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Speckle patterns are ubiquitous in optics and have multiple applications for which the control of their
spatial correlations is essential. Here, we report on a method to engineer speckle correlations behind a
scattering medium through the singular value decomposition of the transmission matrix. We not only
demonstrate control over the speckle grain size and shape but also realize patterns with nonlocal
correlations. Moreover, we show that the reach of our method extends also along the axial dimension,
allowing volumetric speckle engineering behind scattering layers.
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Speckle formation is a universal feature of coherent wave
dynamics in disordered systems. It occurs whenever the
phase front of a wave is randomly perturbed. Particularly in
optics, this phenomenon gathered considerable interest, for
both its fundamental aspects and its technological appli-
cations. Although fully developed speckle patterns are
inherently random, they exhibit predictable properties
[1]. Their field amplitudes follow a Rayleigh distribution,
while spatially they are correlated only locally. The spatial
extent of these local correlations is usually referred to as the
speckle grain size. These universal features make speckle
patterns a valuable tool for imaging techniques [2–4],
optical tweezers [5,6], or random potentials for cold atoms
[7,8]. For all these applications, being able to tune the
speckle patterns’ properties is highly desirable and would
provide valuable degrees of control.
Recently, several methods have been developed to tailor

the properties of speckle patterns. They range from
approaches to alter the patterns’ statistics [9,10] to others
that target their spatial correlations [11–14]. While the
former allow for nearly arbitrary intensity distributions to
be realized, the latter focus mainly on single correlation
features with limited flexibility. More versatile techniques,
such as in Ref. [15], concentrate only on intensity corre-
lations and demand for an iterative procedure to arrive at
the desired pattern. Also, they act on a single axial plane
and, therefore, cannot alter axial correlations. More flexible
and direct methods to customize the correlations in speckle
patterns are, therefore, highly desirable.
In this Letter, we strike a new path for engineering the

spatial correlations of speckle patterns, utilizing a spatial
light modulator (SLM) and a multiple scattering medium.
Our approach not only enables the volumetric control of the
size and shape of the speckle grains after the medium but
also allows one to imprint nonlocal correlations. To achieve

this control, we leverage the concept of the transmission
matrix (TM) and its singular value decomposition (SVD).
The TM is a powerful tool that encodes the relation
between input and output modes of the scattering medium,
allowing one to focus light or transmit images at its output
[16–18]. Its SVD, a generalization of the eigendecompo-
sition to nonsquare matrices, can be used for selective
focusing [19–21], to identify open and closed channels
[22–25], or to find dispersion-free states from the spectral
variation of the TM [26,27]. Here, we show that, for
spatially oversampled TMs that capture the local speckle
correlations, the SVD also provides indirect control of these
spatial correlations. Consider, for example, a situation
where field components of low spatial frequencies are
more strongly transmitted through the medium. In that case,
the first singular vector, with the highest transmission, will
preferentially select these slowly varying components,
leading to an enlarged speckle grain size. More generally,
the full spectrum of singular vectors facilitates a flexible
and customized control of the grain size. We show further
that purely computational Fourier filtering of the TM can be
used to achieve arbitrary correlations, from asymmetric
speckle grains to nonlocal correlations and Bessel-like
speckle patterns. Moreover, the control obtained through
the SVD extends also to the axial direction, going beyond
the reach of established methods.
Our experimental setup is presented in Fig. 1. The wave

front of a coherent light source is modulated by an SLM
before being focused on a layer of scattering material. The
scattered light that is transmitted through the medium forms
a speckle pattern imaged onto a camera. Over a second
path, an unperturbed plane wave, decoupled from the beam
before the SLM, is recombined and interferes with the
scattered light at the CCD. This configuration enables the
measurement of the complex light field after the medium
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through digital phase-stepping holography. The polariza-
tion of the reference path is chosen to be orthogonal to the
one of the light sent onto the diffusive medium, ensuring
that only multiply scattered light is detected in the interfero-
gram [28]. The TM is constructed by displaying a basis of
input patterns on the SLM and recording the corresponding
output fields [16].
We first measure the TM at a distance of 1 mm behind

the medium output surface (see [29], Sec. I). In order to
capture the local correlations of the light field in the TM
measurement, we spatially oversample the imaged speckle
patterns (i.e., a single speckle grain covers several camera
pixels). Performing the SVD of the measured TM gives
access to the sorted singular values and associated singular
vectors. We send one of these vectors through the medium
by applying its phase as a modulation on the SLM. To study
how the speckle grain size depends on the singular vector
chosen, we record the light field at the image plane.
Figure 2(a) shows the observed speckle patterns for three
different singular vectors together with a reference speckle
obtained when displaying a blank pattern on the SLM. The
first singular vector (No. 1), associated to the largest
transmission, leads to an enlarged speckle grain size,
corresponding to a narrower k distribution in Fourier space
compared to the reference. An intermediate vector (No. 81),

leads to a grain size smaller than the reference, while the
last vector (No. 225) results in a speckle that is indistin-
guishable from a random input state. In Fourier space,
increasing the vector number leads to the appearance of a
ring with growing radius and decreasing amplitude (for the
last vectors, the ring fades completely). Similar effects of
ring-shaped distributions of light in real space have been
observed for the SVD of an acousto-optic TM [30].
To quantitatively compare the speckle grain size for

different inputs, we calculate the output pattern’s autocor-
relation and extract its full width at half maximum
(FWHM). Figure 2(b) shows the speckle grain size over
the singular vector number, relative to the size of the
reference speckles. The first singular vectors lead to a grain
size increase, whereas the intermediate ones result in a
decrease, as observed in Fig. 2(a). Selecting the singular
vector number within this range, therefore, allows one to
choose patterns with a desired grain size. The last singular
vectors display a continuous transition back to the reference
grain size. The change in grain size is accompanied by a
change in overall transmission [Fig. 2(b), inset], as
expected for the singular vectors [23].
The above experimental observations can be understood

from the speckle Fourier space distribution obtained for the
blank reference input [Fig. 2(a)]. There, we see that the
distribution is peaked around jk⃗j ¼ 0, meaning that spatial
modes with small transverse frequency components are
transmitted better than high-frequency ones. As the SVD
returns the eigenmodes of the TM associated to specific
values of transmission, it also results in a specificity in
spatial frequency. The highly transmitting first singular
vectors concentrate light in the low-frequency spatial
modes, resulting in larger grains. For the less transmitting
singular vectors, the opposite is happening, leading to a
suppression of low-frequency components, smaller speckle
grains, and the ring-shaped distributions observed in Fig. 2
(a). A model based only on a random TM with local
Gaussian correlations enables one to well reproduce the
experimental results (see [29], Sec. II). The only condition
for frequency selectivity to appear is the nonflatness of the
output Fourier distribution.
Interestingly, the control gained over the local correla-

tions of the output patterns does not substantially influence
their statistics. Figure 2(c) shows the field statistics of the
three example vectors shown in Fig. 2(a). In general, the
field amplitudes retain their Rayleigh distribution and the
phases are uniformly distributed, as expected for fully
developed speckles patterns [Fig. 2(c), inset]. Only the first
singular vector shows small deviations in its amplitude
distribution. We attribute these to the high concentration of
light in the forward scattering component with jk⃗j ¼ 0, as,
for some realizations, a preferred phase can be observed
(see [29], Sec. III).
An important ingredient for the successful control of the

grain size is the nonflatness of the speckle’s spatial

FIG. 1. Experimental scheme. A beam delivered from a Ti:
sapphire laser (MaiTai HP, Spectra-Physics) is divided into two
paths by a polarizing beam splitter (PBS). On one path, the wave
front is modulated by a reflective phase-only SLM (HSP512L-
1064, Meadowlarks). This modulated light is focused on a layer
of scattering material (TiO2 layer suspended on a glass slide,
thickness of ∼10 μm resulting in a transmittance of ≃0.3) by an
imaging objective with a numerical aperture (NA) of 0.4
(Olympus PLN20X). An identical second objective is used to
image the transmitted scattered light onto a charged coupled
device (CCD) camera (Manta G-046B, Allied Vision). The
second objective is mounted on a translational stage allowing
one to image the transmitted light at varying distances z from the
medium. The two paths are recombined on a beam splitter (BS).
A polarizer (P) in front of the camera ensures that only light with
a selected polarization is measured.
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frequency distribution for a random input. In our case, the
limited surface area at which light exits the medium
naturally leads to a peaked distribution when imaging a
plane at a distance from the surface [1]. This becomes clear
when picturing the limiting case of imaging a plane far
removed from the medium. There, the exit surface would
act like a point source, and all light would converge to the
k ¼ 0 mode (see [29], Sec. I). If, instead, we image the
speckles right at the medium output, the collected k vectors
are mainly limited by the imaging NA, leading to a uniform
distribution of spatial frequencies, as shown in Fig. 3(a). In
such a situation, the singular vectors show no dispersion in
grain size.
A convenient way to overcome such limitations is to

artificially introduce the nonflatness in the spatial fre-
quency distribution. This can be done by employing the
approach developed in Ref. [31], where Fourier filtering of
the TM was used to shape the point spread function when
focusing light behind a medium. A TM is experimentally
measured, and its output dimension is Fourier transformed
and multiplied with a filter mask that introduces the desired
variation from the flat distribution. After transforming it
back to real space, the SVD of this filtered TM
can be performed. Note that this is a fully computational
procedure and no changes to the scattering medium nor
to the measurement configuration are necessary (see
[29], Sec. IV).
The large flexibility of the filtering process provides a

wide range of control over the speckle correlations.
Figures 3(b) and (c) show the results of two masks

showcasing the potential of this approach. The first mask
filters the high-ky components without modifying the kx
components [Fig. 3(b)]. This results in a speckle pattern
where grains are elongated along y while their extension in
x remains unchanged (for a different method to achieve this
asymmetry, see [29], Sec. V). The second mask selects only
a specific jkxj range leading to two symmetric stripes in
Fourier space [Fig. 3(c)]. Correspondingly, the speckles
exhibit a short-range periodicity. The filtering approach
thus enables one not only to shape the speckle grains almost
arbitrarily but also to imprint nonlocal correlations on them.
A particularly interesting application is to realize speck-

les with a Bessel-shaped autocorrelation. For that, spatial
frequencies need to be concentrated on a ring, as for regular
Bessel beams [32]. The latter gathered considerable interest
due to their nondiffractive nature, and several techniques
were developed to generate Bessel beams behind scattering
media [13,31,33]. Bessel speckle patterns, on the other
hand, remain little studied, although their enhanced depth
of field could be advantageous in structured illumination
microscopy or speckled optical potentials [34].
To experimentally realize a Bessel speckle pattern, we

first measure the TM at an arbitrary position z0 behind the
medium and apply the filtering technique using a ring-
shaped mask. This provides us with a filtered TM that
encodes only the transmission of spatial frequencies of a
certain absolute value jk⃗j. As before, we perform the SVD
of this filtered TM and display the phase of the first singular
vector on the SLM. To verify the Bessel-like characteristics
of the generated speckles, we record their axial features by

(a) (b) (c)

FIG. 2. Speckle grain size control through the SVD of the TM. (a) Speckle patterns obtained from displaying a blank reference pattern
(ref) and three different singular vectors of the TM (No. 1, No. 81, and No. 225, out of 225). The first row shows examples of the
observed field amplitude patterns in real space, while the second row displays the respective Fourier space distributions (scale bars, 5 μm
and 2 μm−1, respectively). The third row shows central cuts through these Fourier space distributions (blue, orange, and green lines)
compared to the reference (black). The cuts are averaged over three pixel rows. For all panels, the data are individually normalized and
do not reflect the changes in total transmission. (b) Relative speckle grain size as a function of the singular vector number (reference
grain size 2 μm). The inset plots the enhancement of the field amplitude with respect to the blank reference ηf for the different singular
vectors. The dot-dashed black lines represent the mean reference values. The data points corresponding to the examples shown in (a) are
marked with their respective colors (blue, orange, and green). (c) Probability density functions (PDF) of the field amplitudes obtained for
the three singular vectors displayed in (a). All distributions are normalized to the average field amplitude of the reference jEref j and fitted
with Rayleigh distributions (dashed black lines). The inset shows the corresponding phase distributions. All results, except for speckle
patterns in (a), are averaged over 36 realizations of the disorder.
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measuring the speckled light field while scanning the
positions z of the imaged plane around z0, providing a
volumetric measurement of the output field.
The results are presented in Figs. 4(a) and 4(b), where we

observe that the axial extension of the speckle grains indeed
increases. Along the transverse directions, the limited
spatial resolution prevents us from observing a full
Bessel-shaped autocorrelation. Yet, a slight decrease in
width can be qualitatively observed, and the spatial
frequencies of the output patterns indeed show the desired
concentration on a ring.
This result is particularly interesting, as it shows that our

method allows one to control the speckle grain size in all
three spatial dimensions. Even at planes away from where
the TM was measured, spatial correlations are affected.
Since our method does not rely on interference, changes in

spatial correlations do not depend on a complicated super-
position of modes that align properly only in a single plane.
Correspondingly, the ring in Fourier space selected by

the first singular vector [Fig. 4(b), inset] remains visible
over several axial grains, and the speckle grain modulations
presented earlier persist over a large volume. Figure 4(c)
shows the relative transverse grain size along the axial
dimension z, measured under similar conditions as the data
in Fig. 2. For the first singular vector, we observe the grain
size enhancement over a range of about 20 axial grains. In
case of the intermediate singular vector, the axial range of
control is smaller but still extends beyond a few grains in
the z direction. These observations reach significantly

(a) (b) (c)

FIG. 3. Speckle engineering through the SVD of computation-
ally filtered TMs with initially uniform spatial distribution,
imaged at the output plane of the medium. (a) Reference
amplitude speckle (blank SLM input). (b) Amplitude speckle
obtained from displaying the first singular vector of a TM
computationally filtered by a line-shaped Fourier mask.
(c) The same for a TM filtered by two vertical lines selecting
a specific jkxj range in Fourier space. The first row shows a single
realization of the speckle pattern, while the second row shows the
distribution in Fourier space (scale bars, 5 μm and 2 μm−1,
respectively; initial grain size 1.4 μm). The third row shows the
autocorrelation function CðδxÞ ¼ jhE�ðxÞEðxþ δxÞi=hjEðxÞj2ij
along both the x (blue) and y (red) directions. The horizontal axis
is rescaled by the FWHM of the reference speckle autocorrelation
wref , with δx̃ ¼ δx=wref . The Fourier distributions as well as the
autocorrelations represent an average over four disorder realiza-
tions.

(a) (b)

(c)

FIG. 4. Speckle correlation control along the axial dimension.
(a) Reference amplitude speckle pattern (top) and output obtained
for the first singular vector of a ring-filtered TM aimed at creating
a Bessel speckle pattern (bottom). Both show cuts in the ðy; zÞ
plane for an arbitrary x position (scale bar, 5 μm). (b) Plot of the
autocorrelation C in y (blue) and z (red) direction for the first
singular vector of a ring-filtered TM. Again, for both curves, the
horizontal axis is rescaled by the FWHM of the reference
autocorrelation along the respective dimensions (see Fig. 3).
The dash-dotted black line indicates the reference autocorrelation
(along y, equivalent to the one along z due to the rescaling)
obtained from a blank input. Autocorrelation data are averaged
over all x positions. The inset shows the corresponding Fourier
space distributions in the ðx; yÞ plane at the position z0 (scale bar,
2 μm−1). (c) Relative transverse speckle grain size along the axial
dimension z for data taken under similar conditions as in Fig. 2.
Shown are the first singular vector (No. 1, blue) and an
intermediate one (No. 80, orange). The z axis is rescaled by
the axial extension of the reference speckle at z0, where the TM
was measured (12 μm). Note that the diffraction-induced increase
of the speckle grain size with z is not visible here, as only values
relative to the local reference grain size are given.
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beyond [15] where the customization of speckle correla-
tions is valid in a single plane only.
In conclusion, we experimentally demonstrate a novel

method to engineer speckle correlations behind scattering
media. We show how the SVD of a TM with local
correlations leads to a dispersion of singular modes with
respect to the output speckle grain size if the initial
transmission of spatial frequencies is nonuniform.
Fourier filtering of the TM can further be used to achieve
arbitrary spatial mode distributions, enabling asymmetric
speckle grains, nonlocal correlations, or Bessel-like speckle
patterns. The filtering even lifts the requirement of over-
sampling the TM, facilitating its practical application. Note
that the range of control obtained for the speckle correla-
tions depends on the number of input modes controlled at
the SLM compared to the region-of-interest size at the
output. While the experiments discussed here have been
realized on small regions of 100–400 grains, they can be
scaled up by increasing the number of controlled modes
(see [29], Sec. VI). Compared to previous approaches, our
method proves to be more flexible and achieves a larger
axial range of control. Possible applications range from
structured illumination microscopy to the engineering of
optical random potentials or algorithmic advantages in
computational imaging [35,36]. Moreover, on a fundamen-
tal level, the principle of SVD-based control can be
translated to other platforms that employ matrices encoding
input-output relations as in acoustics [37] or in integrated
photonic circuits [38].
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