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Spin ensembles with a comb-shaped spectrum have shown exciting properties as efficient quantum
memories. Here, we present a rigorous theoretical study of such atomic frequency combs in the strong
coupling limit of cavity QED, based on a full quantum treatment using tensor-network methods. Our results
demonstrate that arbitrary multiphoton states in the cavity are almost perfectly absorbed by the spin
ensemble and reemitted as parity-flipped states at periodic time intervals. Fidelity values near unity are
achieved in these revived states by compensating for energy shifts induced by the strong spin-cavity
coupling through adjustments of individual coupling values of the teeth in the atomic frequency comb.
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Introduction.—Over the years, frequency combs have
become an invaluable tool with technological applications
in a variety of different fields including high-precision
metrology, spectroscopy, attosecond science, and optical
communication [1,2]. Optical frequency combs have
thereby also entered the quantum domain with exciting
prospects for quantum computation and for generating
nonclassical states of light [3,4]. More recently, frequency
combs based on atomic energy levels have been in focus for
the design of enhanced quantum memories with long
storage times [5,6], on-demand readout [5–8], and large
multimode capacity [9–11]. Several groups have demon-
strated the storage of pulses containing both single and
entangled photons in atomic frequency combs [12–15].
The efficiency of such quantum memories has been

further improved by coupling the atomic frequency comb
to a resonant cavity [16,17]. So far, however, frequency
combs have beenmostly considered for impedancematched
cavities [7,14,16–19] leaving the strong-coupling regime
largely unexplored. Furthermore, most studies have focused
on the information stored in the amplitude and the relative
phase of the incoming pulses [20], while the larger quantum
mechanical phase space of the cavity has not received much
attention. Importantly, this infinite dimensional Hilbert
space can encode and process quantum information in
various forms ranging from simple Fock states [21] to
error-correcting Schrödinger cat codes [22–25], binomial
codes [26,27], or Gottesman-Kitaev-Preskill codes [28,29],
which promise fault-tolerant bosonic quantum computing.
In this Letter, we present a theoretical study on the

dynamics of arbitrary multiphoton states inside a cavity
strongly coupled to an atomic frequency comb. In particu-
lar, we show that the strong coupling to the atomic
frequency comb leads to a periodic absorption and ree-
mission of the initial cavity state, equivalent to compressing

the cavity’s time evolution to stroboscopic revivals.
Between these revivals, the cavity state is transferred into
the atomic ensemble such that the state’s overall lifetime
can even exceed the limit imposed by the cavity loss. More
specifically, we show that the periodic absorption and
reemission process by the atomic frequency comb acts
as a parity transformation on the cavity state—an operation
that could be useful in modern bosonic quantum error
correcting codes, where the photon number parity plays an
important role [25,28–30].
A crucial ingredient to arrive at these results is the insight

that the normal-mode splitting in the eigenvalue spectrum
of the strongly coupled spin-cavity system distorts the
otherwise equidistantly spaced atomic comb structure [31].
Here we demonstrate how an equidistant structure in the
eigenvalue spectrum can be restored by judiciously adjust-
ing the individual coupling strengths of the comb’s teeth.
In this way we take full advantage of both the regular
frequency spacing of the comb and the efficient information
transfer to and from the cavity enabled by the strong-
coupling regime [32–36]. As a result, we obtain a long-
lasting train of periodic revivals of the multiphoton cavity
state with very high fidelity and minimum losses.
Theoretical model.—Our starting point is the Tavis-

Cummings Hamiltonian [37], which models an ensemble
of N two-level atoms or spins strongly coupled to a single-
mode cavity (using the dipole and rotating wave approx-
imations, ℏ ¼ 1),

H ¼ ωcâ†âþ 1

2

XN

k¼1

ωkσ
z
k þ i

XN

k¼1

gkðσþk â − σ−k â
†Þ: ð1Þ

Here, ωc is the resonance frequency of the cavity field
with the creation and annihilation operators â† and â.
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Furthermore, ωk and gk are the transition frequency and
coupling strength for the kth spin and σzk, σ

þ
k , and σ−k are

the spin-1=2 Pauli operators. In general, there are losses in
the cavity and spins, which makes it an open system. The
dynamics using a Markov approximation is then given by
the Lindblad equation [38],

dρ
dt

¼ L½ρ� ¼ −i½H; ρ� þ κ

2
ð2âρâ† − â†âρ − ρâ†âÞ

þ
X

k

γh
2
ð2σ−k ρσþk − σþk σ

−
k ρ − ρσþk σ

−
k Þ

þ
X

k

γpðσzkρσzk − ρÞ; ð2Þ

where κ are the cavity losses and γhðγpÞ are the radiative
(nonradiative) losses of the kth spin. Note that the validity
of the master equation above requires the spectral density of
the environment to be flat [39]—a requirement that needs to
be checked explicitly for the system one is dealing with.
We use a time-adaptive variational renormalization

group method [40] to unravel the full quantum dynamics
of a cavity wave function strongly coupled to an ensemble
of more than one hundred spins. Our numerical procedure
relies on the efficient mapping of the extremely large
Hilbert space of the cavity-ensemble system, which grows
exponentially with the number of spins, to a reduced vector
space of computationally tractable size. In particular, we
first vectorize the system’s density matrix jρi ¼ vecðρÞ
such that

jρi ¼
Xn2s

k1;…;kN¼1

Xn2c

kc¼1

pk1;…;kN;kc jk1i ⊗ …jkNi ⊗ jkci; ð3Þ

where, jkii, and jkci are the ith spin and Fock superket
basis, respectively. Here, nc and ns are the dimensions of
the cavity and of the spin operators in the original Hilbert
space. Within the vectorized superoperator space the
Lindblad equation can be written as djρi=dt ¼ L̃jρi, where

L̃ ¼ −iðH ⊗ I − I ⊗ HTÞ þ κL̃â þ
X

k

γh;pL̃σ−;zk
; ð4Þ

with L̃x̂ ¼ x̂ ⊗ x̂� − 1
2
x̂†x̂ ⊗ I − 1

2
I ⊗ x̂T x̂�. This superop-

erator formalism and the absence of direct dipole-dipole
interactions allows us to treat the Lindbladian dynamics of
the open quantum system in terms of a variational renorm-
alization group method similar to a central body problem
[41]. In our case, the cavity acts as the central object, which
mediates the interactions between the individual spins.
The superket of the central cavity is always stored exactly,
while the spin ensemble is numerically renormalized and
truncated at each step in a time-adapative manner [40],
similar to a time-evolving block decimation (TEBD) or

a time-dependent density matrix renormalization group
(TDMRG) method [42–45].
Atomic frequency comb.—The salient feature of an

atomic frequency comb is the periodic absorption and
subsequent reemission of photons resulting from the comb-
shaped frequency distribution of the spin ensemble as
sketched in Fig. 1. Such a frequency comb structure can
be prepared using spectral hole burning [46,47] of inho-
mogeneously broadened spin ensembles like rare-earth
doped crystals [5,5–19] or nitrogen-vacancy centers in
diamond [48,49]. In the present case, the frequency comb
is centered around the cavity frequency ωc, such that
the spin frequencies ωμ ¼ ωc þ μΔω for μ ¼ f−ðm −
1Þ=2;…; ðm − 1Þ=2g with m (odd) being the number
of frequency clusters of the comb. For an ensemble
of N spins, each frequency tooth ωμ in the comb corre-
sponds to a subensemble of N0 ¼ N=m spins. Accordingly,
Ωμ ¼

P
N0
k g2μ;k ¼ N0g2μ denotes the collective coupling

strength of the μth subensemble. Throughout this Letter,

FIG. 1. (a) An ensemble of spins (blue) whose frequencies ωk
form a frequency comb structure are strongly coupled to a single-
mode cavity field (orange). The cavity and spin losses are given
by κ and γh;p. (b) Comb-shaped distribution of the collective
coupling strengths Ωμ. Here we compare a uniform comb
structure, where each frequency cluster (indicated by a deltalike
peak) couples to the cavity with the same coupling strength
Ωμ=2π ¼ 30 MHz (purple), with a spectrally engineered comb
structure (light green), where Ωμ follows a Gaussian envelope
(dashed line) Ωμ ¼ Ω0 exp ½−ðωc − ωμÞ2=2λ2�, with Ω0=2π ¼
30 MHz and λ=2π ¼ 0.19 GHz. (c) Cavity photon number
ha†ai as a function of time for the uniform (top) and the modified
(bottom) comb structure. The spin ensemble in both cases is
initially unexcited and the cavity is prepared in a coherent
state jαi of amplitude α ¼ 1. The black dashed line corresponds
to the bare cavity decay proportional to expð−κtÞ, with
κ=2π ¼ 0.4 MHz.
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we assume m ¼ 7, N ¼ 70, Δω=2π ¼ 40 MHz, and
ωc=2π ¼ 3 GHz. If not stated otherwise we use the
parameters κ=2π ¼ 0.4 MHz, γh=2π ¼ 1 kHz, and
γp=2π ¼ 33 kHz [48,49].
In the example of Fig. 1(c), we assume that the spin

ensemble is initially unexcited and the cavity is prepared in
a coherent state jψ in

cavi ¼ jαi of amplitude α ¼ 1. For the
simplest case of a uniform coupling distribution, where
each subensemble couples with the same strength
Ωμ=2π ¼ 30 MHz, we observe that the cavity excitation
is first transferred into the frequency comb and then
reemitted back into the cavity at a well-defined later time.
This process then repeats itself periodically, leading to a
train of revivals with corresponding cavity photon numbers
that drop already significantly during the first five revivals
as depicted in Fig. 1(c) (top panel). We emphasize that this
drastic decrease is not a result of losses in the cavity or in
the spin ensemble but rather a consequence of the strong
coupling between the cavity mode and the atomic fre-
quency comb, which distorts the comb’s equidistant fre-
quency spectrum due to normal-mode splitting. As detailed
below, this frequency detuning can, however, be precom-
pensated through a customized engineering of the spectral
coupling distribution Ωμ. Using a Gaussian distribution of
standard deviation λ=2π ¼ 0.19 GHz for the coupling
strengths Ωμ, we obtain a long-lived train of revivals in
the cavity photon number of which we again show the first
five peaks in Fig. 1(c) (bottom panel).
A remarkable aspect to be highlighted is the fact that the

coupling of the cavity to the frequency comb produces
photon numbers in the stroboscopic cavity revivals
that may even exceed the limit imposed by the bare cavity
decay. A comparison with this exponential decay

∝ expð−κtÞ, is shown in the bottom panel of Fig. 1(c).
We thus observe that the excitation transfer to the long-
lived spin ensemble protects the initial excitation from the
cavity losses. It would be interesting to investigate if this
observation can be linked to the so-called “cavity protec-
tion effect” [50–52]. The important open question we now
address is which quantum states are written into the cavity
by the frequency comb during the periodic revivals and
how these states are related to the initial cavity wave
function.
Cavity state revival and parity transformation.—To

answer this question comprehensively, we start again from
an unexcited spin ensemble and a cavity prepared [53] in
three different initial states jψ in

cavi: (i) jαi is a coherent
state of amplitude α ¼ ffiffiffi

2
p

, which closely resembles the
situation of a short coherent pulse injected into the cavity.
(ii) jψ supi ¼ 1=N sup

P
4
n¼1 cnjni is a superposition of the

four lowest Fock states jniwith the coefficients c1−4 chosen
arbitrarily as 5, −i

ffiffiffiffiffi
15

p
, −ð ffiffiffiffiffi

10
p

− i
ffiffiffiffiffi
15

p Þ, and ð5 − i
ffiffiffiffiffi
10

p Þ
such that no apparent phase relation can be esta-
blished between neighboring Fock states. (iii) jψicat ¼
1=N catðjβi þ j − βiÞ with β ¼ 2 denotes a Schrödinger
cat state as used in many quantum information processing
tasks, including quantum computation [54], quantum
teleportation [55], and precision measurements [56].
First of all, we see in Fig. 2(a) that for all three initial

states the cavity photon number hâ†âi shows the character-
istic periodic revival structure: The initial cavity photons
are absorbed by the spin ensemble within a few nano-
seconds, irrespective of the quantum state in which the
cavity is initialized. After that, the cavity remains empty
until the number of photons is restored at t ¼ Trev ≈
27.5 ns and the process starts all over again.

FIG. 2. (a) Cavity photon number ha†ai as a function of time for three different initial states jψ in
cavi of the cavity: (i) jαi, (ii) jψ supi, and

(iii) jψcati (top to bottom) as specified in the main text. (b) Wigner functions of the cavity states (i)–(iii) at t ¼ 0, at the first revival
(t ¼ Trev) and the second one (t ¼ 2Trev). Note that after one absorption and reemission period Trev, the Wigner function is point-
reflected through the origin, which amounts to a parity transformation Π̂ ¼ expðiπâ†âÞ. (c) Fidelity of the time evolved cavity state
ρcavðtÞ with its initial state from (a) jψ in

cavi (F in, solid line) and with the parity transformed state Π̂jψ in
cavi (F PT, dashed line). Here, the

coupling distribution Ωμ for all three cases follows the same Gaussian envelope with λ=2π ¼ 0.19 GHz.
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The time-adaptive renormalization group method
described before now provides us direct access to the full
density matrix of the cavity field during the absorption and
revival process. Using this information, we plot in Fig. 2(b)
the Wigner function Wðα; α�; tÞ ¼ 1=π2

R
d2βeαβ

�−α�β

Trfeβâ†−β�âρcavðtÞg of the cavity field at the initial time
t ¼ 0 and at the first and second revival, t ¼ Trev; 2Trev,
respectively. We see that at the first revival the Wigner
function is point-reflected through the origin as compared
to the Wigner function at t ¼ 0, corresponding to a parity
transformation Π̂ ¼ expðiπâ†âÞ of the initial cavity state.
To confirm this observation, we show in Fig. 2(c) the
fidelity F inðPTÞ ¼ FfρcavðtÞ; ρinðPTÞg of the cavity state
ρcavðtÞ with the initial state ρin ¼ jψ in

cavihψ in
cavj and with

the parity-transformed initial state ρPT ¼ Π̂ρinΠ̂†, respec-
tively. For the states jαi and jψ supi, which are not parity
eigenstates, the fidelity with the initial state F in is almost
zero at the first revival, while the fidelity with the parity-
transformed initial state F PT is close to one. As a
consequence, the initial cavity state is restored with very
high fidelity only after a period of 2Trev. The situation is
different for the Schrödinger cat state jψ cati, which, being
an eigenstate of the parity operator, is restored by the
frequency comb already at the first revival t ¼ Trev, marked
by a fidelity F in ¼ F PT equal to one already at that earlier
time.
Spectral engineering.—As indicated in Fig. 1, a

Gaussian envelope in the distribution of coupling strengths
can drastically increase the performance of the atomic
frequency comb. The choice of the Gaussian turns out to
be sufficient to correct the comb’s spectral distortions due
to the strong coupling to the cavity. Moreover, it has the
appealing advantage that we can work with the standard
deviation λ of the Gaussian envelope as the only
free parameter, which we tune between the values
λ=2π ¼ 1 GHz and λ=2π ¼ 0.1 GHz as depicted in
Fig. 3(a) for specific values of λ. We calculate the
corresponding dynamics for the simple initial state
jψ in

cavi ¼ 1=
ffiffiffi
2

p ðj1i þ j2iÞ and evaluate the fidelity F in=PT

at the first four revivals. Hereafter we will drop the
subscripts in F in=PT implying that we use the former at
even revivals and the latter at odd revivals of the cavity
state. To exclude effects stemming from the openness of the
system, all loss parameters are set to zero such that
deviations from F ¼ 1 can be attributed exclusively to
an imperfect rephasing of the frequency comb. Figure 3(b)
shows the fidelity F at the first four revivals for the same
selection of coupling distributions as presented in Fig. 3(a).
For λ=2π ¼ 1 GHz, which corresponds to an almost uni-
form coupling, the fidelity stays noticeably below one with
F ¼ 98.1% at the first revival and continues to deteriorate
rapidly reaching values ranging from 92.6% to 71.7% for
the following three revivals. The fidelity of the revivals
drastically increases for decreasing values of λ reaching a

maximum for λ=2π ≈ 0.19 GHz; here the fidelity with the
initial state is 98.6% even for the fourth revival. For λ
decreasing even further, the fidelity of the revivals deteri-
orates again.
This behavior can best be understood by examining the

energy levels of the strongly coupled spin-cavity system
[57]. Here, the strong coupling leads to a normal-mode
splitting lifting the degeneracy of the cavity mode and the
central (resonant) spins. Consequently, the first rung of the
energy ladder in the strong coupling regime consists of
mþ 1 levels instead of m in the uncoupled case. First, we

notice that the mean energy spacing ΔEð1Þ
i ≈ 36.36 MHz

(at λ=2π ¼ 0.19 GHz) of these mþ 1 levels is

reduced as compared to the uncoupled case ΔEð1Þ
i ¼

Δω=2π ¼ 40 MHz. This leads to a revival time of

Trev ¼ 1=ΔEð1Þ
i ¼ 27.5 ns, which is in excellent agreement

FIG. 3. (a) Distribution of collective coupling strengths Ωμ of
each frequency cluster of the atomic frequency comb with
ωμ ¼ ωc þ μΔω for μ ¼ f−3;−2;…; 3g and with Δω=2π ¼
40 MHz. The couplings follow Gaussian distributions with
standard deviations λ=2π ranging from 1 GHz to 0.16 GHz.
(b) Fidelity at the first four cavity state revivals for the coupling
distributions presented above. At even revivals the fidelity is
calculated for the cavity state function and the initial state
jψ in

cavi ¼ 1=
ffiffiffi
2

p ðj1i þ j2iÞ; at odd revivals we calculate the
fidelity of the cavity state function and the parity transformed

initial state. (c),(d) Energy spacings ΔEð1=2Þ
i of the one- and two-

excitation subspace of the Tavis-Cummings Hamiltonian
[Eq. (1)] as a function of the distribution parameter λ. In the
vicinity of λ=2π ¼ 0.19 GHz (red shaded areas) the energy levels
become almost equidistant resulting in an enhanced performance

of the atomic frequency comb. (e) Standard deviation of ΔEð1Þ
i

(purple) and ΔEð2Þ
i (yellow) as a function of λ. (f) Fidelity at the

first four cavity state revivals as a function of λ showing distinct
maxima around λ=2π ¼ 0.19 GHz.
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with the value observed in Fig. 1. Next, we present in

Figs. 3(c) and 3(d) the energy level spacings ΔEð1Þ
i , ΔEð2Þ

i
of the one- and two-excitation subspace of the Tavis-
Cummings Hamiltonian, Eq. (1), as a function of the
Gaussian coupling distribution width λ. The energy shifts
induced by the normal-mode splitting are larger for the
energy levels close to resonance with the cavity than for off-
resonant levels. The energy levels of a uniformly coupled
spin-cavity system are therefore no longer equidistant,
which inhibits a perfect rephasing of the initial cavity
state. Conversely, the Gaussian modification of the
coupling distribution introduced above acts as a compen-
sation for the induced energy shifts, as evidenced
in Fig. 3(e). Here, we present the standard deviation

σðΔEð1=2Þ
i Þ of the energy spacings ΔEð1=2Þ

i showing a
minimum at λ ¼ 0.19 GHz, which is the same parameter
value for which the fidelity depicted in Fig. 3(f) shows a
maximum. We expect a similar behavior for higher energy
levels since the initial states used in our calculations for
Fig. 2 already carry significant multiphoton contributions.
Our findings thus confirm that in the regime of strong
coupling, the spectral engineering of the spin ensemble is a
viable tool to efficiently preserve the quantum information
in the system.
Conclusions.—Our analysis provides the first rigorous

and fully quantum mechanical treatment of atomic fre-
quency combs in the strong coupling regime of cavity
QED. We demonstrate that arbitrary cavity states, ranging
from a superposition of low-energy Fock states to macro-
scopic Schrödinger cat states, can be transferred to a
spectrally comb-shaped spin ensemble and retrieved almost
perfectly at well-defined later times. The absorption and
reemission by the atomic frequency comb thereby act as a
parity transformation on the initial cavity state. Energy
shifts induced by the cavity-spin coupling lead to a
significant amount of dephasing in the strong coupling
regime, but can be precompensated by engineering the
distribution of coupling strengths in the comb. In this way
equidistant energy levels of the coupled spin-cavity system
are ensured, resulting in a revival fidelity well above 98.6%
for the first four revivals.
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