration as in our

case, it is expected that the T2 time is limited by instanta-
neous diffusion, originating from a dipole-dipole interac-
tion between neighboring spins [R9, R10]. The influence
of instantaneous diffusion on the T2 time can be reduced
by reducing the flipping angle of the second pulse in the
Hahn echo [R10, R11]. We performed T2 measurements
and reduced the amplitude of the second pulse Aπ in
relation to the amplitude of the first pulse, Aπ/2. We
plot the inverse time 1/T2 in Fig. S8. We observe that
T2 increases when decreasing the effective flipping an-
gle showing a maximum T2 of 6.14 ms. The trend, that
smaller rotation angles have a positive effect on T2 is
compatible with the mechanism of instantaneous diffu-
sion. Nevertheless, one would expect that the inverse T2

time scales with sin(Θ/2)2, where Θ is the rotation angle
of the second pulse [R12, R13]. However, Fig. S8 does
not display this functional behavior, but rather a linear
dependence on the pulse amplitude Aπ. We speculate,
that the details of the complex B1 distribution and the
spectral distribution of the spin ensemble ρ(ω) might be
at the origin of this observed behavior.

The coherence times reported here are exceptionally
long compared to conventional pulsed ESR experiments
at higher temperatures [R10, R11]. We suspect that the
long coherence times, which we find already for the ini-
tial Hahn-echo sequence, are a result of the suppression
of instantaneous diffusion. As reported by Taylor et al.
[R14], long and weak amplitude pulses cause an effective
increase of the T2 time by selecting only a part of the

ESR transition and hereby causing a suppression of in-
stantaneous diffusion. In a reference experiment, we per-
formed standard measurement of the coherence time with
a Hahn-echo sequence at 6 K (in a commercial Bruker
ESR system) and find T2 ≈ 30µs, which is in good agree-
ment with e.g. Ref. [R10].

IX. T1 MEASUREMENTS

To measure the spin life time T1 we use an inversion
recovery pulse sequence [R15], as shown in the top of
Fig. S9. Conceptually, the first pulse in this three-pulse
sequence inverts the spin ensemble. After a variable wait
time T a standard Hahn echo with fixed τ is used to probe
the magnetization along the z-axis, giving a measure of
the T1 time.

In Fig. S9 we plot the extracted echo area as a func-
tion of the wait time T for both the individual P donors
and the P2 dimers. Note that the measurements have
been recorded at an elevated temperature compared to
the measurements in the main text, which, however, has
only a small impact on the determined value.

For small T , the partially inverted spin ensemble has
a net moment along the −z axis and the resulting echo
is negative. Ideally, the inversion pulse should result in a
normalized echo amplitude of −1 for T = 0, which is not
the case here, probably due to the distribution of B1 exci-
tation fields. With increasing T spins relax back to ther-
mal equilibrium along −z and the echo area increases.
We fit the following function based on a stretched expo-
nential to the data to extract the T1 time:

Aecho = y0 +A ·
[
1− 2 exp

(
− (T/T1)

b
)]
. (S6)

From this fit we extract T1,P = (32.4± 0.8) s with
b = 0.75 for the low-field hyperfine split transition.
For the P2 dimers we extract T1,P2 = (4.8± 0.2) s and
b = 0.43. A stretched exponential form of the relaxation
has been reported, e.g., in NMR for a superposition of
single-exponential decays [R16]. As the Purcell-enhanced
relaxation process depends on the spin-resonator cou-
pling [R8], which is highly inhomogeneous in our case, we
obtain a distribution of relaxation times, justifying the
use of a stretched exponential. Note that we introduce an
additional offset y0 in Eq. S6 to account for non-ideal in-
version due to the inhomogeneous B1 field distribution.
From the ratio y0/(y0 + A) ≈ 0.338 of the phosphorus
donors, we can estimate that we effectively invert about
34 % of the addressed spin ensemble.

We next discuss two mechanisms which could account
for these rather short relaxation times: (i) The shortening
of the T1 time due to Purcell enhancement and (ii) the
one-phonon relaxation process.

Purcell-enhanced T1 times — One mechanism result-
ing in an enhanced energy relaxation time is Purcell en-
hancement. This mechanism is present during the free
evolution time of the experiment, where each spin indi-
vidually couples to the microwave resonator. Bienfait et
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Figure S7. Determination of the coherence time T2 using conventional Hahn echo spectroscopy for the individual donors with
(a) the same data as presented in the main text, (b) data from an additional measurement, where we varied τ and only
recorded the first echo, (c) the P2 dimers, and (d) the Pb0/Pb1 defects. For details see text.

al. [R8] discussed this as function of the detuning δ of
the microwave resonator from the spin systems and find
for bismuth donors in silicon shortened relaxation times
in the seconds range. Following their discussion, we can
calculate the Purcell rate by

ΓP = (2κc)
g2

0

(2κc)2/4 + δ
, (S7)

where we have replaced the FWHM κ of Ref.[R8] with
our HWHM κc. Using the peak in g0/(2π) = 8 Hz de-
picted in Fig. S5 (d) and κc/(2π) = 565 kHz of the main

text, we expect a Purcell-limited T1 time of 700 s. How-
ever, we also find a considerable amount of spins with a
spin-resonator coupling of 40 Hz, which would translate
to a T1 time of 30 s. We speculate that spatial diffusion
[R17–R20] can then assist with the relaxation of the ma-
jority of spins in the mode volume. However, tailored
experiments, which are beyond the scope of this work,
will be required to test this conjecture.

One-phonon relaxation process — In addition, we can
consider the T1 process originating from the relaxation
with the phonons. As our experiments are performed
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Figure S9. T1 measurement using an inversion recovery pulse
sequence (top). Due to the non-ideal inversion the curve is
not symmetric to zero. The solid line is a fit to Eq. (S6).

at low temperatures, we can reduce the discussion to the
one-phonon relaxation process [R21]. Morello et al. [R22]
discussed this process, which was initially presented by
Hasegawa et al. [R23] in the low temperature limit. Both
report for gsµBB � kBT a temperature and magnetic
field dependence of the spin lattice relaxation rate of

1

T1
∝ B4T. (S8)

To discuss the phonon related relaxation process at even

lower temperatures, we need to account for the phonon
population, which is given by the Bose-factor nphonon =
1/(exp(gsµBB/kBT )− 1) [R23]. Then

1

T1
∝ B5nphonon (1 + exp(gsµBB/kBT )) (S9)

For gsµBB � kBT , this simplifies to the expected B5

dependence, while for gsµBB � kBT we find the limit
of T−1

1 ∝ B4T . Using the reported spin relaxation time
by Feher and Gere [R21] for our donor concentration of
[P ] = 1× 1017 cm−3 of T1 = 1 s at B = 0.32 T as a
calibration point, we can now extrapolate to our exper-
imental temperature T = 100 mK and B = 0.17 T. We
find T1 = 110 s. We note that this relatively short T1

time is mostly caused by the high doping concentration.

In summary, both presented relaxation mechanisms
reasonably explain our measured spin relaxation times
T1.

In addition, we can use these estimates to calculate
the expected spectral diffusion rate, which might mask
the T1 measurement and has potentially impact on the
experimentally determined T2 times presented in this pa-
per. Spectral diffusion depends on the donor concentra-
tion [P] and the corresponding time constant is given by
[R13]

TSD =

√
18
√

3

µ0

~
(gsµB)2

T1

[P ]
(S10)

Using the T1 times determined above of 700 s and 110 s,
we expect spectral diffusion rates of 230 ms and 91 ms, re-
spectively. For our experimentally determined T1 time of
32.4 s we obtain TSD = 50 ms. All of these estimates for
TSD exceed the observed T2 times significantly and hence
we expect that our T2 measurements are not dominated
by this mechanism. As the spin relaxation time repre-
sents an important parameter, we plan to investigate as-
pects of spin relaxation in these strongly coupled systems
at a later stage in more detail using pulse sequences based
on adiabatic pulses, optimal control pulses or a two-pulse
saturation recovery, which have the potential to discern
spectral diffusion from spin relaxation, excitation of a
selected part of the spin ensemble and Purcell rates.

X. THEORETICAL MODEL

In order to give a dynamical description of the echo
trains we start from the inhomogeneous Tavis-Cummings
Hamiltonian [R24],

H =~∆c a
†a+

~
2

N∑
j=1

∆jσ
z
j +

N∑
j=1

~[gjσ
−
j a
† + g∗jσ

+
j a]

+i~[η(t)a† − η∗(t)a], (S11)

where ∆c ≡ ωc − ωp and ∆j ≡ ωj − ωp are the detun-
ings of the resonator frequency ωc and of the individual
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spin frequencies ωj from the frequency ωp of the incoming
driving pulse. Here a† and a are the creation and anni-
hilation operators of the single resonator mode and σzj ,

σ+
j , and σ−j are the Pauli operators corresponding to the

individual spins. Without loss of generality we assume
η∗(t) = η(t) as well as g∗j = gj . The incoming driving
pulse is characterized by the carrier frequency ωp and
the amplitude η(t), which for simplicity is assumed to be
of rectangular shape. Note that the Hamiltonian (S11)
does not account for direct dipole-dipole interactions be-
tween the spins. Although dipole-dipole interactions do
not seem to play a fundamental role in the formation of
the echo pulses it would be interesting to investigate in
future studies whether they have an impact on the shape
of the echos.

A quantum master equation for the system’s density
matrix can be written as dρ/dt = − i

~ [H, ρ]+LD(ρ) [R25],
where H is the Hamiltonian (S11) and LD(ρ) stands for
the standard Lindblad superoperator

LD(ρ)=κ (2aρa† − a†a ρ− ρ a†a) + γp

N∑
j=1

(σzj ρ σ
z
j − ρ )

+γh

N∑
j=1

(2σ−j ρ σ
+
j − σ

+
j σ
−
j ρ− ρ σ

+
j σ
−
j ). (S12)

Here the first term describes the resonator losses with the
decay rate κ and the second and third term account for
nonradiative and radiative dephasing of the individual
spins characterized by the rates γp and γh, respectively.
Starting from the master equation given above, one
can derive the equations of motion for the expectation
value of any operator O by d〈O〉/dt = Tr{− i

~ [O,H]ρ +
OLD(ρ)}. In the limit of very large spin ensembles
(N → ∞), we can neglect correlations between the res-
onator field and individual spins (〈a†σ−j 〉 ≈ 〈a†〉〈σ

−
j 〉)

[R26]. Thus, we obtain a closed set of first-order dif-
ferential equations for the expectation values 〈a〉, 〈σ−j 〉,
and 〈σzj 〉, which is equivalent to the well-known Maxwell-
Bloch equations:

d

dt
〈a〉 = −(κ+ i∆c)〈a〉 − i

N∑
j=1

gj〈σ−j 〉+ η(t) , (S13)

d

dt
〈σ−j 〉 = −(γ⊥ + i∆j)〈σ−j 〉+ i gj〈σzj 〉〈a〉 , (S14)

d

dt
〈σzj 〉 = −γ‖(〈σzj 〉+ 1) + 2i gj(〈σ−j 〉〈a

†〉 − c.c.) ,

(S15)

with the resonator decay rate κ, the longitudinal spin
relaxation rate γ‖ = 2γh = 1/T1, and transverse spin
relaxation rate γ⊥ = γh + 2γp = 1/T2.

As outlined in the main text, the spin ensemble is inho-
mogeneously broadened not only with regard to the indi-
vidual spin frequencies ωj , but also through the coupling
strengths gj due to the B1 inhomogeneity. Since we are

dealing with a sizable number of spins (N ≈ 1.06× 1010)
inside the ensemble, the distributions of spin frequen-
cies and couplings strengths are smooth functions around
the mean values. For simplicity, we assume in our cal-
culations that all spins couple with the mean coupling
strength g0 = geff/

√
N and we incorporate the inhomoge-

neaus broadening in a phenomenological Lorentzian spin
spectral density

ρ(ω) =
1

πγs[1 + (ω−ωs

γs
)2]
. (S16)

This frequency distribution of spins is already sufficient
to accurately describe the generation of multiple echo
trains. Here γs is the half width at half maximum and
ωs is the mean frequency of the spin distribution.

To solve (S13)-(S15) for the inhomogeneously broad-
ened spin ensemble, we discretize the phenomenologi-
cal spin spectral density and divide the entire frequency
range into M = 40001 equidistant frequency clusters.
Each cluster k is then characterized by the mean cou-
pling strength g0, its detuning ∆k = ωk − ωp, and the
number of spins inside this cluster. Eqs. S13-S15 can
then be solved using a standard Runge-Kutta method.

Note that, along the lines of previous work [R27, R28],
the distribution of coupling strengths gk can also be in-
cluded in the phenomenological spin spectral density.
Calculations using such a combined spin spectral density
have also been carried out and showed qualitatively sim-
ilar results. In order to obtain a full quantitative agree-
ment between our theory and the experiment, however,
the exact shape of the spectral spin and spatial coupling
distribution has to be determined through extensive fur-
ther theoretical and experimental work [R29]. For rea-
sons of clarity, we only present simulations in which the
inhomogeneous broadening is included in the spin distri-
bution alone, since these are already sufficient to describe
the observed phenomenon of multiple echoes.

XI. A SHORT REVIEW ON MULTIPLE ECHO
EFFECTS

Multiple echo effects in nuclear and electron magnetic
resonance (NMR, ESR) experiments have been observed
in a number of experiments, although different underly-
ing mechanism are presented. Multiple echo signatures
were reported in NMR experiments of 3He, 3He/4He mix-
tures as well as water [R30–R33]. In these experiments
the occurrence of multiple echos is attributed to non-
linear terms in the equation of motion governing the
magnetization. In Fermi liquids, the non-linearity is in-
troduced by the Leggett-Rice effect [R32, R34]. Neither
effect plays a role in our experiments. Another source
for non-linear terms in the Bloch equations is the dipo-
lar demagnetizing field [R34]. The demagnetizing field is
usually negligible NMR and ESR experiments, as it is
suppressed by radiation damping [R35, R36]. However,
in the experiments presented in Ref. [R35, R36] a strong
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field gradient parallel to the static magnetic field was
applied, which crucially alters the effect of the demag-
netizing field on the dynamics [R36]. Another source of
nonlinear spin dynamics is radiation damping [R37, R38].
Radiation damping describes the effects of a backaction
of the precessing spin magnetization on the RF coil or res-
onator, sharing some similarities with the strong coupling
regime. Numerical simulations of the nonlinear Maxwell-
Bloch equations indeed show the presence of multiple
echos under certain conditions [R39].

The first occurrence of a multiple echo signal in ESR
was reported by Gordon and Bowers [R40]. Here, the
authors conducted Hahn echo experiments of donors in

silicon at a frequency of 23 GHz. We are able to estimate
the relevant coupling parameters from the information
supplied in the text: Assuming a typical TE102 cavity
for operation at 23 GHz and a sample volume of 0.1 cm3,
we estimate a filling factor of ≈ 6 %. We calculate the
effective coupling rate using Eq. (S3) and a donor con-
centration of 4× 1016 cm−3 and obtain geff ≈ 3.37 MHz.
With the spin relaxation rate γs ≈ 560 kHz and the as-
sumption of a moderate quality factor of Q = 200, we
estimate a cooperativity of C = 1.68. Therefore, the oc-
currence of the second echo reported in Ref. [R40] can be
in hindsight explained by our model.
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