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The efficient transfer of excitations between different levels of a quantum system is a task with many
applications. Among the various protocols to carry out such a state transfer in driven systems, rapid adiabatic
passage (RAP) is one of the most widely used. Here we show both theoretically and experimentally that adding
a suitable amount of loss to the driven Hamiltonian turns a RAP protocol into a scheme for encircling an
exceptional point including the chiral state transfer associated with it. Our work thus discloses an intimate
connection between a whole body of literature on RAP and recent studies on the dynamics in the vicinity of
an exceptional point, which we expect to serve as a bridge between the disjoint communities working on these
two scenarios.
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Already in the early years of quantum mechanics the ques-
tion was discussed how to coherently transfer the population
from one discrete energy level to another one [1,2]. Ever since,
coherent transfer schemes have become indispensable tools in
many different areas of physics and technology—from simple
spin-flip operations in a magnetic field to the preparation of
atoms with well-defined populations of their excited states
[3]. A particularly efficient transfer scheme with an inherent
robustness is “rapid adiabatic passage” (RAP) [4–8]. While
RAP is rapid enough to avoid any decoherence mechanism to
kick in, it is adiabatic in the sense that the external drive is
smoothly turned on and off to keep the system in an instan-
taneous eigenstate of its time-dependent Hamiltonian. Since
the Hamiltonian of the system must be the same before and
after the external driving sequence, any initial state follows
a closed loop in the space of driving parameters. To achieve
the desired population transfer, this closed loop must lead
through an eigenvalue crossing at a degeneracy, also known
as “diabolic point” (DP) or “conical intersection” [9].

In recent years, interest has been growing in non-
Hermitian systems with controlled gain and loss that exhibit
a wealth of unconventional and often surprising phenomena
[10–16]. The focus of the community’s attention currently
revolves around the degeneracies that the corresponding
non-Hermitian Hamiltonians give rise to. At these so-called
“exceptional points” (EPs), not only the complex eigenval-
ues of this effective Hamiltonian coincide (in both their real
and imaginary parts), but also their corresponding eigen-
vectors become parallel [17–29]. Another key feature of
non-Hermitian systems is their dynamics: even when the time
evolution is arbitrarily slow, the adiabatic transport along the
eigenvalue surfaces may break down at sudden nonadiabatic

*juraj.feilhauer@savba.sk

jumps during a state’s dynamical evolution [30–40]. One of
the most surprising effects based on this breakdown of adia-
baticity is a chiral state transfer: by continuously evolving two
parameters along a closed loop around an EP, the final state at
the end of the loop depends only on the encircling direction
[clockwise (CW) vs counterclockwise (CCW)], but not on the
initial state. This interesting and robust effect has meanwhile
been demonstrated in a number of different experimental plat-
forms [41–46].

The main goal of this Rapid Communication is to uncover
a fundamental connection between RAP at a DP and the
chiral state transfer at an EP. As we will demonstrate both
theoretically and experimentally, these two transfer protocols
are intimately connected in the sense that a RAP scheme in
Hermitian systems results directly in the chiral encircling of
an EP when losses are added appropriately. In other words,
RAP and EP encircling are two sides of the same coin—an
insight expected to create a much deeper understanding of
how problems that have previously been studied with RAP
carry over to the non-Hermitian domain and vice versa.

Our starting point is a general two-level system as de-
scribed by the following simple 2×2 effective Hamiltonian,

H = 1

2

[−� − iγ �

� � + iγ

]
, (1)

with the detuning �, the coupling strength �, and the loss
or gain value γ entering the two eigenvalues λ± = ±λ with
λ =

√
(� + iγ )2 + �2/2 . The dynamical evolution of the

level amplitudes c1 and c2 is governed by the Schrödinger
equation,

i
∂

∂t

(c1

c2

)
= H(t )

(c1

c2

)
, (2)

where � and � in Eq. (1) are smoothly adjusted with time.
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FIG. 1. (a), (b) Clockwise adiabatic passage along a semicircular
trajectory (A→B) followed by a straight return path (B→A) at zero
coupling (� = 0). In the Hermitian case (a) the closed loop crosses
a DP, whereas in the non-Hermitian case (b) it encircles one EP
(labeled EP+). The parameter ρ measures the loop offset from the
center position at � = 0, i.e., the necessary loop asymmetry for
a successful chiral state transfer in the non-Hermitian system. In
(c) and (d) we show the corresponding parametric state evolution by
the arrows on the real part of the eigenvalue surfaces (for simplicity,
dynamical effects such as nonadiabatic jumps are excluded here;
see Fig. 2 for comparison). Violet (dark-gray) and green (light-gray)
arrows show the state evolution starting on the first and second level,
respectively. The red (gain) and blue (loss) regions in (d) correspond
to Imλ± > 0 and Imλ± < 0, respectively.

In the Hermitian case without loss or gain (γ = 0) the
eigenenergy surfaces λ(�,�) in the parameter space (�,�)
form a pair of conical sheets connected at a DP located at
� = � = 0 [see Fig. 1(c)]. In Figs. 1(a) and 1(c) we demon-
strate the adiabatic switch of the level populations associated
with the RAP protocol by following a closed loop starting at
point A located at � = 0. First we pass through a semicircular
(SC) trajectory between points A and B (SCA→B) where the
coupling � is switched on and off while the detuning � is
simultaneously swept through the resonance at � = 0. The
closing of the loop is achieved by connecting B with A along a
linear (L) path (LB→A) by sweeping the detuning backwards at
zero coupling through the DP. The important point to observe
is that the desired final state at the end of the closed loop is
realized already at point B such that RAP usually terminates
already there and the fictitious linear path LB→A is omitted
(see Supplemental Material (SM) [47] for more details). Since
the same reasoning also holds when the semicircular loop is
orbited in counterclockwise direction, the RAP protocol de-
scribed above generates a symmetric eigenstate switch where
any initial eigenstate is adiabatically exchanged at the end of
the evolution regardless of the loop’s orbiting direction.

In a next step, we make the Hamiltonian in Eq. (1) non-
Hermitian by introducing a finite loss-gain value γ > 0 in its
diagonal elements. With one level now being amplified and

the other one being attenuated, the eigenvalues λ± become
complex with the real part representing the energy and the
imaginary part defining the rate of amplification (for Imλ± >

0) or attenuation (for Imλ± < 0) of the corresponding eigen-
vectors [red and blue regions in Fig. 1(d)]. The DP from the
Hermitian case splits into a pair of two EPs located at � = 0
and �EP± = ±γ , where both the eigenvalues λ± = 0 and the
eigenvectors of Eq. (1) coalesce. As shown in Fig. 1(b), due
to the symmetric splitting of the DP, one of the two EPs (at
�EP+ = γ ) is now located inside the closed parametric RAP
loop whereas the second EP is not. The finite value of the
loss-gain parameter γ thus transforms the conventional RAP
scheme into a protocol for EP-encircling.

The topology of the energy eigensheets in the non-
Hermitian system is shown in Fig. 1(d). On these Riemann
sheets a purely parametric evolution along the same semi-
circular RAP loop as in the Hermitian case also leads to the
same symmetric state switch that RAP gives rise to [compare
Figs. 1(c) and 1(d) for the clockwise encircling direction]
[15,24,26]. However, the fact that the dynamic state evolution
of this non-Hermitian system is not necessarily adiabatic,
leads to the asymmetric (chiral) state transfer associated with
a loop around an EP [30–40,40–46]. In this case, the final state
of the evolution depends only on the encircling direction and
is independent of the initial state.

In Figs. 2(a)–2(d) we now provide the detailed numerical
results for the fully dynamical state evolution for both the
Hermitian and the non-Hermitian case. In both situations the
level populations show the expected symmetric vs asymmetric
state exchange also when the fictitious straight line path across
the resonance at � = � = 0 is omitted and the evolution is
restricted to just the semicircular RAP loop parametrized as
�SC(t ) = r sin(πt/T ) and �SC(t ) = ∓r cos(πt/T ) + ρ. We
choose r = 2 as the radius of the semicircle, ρ = −0.6 as its
horizontal offset, T = 100 as the encircling period, and the
∓ sign in �SC(t ) defines the CW and CCW orbiting direc-
tions. The inversion of the level population is described by
the quantity p(t ) = [|c1(t )|2 − |c2(t )|2)/(|c1(t )|2 + |c2(t )|2],
where p = ±1 represent the cases where only the first or
the second level is occupied, respectively. The violet (dark-
gray) curves in the top and middle rows of Fig. 2 correspond
to the evolution for the first level being initially populated
[initial conditions c1(0) = 1 and c2(0) = 0] and the green
(light-gray) curves for the second level initially populated
[c1(0) = 0 and c2(0) = 1].

Consider first Figs. 2(a) and 2(b) (left column), where one
can clearly see the successful operation of RAP: the evolution
along SCA→B inverts the level populations for both orbiting
directions and initial states [for more details on the conditions
of adiabaticity see SM [47]]. In Figs. 2(c) and 2(d) (right
column) the corresponding non-Hermitian evolution along the
same path is depicted: one immediately sees that adiabaticity
breaks down and nonadiabatic transitions arise that lead to
a rapid transfer of populations towards the eigenvector with
gain. The first such jump occurs for both orbiting directions at
t ≈ 10 [see violet curves in Figs. 2(c) and 2(d)]. The ensuing
evolution is almost identical for both initial states and orbiting
directions as it adiabatically follows the amplified instanta-
neous eigenvector (see also Fig. S3 in the SM [47]). However,
as the Imλ = 0 line (black dashed line) is crossed, the
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FIG. 2. (a)–(d) Dynamical evolution of the two-level populations
governed by Eq. (2) tracked along the semicircular path (SCA→B) in
Fig. 1 for the Hermitian (left panels) and non-Hermitian system (right
panels, γ = 0.7). The numerical evolution of the level population p
is initialized (at t = 0) in the first [violet (dark-gray) curves] and
second level [green (light-gray) curves]. The arrows indicate the CW
and CCW orbiting direction and the black dashed lines mark the
position of the Imλ = 0 line. Violet (dark-gray) and green (light-
gray) dots mark the experimental values of mode populations pn

from waveguide data in Fig. 4. The bottom panel (e) shows a map
of the state switch asymmetry when numerically following SCA→B

as a function of the loop offset ρ and the loss-gain value γ . The
shown switching parameter α takes on its limiting values 1 (−1) for
a symmetric (asymmetric) switch as in RAP (as in the chiral state
transfer). Blue dashed line: transition from symmetric to asymmetric
state transfer [see Eq. (4)]. Black dot: parameters of the semicircular
loop in Fig. 1(b).

imaginary part of the eigenvalues changes sign. As a result,
the state vector now follows the lossy eigenstate such that
another nonadiabatic jump can occur. The onset of a potential
nonadiabatic transition is, however, always delayed with re-
spect to the sign change of Imλ [36], such that the remaining
time of the loop decides whether or not the transition takes
place. When the Imλ = 0 line is crossed asymmetrically in
time for the two orbiting directions in a way that, e.g., the
delay time is longer than the remaining loop time in CW
direction [Fig. 2(c)] but shorter than the remaining loop time
in CCW direction [Fig. 2(d)], the state transfer shows the
characteristic chiral behavior. This observation explains why
a finite offset ρ of the semicircular loop with respect to the
position of the Imλ = 0 line (black dashed line) is required to
induce this asymmetry.

To quantify the effect of the loop offset ρ on the asymme-
try of the state switch, we introduce a measure α ∈ [−1, 1]
that reflects the faithfulness of the symmetric (α = 1) and
asymmetric state transfer (α = −1) and that highlights the

boundaries between those two regimes (α = 0). For this pur-
pose we first multiply the values of the level population p
at the beginning and end of the evolution as Sj = p j (t =
0) × p j (t = T ), where the index j = 1, 2 labels which level is
populated initially. This quantity Sj equals −1 if the eigenstate
at the end is different from the initial one or +1 if the state
vector returns back to the initial level. For the state switching
in the CW and CCW encircling direction, the parameter α is
then defined as follows,

α = (
SCW

1 SCW
2 + SCCW

1 SCCW
2 + SCW

1 SCCW
1 + SCW

2 SCCW
2

)
/4. (3)

A map of α as a function of ρ and γ is plotted in Fig. 2(e). The
dark-green region centered around ρ = 0 defines the param-
eters where the evolution along the semicircular loop yields
a symmetric switch. Albeit symmetric, the evolution is here
not necessarily adiabatic since two subsequent nonadiabatic
jumps during the EP encirclement would yield the same out-
put eigenvector as a fully adiabatic passage [compare, e.g.,
violet (dark-gray) curves in Figs. 2(b) and 2(d)]. The sym-
metric and fully adiabatic evolution (as in RAP) is possible
only for γ � 1. As discussed above, introducing a sufficient
asymmetry ρ of the loop position with respect to the Imλ = 0
line leads to the asymmetric switching (orange regions). Using
the theory of stability loss delay [36] we estimate analytically
the critical loss rate γc needed to transition from symmetric to
asymmetric switching for γ � r,

γc � 2r

T |ρ| ln

[
2T (r2 − ρ2)

πr

]
. (4)

This estimate derived in detail in SM [47] is shown as a
blue dashed line in Fig. 2(e) and accurately reproduces the
numerically calculated crossover.

Reconsidering experimental RAP protocols that are always
slightly non-Hermitian due to inevitable losses to the environ-
ment, we may thus conclude that RAP is typically realized
as an EP encirclement with a sufficiently small loss contrast
between the eigenmodes (γ � γc). In turn, simply increasing
the loss contrast (γ > γc) at a sufficient offset value |ρ| pro-
duces the chiral state transfer. For even larger values of γ and
|ρ| the evolving states eventually all yield α = 0 [white region
in Fig. 2(e)] since they all collapse into the gain eigenstate,
regardless of the initial configuration and orbiting direction.

Our next aim is to demonstrate the fundamental connection
between RAP and the chiral state transfer experimentally. We
choose for this purpose a bimodal waveguide (WG) for mi-
crowaves in which the encircling of an EP and the associated
chiral state transfer have recently been implemented [41]. In
the following, we show that the same waveguide as used in
[41] generates the symmetric RAP state switch, when a strong
absorber that was placed inside the waveguide as part of
the non-Hermitian EP-encircling protocol is simply removed.
These results confirm the main message of this Rapid Com-
munication, i.e., that the insertion or removal of losses alone
can turn a RAP scheme into a recipe for EP encircling or vice
versa.

The transmission of microwaves through the bimodal
waveguide of length L and width W can be modeled
by the Schrödinger equation (2) with the longitudinal
coordinate x playing the role of time. The coupling
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FIG. 3. Numerically calculated mode populations in the bimodal
waveguide for ωW/πc = 2.6 without (left column) and with ab-
sorber (right column). The top row shows the closed loops in
parameter space which cross the DP in the case of an empty waveg-
uide and enclose the EP in the case of a waveguide with absorber.
Black dashed line in (b) marks the position of the Imλ = 0 line.
Panels (c)–(f) show the mode populations of microwaves injected
into the waveguide from left and right (see arrows), calculated nu-
merically (thick solid lines) and semianalytically (thin dashed lines).
Panel (g) shows how the numerical field intensities of the transverse
modes switch during the RAP protocol in the empty waveguide (ar-
rows: injection). Similarly, panel (h) reproduced from [41] shows the
numerical field intensities for the asymmetric switching, where the
longitudinal attenuation along the waveguide is shown as an overlay
(see color bars at the bottom). The foam absorber contained in this
waveguide is sketched as a thin blue curve in the image right above
the color bars.

between the modes is provided by the simultaneously oscil-
lating waveguide boundaries [see Figs. 3(g) and 3(h) for an
illustration] defined by the function ξ (x) = σ sin(kbx) with
amplitude σ and kb = k1 − k2 + δ, where δ represents the
detuning from the resonant forward scattering at δ = 0. As
shown in detail in [41,47], the modal amplitudes are governed

by an x-dependent Hamiltonian similar to Eq. (1), where the
parameter σ is equivalent to � and δ is directly related to
�. In order to reduce the backscattering of the microwaves
at the start and end points A, B, we modify the semicircular
RAP loop from Fig. 2 to the bell curve shown in Figs. 3(a)
and 3(b) with the corresponding waveguide boundary mod-
ulation given by σ (x) = σ0[1 − cos(2πx/L)]/2 and δ(x) =
±δ0(2x/L − 1) + ρ for δ0W = 1.25, ρW = −1.8, σ0/W =
0.16, and L/W = 25 [41]. The CW and CCW propagation
along this loop is equivalent to the left and right injection of
microwaves into the waveguide.

The results of a full wave simulation [48–50] for the trans-
mission across this bimodal waveguide are presented in Fig. 3
(see SM [47] for details). In the left column we consider
the Hermitian case of this empty waveguide and observe a
robust symmetric state switch for both initial modes and wave
injection directions [see population inversions in Figs. 3(c)
and 3(e) (thick solid lines)]. This behavior is also well repro-
duced by a semianalytical model based on Eq. (2) [see SM
and Figs. 3(c) and 3(e) (thin dashed lines)]. The successful
implementation of RAP is visible also directly through the
microwave intensity profiles along the boundary-modulated
waveguide shown in Fig. 3(g).

In the non-Hermitian case previously studied in [41], a
thin but strong absorber with suitable shape is placed inside
the waveguide to produce a sufficiently large loss contrast
between the two modes (see SM [47]). To identify the position
of the EP with respect to the chosen parameter loop, the
definition of the waveguide Hamiltonian is extended to the
whole parameter plane, involving both the localized absorber
and the homogeneous dissipation in the waveguide cover
plates (see SM [47]). As shown in Fig. 3(b), for the given
waveguide geometry the EP is located inside the parametric
loop and the evolution along the loop leads to the chiral mode
switch for which the final states ejected at the two waveguide
ends depend solely on the injection direction of the mi-
crowaves, but not on the injection profile [see Figs. 3(d), 3(f),
and 3(h)] [41].

Our theoretical results from above demonstrate that RAP
and chiral state transfer can be obtained within the same
waveguide. For switching between these two scenarios, the
only ingredient that needs to be changed is the presence of
the absorber, which was already part of the non-Hermitian
design in [41]. The waveguide considered there is built out of
aluminum with dimensions L × W × H = 2.38 m × 5 cm ×
8 mm consisting of a 1.25-m-long region with undulating
boundaries between two straight waveguide leads [41]. Mi-
crowaves with a frequency ν around 7.8 GHz are injected and
detected by antennas located in the leads. Figure 4 shows the
inter/intramode transmittances Tmn (from left to right) and T ′

mn
(from right to left) from mode m to mode n measured as a
function of microwave frequency in the absence (left panel)
and in the presence (right panel) of a thin foam absorber.
As discussed already in [41], in the waveguide including the
absorber the measured intensities satisfy T11 	 T12, T21 	 T22

and T ′
12 	 T ′

11, T ′
22 	 T ′

21, which is a hallmark of the chi-
ral state transfer: both modes injected from the left (solid
curves) leave the waveguide primarily in the first mode and
both modes injected from the right (dashed curves) leave the
waveguide primarily in the second mode. If, on the other hand,
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FIG. 4. Experimental transmission intensities in the microwave
waveguide without (left panel) and with absorber (right panel). The
solid and dashed curves correspond to the quantities of the left-
to-right (Tmn) and right-to-left (T ′

mn) transmission intensities from
mode m into mode n. Data in (b) reproduced from [41]. The low
transmission intensities in the WG without the foam absorber stem
from the fact that most of the transmitted wave is not detected by the
scanning antenna because of its weak coupling to the waveguide and
its relatively small radius. Additionally, the radial symmetry of the
input antennas’ emission patterns causes half of the injected intensity
to be lost already at the input (the intrinsic losses of the metallic WG
are comparatively small). These spurious losses are not calibrated out
in our measurements as they only reduce the global transmittance,
while the relevant ratios of the individual mode transmittances are
unaffected.

we remove the absorber from the waveguide, we observe that
around the design frequency of ν = 7.8 GHz the intermode
transmittances are about three orders of magnitude larger than
the intramode ones, which proves the successful operation
of RAP. To compare these experimental results directly with
our simple model from Eq. (1), we mapped these transmit-

tances at ν = 7.75 GHz to corresponding mode populations
via pn = (Tn1 − Tn2)/(Tn1 + Tn2), n = 1, 2 and included them
in Fig. 2 as violet (dark-gray) points for n = 1 and green
(light-gray) points for n = 2 at the end of the corresponding
loops. Our experimental values for pn nicely correspond to the
final states of the evolution in the general model, confirming
the successful experimental implementation of our theoretical
concepts.

In summary, we have demonstrated the intimate connec-
tion between RAP in Hermitian systems and EP encircling
in non-Hermitian systems. Using analytical and numerical
tools, we have shown explicitly that judiciously adding dissi-
pative loss to a system that employs a RAP scheme generates
a chiral transfer scheme involving the encircling of an EP.
In the experiment we implemented these results in reverse
order, starting from a boundary-modulated waveguide for
microwaves inside of which a mode-specific absorber was
placed [41]. In the presence of the absorber, chiral trans-
mission is observed that depends primarily on the injection
port (left or right), but not on the incoming mode configu-
ration. When removing the absorber, however, we obtained
the symmetric state switch of RAP between the incoming
and outgoing modes on either side. Apart from providing a
topical bridge between these two concepts, our results open up
many possibilities to alternate between the Hermitian and the
non-Hermitian variant of state transfer whenever desirable.
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