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Determining the ultimate precision limit for measurements on a subwavelength particle with coherent
laser light is a goal with applications in areas as diverse as biophysics and nanotechnology. Here, we
demonstrate that surrounding such a particle with a complex scattering environment does, on average,
not have any influence on the mean quantum Fisher information associated with measurements on the
particle. As a remarkable consequence, the average precision that can be achieved when estimating the
particle’s properties is the same in the ballistic and in the diffusive scattering regime, independently of
the particle’s position within its nonabsorbing environment. This invariance law breaks down only in the
regime of Anderson localization, due to increased C0-speckle correlations. Finally, we show how these
results connect to the mean quantum Fisher information achievable with spatially optimized input fields.
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Precisely estimating the properties of subwavelength
particles surrounded by scattering environments is a central
aspect of many research areas, ranging from the measure-
ment of the position and the mass of biological molecules
[1,2] to the characterization of engineered nanostructures
[3]. In these contexts, multiple scattering effects are usually
seen as a major drawback, limiting the achievable precision
in the estimation of observable parameters characterizing
the particles. Nevertheless, it is also known that multiple
scattering can sometimes be beneficial to optical imaging
[4–7] as well as to single-particle localization and sensing
[8–11], especially if prior knowledge on the scattering
environment is available to the observer [12,13]. These
insights naturally raise the question of how the presence of
such a complex environment surrounding a subwavelength
particle influences the information carried by the field
scattered by the particle.
In recent years, the concept of Fisher information has

enabled considerable progress in the precise characteriza-
tion of subwavelength particles through optical measure-
ments. Notably, this framework has been used to
analytically derive fundamental limits on the achievable
localization precision in the case of a fluorescent molecule
located in free space [14–17] and for estimating the
distance between two incoherent point sources [18–21].
In parallel, the influence of multiple scattering effects upon
the Fisher information has been investigated based on
numerical approaches for two spherical particles [22] as
well as for larger ensembles of subwavelength particles
[23]. These studies show that multiple scattering effects can
either increase or decrease the achievable localization
precision, depending on the microstructure of the scattering
environment.

In this Letter, we uncover that the measurement precision
achievable in scattering systems is actually subject to a
counterintuitive invariance rule: the scattering environment
surrounding a subwavelength particle does, on average, not
influence at all the precision that can be achieved when
estimating the properties of this particle (see Fig. 1). This
result sheds new light on the possibility to use multiple-
scattering effects for improving the measurement precision
in complex systems. Moreover, the intimate connection
between measurement and backaction [24] allows us to
interpret this result also as an invariance rule for the average
micromanipulation capabilities of waves in a scattering
environment.
Specifically, we show that, in the canonical case of a

flux-conserving system illuminated by a coherent field, the
quantum Fisher information (QFI) as well as the associated
quantum Cramér-Rao bound (QCRB)—averaged over

FIG. 1. Illustration of the concept. When illuminating a target
(red) with coherent light (incoming arrows), the average precision
that can be achieved, when estimating a property θ of the target, is
the same whether the target is freely accessible (left) or embedded
inside a nonabsorbing scattering environment (right).
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configurations (or, equivalently, over frequencies) and over
input angles—are both independent of the scattering
strength of the environment surrounding the particle and
of the particle’s position. This invariance law holds both in
the ballistic and in the diffusive regime, whereas devia-
tions are observed when Anderson localization sets in.
Remarkably, in this case, both the average QFI and the
average QCRB increase with the scattering strength of the
medium as a result of C0-speckle correlations. In addition,
we quantify the increase of the average QFI obtained when
the incident field is spatially optimized using wavefront
shaping techniques. Originating from a fundamental con-
nection between the QFI [25], the local density of states
(LDOS) [26] and the cross density of states (CDOS) [27],
these results show that a simple fundamental law rules the
ultimate precision limit achievable in estimating properties
of a subwavelength particle using coherent light scattering.
The unavoidable presence of measurement noise

imposes a lower limit on the precision that can be reached
when using scattering measurements to estimate any given
observable parameter θ, such as the position or the
dielectric constant of a subwavelength particle. Here we
consider the quantum fluctuations of the probe field as the
relevant source of noise. The ultimate precision limit is then
determined by the QFI defined as Iθ ¼ Trðρ̂L̂2Þ, where
the density operator ρ̂ describes the quantum state of the
outgoing light and L̂ denotes the symmetric logarithmic
derivative which is implicitly defined by ρ̂ L̂þL̂ ρ̂ ¼ 2∂θρ̂
[25,28]. The QCRB, which bounds the variance of
unbiased estimators of θ, is simply expressed by Σθ ¼
1=Iθ. This bound is reachable using an optimal detection
scheme [28] together with an efficient estimator, which is
easily found in the limit of small parameter variations [29].
The QFI thus provides us with a relevant metric to compare
the estimation precision achievable with different probe
fields and different scattering environments.
We consider that the measured field is in an N-mode

coherent (Glauber) state ρ̂ ¼ jfαgihfαgj, where jfαgi ¼Q
N
k¼1 jαki is given by the product of all the outgoing single-

mode coherent states jαki. This state can also be descri-
bed by a classical wave state jvi of modal coefficients
fα1;…;αNg. When the classical scattering matrix S of the
system is known, the QFI can be written in the following
quadratic form [24]:

Iθ ¼ 4hujFθjui; ð1Þ

where Fθ ¼ ∂θS†∂θS is the so-called Fisher information
operator for the estimation of θ and jui is the asymptotic
wave state impinging on the system (such that jvi ¼ Sjui).
For any arbitrary incident wave state, Eq. (1) can thus be
used to predict the QFI relative to the estimation of the
parameter θ. The same expression can also be derived by
calculating the classical Fisher information (CFI) [29].
Indeed, the CFI is equal to the QFI, provided that the

outgoing field is measured with an optimal detection
scheme (such as a shot-noise-limited homodyne detector
[24] in the context of coherent scattering measurements).
In the ideal case of a unitary S matrix, we can write

Fθ ¼ Q2
θ, where Qθ ¼ −iS−1∂θS denotes the generalized

Wigner-Smith (GWS) operator [30,31]. Because of this
connection, Eq. (1) can equivalently be used to quantify the
perturbation applied to the parameter θ by the probe field.
In the following, we will assume that the field is sufficiently
weak, so that it does not significantly perturb the value of θ
during the measurement process. This means that back-
action noise, which can be significant in optomechanical
systems [32,33], is neglected here.
The QFI averaged over all possible input fields is given

by the following trace:

Iavg
θ ¼ 4

N
TrFθ ¼

16

NΔθ2
Tr½ImðGÞΔH�2; ð2Þ

where N is the total number of flux-carrying incoming
channels, G is the Green’s function, Δθ is an infinitesimal
variation of the parameter of interest, and ΔH is the corres-
ponding change in the potential function HðrÞ≡ k2εðrÞ.
Here, k is the wave number and εðrÞ describes the spatial
distribution of the dielectric constant. We arrive at the
second equality of Eq. (2) by using the expansion of
the GWS operatorQθ ¼ 2V†G†ΔHGV=Δθ, where V is the
coupling matrix of the scattering system to the asymptotic
channels [31]. Equation (2) expresses a system-specific
connection between the externally accessible quantity I avg

θ
and the local quantity ImG, which is proportional to the
LDOS and CDOS at the target position. We will now show
how this connection turns out to be extremely useful to
demonstrate that the information is (on average) indepen-
dent of system-specific parameters.
To this end, we now focus our attention on the estimation

of a parameter θ characterizing a given subwavelength
particle (the target), such as one of its coordinates (denoted
by xT) or its dielectric constant (denoted by εT). We also
work under the assumption that the spatial distribution of
the light field is statistically homogeneous and isotropic
throughout the scattering medium (see [34], Sec. VI). This
occurs when the scattering medium itself as well as the
incoming light are statistically homogeneous and isotropic
(i.e., for Lambertian illumination) [40,41]. We are then
allowed to use the concept of the CDOS in order to quantify
the effect of a small change in the position of the target on
the QFI [27,42], resulting in a simple relation between Iavg

θ
and the LDOS ρðrT; kÞ at the location rT of the target (see
[34], Sec. I). As a result, we find that the QFI averaged over
all input channels (avg) and disorder configurations (h� � �i)
reads

hIavg
θ i ¼ 4Bθk2π2

Nε2T
hρ2ðrT; kÞi; ð3Þ

where the prefactor Bθ depends on the parameter of interest
such that Bx ¼ k2ðεT − 1Þ2 if θ ¼ xT and Bε ¼ 1 if θ ¼ εT .
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Importantly, Eq. (3) links the average QFI directly to the
square of the LDOS, thereby establishing that properties of
particles that are placed at positions with an increased
LDOS can be estimated more accurately. Our derivation
also shows that a linear scaling of the LDOS with the QFI
occurs in the case of considerably subunitary scattering
matrices (see [34], Sec. II for a detailed derivation), as
numerically observed in Ref. [23].
Under the isotropy assumption, we can use Weyl’s law—

which gives a simple expression for the average DOS in the
asymptotic limit [43,44]—to estimate the average LDOS in
2D, hρðrT; kÞi ¼ AkεT=ð2πÞ, where A is the target’s area.
To use this approximation, however, we first have to relate
hρ2ðrT; kÞi to hρðrT; kÞi2. For this purpose, we use the
connection between the variance of the LDOS and the C0-
speckle correlations,C0¼Var½ρðrT;kÞ�=hρðrT;kÞi2 [45,46],
resulting in

hI avg
θ i ¼ Bθk4A2

N
ð1þ C0Þ: ð4Þ

The above equation establishes a counterintuitive invari-
ance law: the average QFI is independent of the target’s
surrounding environment and of its position therein—
provided that light scattering is in the ballistic or diffusive
regime (for which C0 ≃ 0, as numerically confirmed in
[34], Sec. IV). Note that, while this invariance law is
derived here for the two-dimensional scalar Helmholtz
equation, the generality of the Fisher information operator
and of the LDOS suggests that similar results could also be

derived with a three-dimensional, vectorial model. Indeed,
the C0-speckle correlations show a similar behavior also in
3D, as we numerically demonstrate in [34], Sec. IV.
While we assumed that the probe field does not perturb

the system, we can still calculate the average magnitude of
this perturbation (e.g., a force) that we are neglecting.
Indeed, for systems described by unitary scattering matri-
ces, the GWS operator not only determines the QFI [24],
but also quantifies the perturbation applied by the probe
field upon the system parameter θ [31]. The average
magnitude of the momentum transferred onto the particle
as well as the average intensity focused onto it are thus also
invariant quantities with respect to the scattering strength,
in both the ballistic and diffusive regimes. Equation (3) also
reveals an interesting conceptual connection to another
known invariant quantity in wave scattering: the mean path
length, which is related to the average density of states
(DOS) in the whole scattering volume [40,47,48]. In a
similar manner, we show here how the invariance of the
mean path length in every subvolume [41] and an equiv-
alent invariance of the LDOS emerge in the Fisher
information.
To illustrate the implications of this invariance law, we

choose the case of position estimations (θ ¼ xT) for which
we perform numerical simulations using a finite-element
method (NGSolve) [49,50]. Our model system consists of a
rectangular multimode waveguide of width W and length
L, with hard walls at the top and bottom, and with openings
to the left and right (see lower panels of Fig. 2). In this
waveguide, we randomly place scatterers of different sizes

(a) (b) (c)

FIG. 2. Average QFI relative to the position xT of a subwavelength particle in (a) the ballistic, (b) the diffusive, and (c) the localized
regime. In the ballistic and diffusive regimes, numerical results are in excellent agreement with the theoretical predictions of Eq. (4),
calculated forC0 ¼ 0 (black lines). In the localized regime, the C0-speckle correlations cannot be neglected, leading to an increase of the
average QFI. In the diffusive and localized regimes, averages are calculated from 250 and 2500 different random configurations,
respectively. Note that we approximated the number of transverse waveguide modes N ≃ 2kW=π (grey vertical bars indicate odd mode
openings). [(a)–(c), lower panels] The intensity distribution of the fundamental mode injected from the left lead is depicted (a) for an
empty waveguide and for a given configuration of scatterers (grey cylinders) (b) with refractive index n ¼ 1.44 or (c) with hard walls.
The target (red cylinder) has refractive index n ¼ 1.44 and is not shown to scale. As compared to the length L of the waveguide, the
transport mean free path is ltr ≈ 0.47L in the diffusive regime and the localization length is ξ ≈ 0.4L in the localized regime.
(d) Distribution (on a logarithmic scale) of the average QFI I avg

θ for different disorder realizations, in the ballistic (blue), diffusive
(orange) and localized (green) regimes, together with the value of hIavg

θ i (vertical lines), which is averaged over disorder realizations.
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and scattering cross sections in order to simulate disorder
of adjustable scattering strength. We vary the wave-
length between λ ¼ 2π=k ≈ 0.2W and λ ≈ 0.13W such that
between 10 and 14 transverse modes propagate inside
the waveguide. The radius of the circular target is set to
R ¼ W=200, which is an order of magnitude smaller than
the minimal wavelength considered here. For each con-
figuration of the scatterers, after numerically calculating the
scattering matrices associated with two close-by positions
of the target, the derivative of scattering matrices with
respect to the coordinate xT is determined with a finite-
difference scheme and the associated QFI is obtained
using Eq. (1).
Using this numerical framework, we separately inves-

tigate the ballistic, diffusive, and localized regimes. For
both ballistic and diffusive scattering [see Figs. 2(a) and
2(b)], our numerical results agree very well with the
theoretical prediction of Eq. (4) when the C0-speckle
correlation is neglected (C0 ≃ 0). We note here that near-
field interactions between scatterers can change the behav-
ior of the C0-speckle correlations [51]—an effect we have
explicitly excluded by not placing any scatterers within an
exclusion square of sidelength W around the target (a
discussion of numerical data without this exclusion region
is provided in [34], Sec. IV). These results thus confirm
that, even though the QFI strongly varies from configura-
tion to configuration [see Fig. 2(d)], its average value
stays remarkably insensitive to the scattering strength of
the environment. Nevertheless, in the localized regime
[Fig. 2(c)], C0 cannot be neglected anymore and the
average QFI increases. This trend can be explained by
the estimate C0 ≈ π=kltr [45], where ltr is the transport
mean free path (see [34], Sec. IV for a numerical estimate
of the C0 correlation function). This increase of the average
QFI in the localized regime can be understood from the fact
that, while “typical” configurations are associated with a
very low QFI, a few “resonant” configurations display an
exceptionally large QFI [see Fig. 2(d)]—in analogy to the
behavior of transport quantities [52]. Since these resonant
scattering states exhibit very large dwell times, they are,
however, also strongly affected by the absorption neglected
here [53] (see [34], Sec. VII).
The average precision that can be achieved in an

experiment is obtained by calculating hΣavg
θ i, which is

the QCRB averaged over input fields and disorder con-
figurations. This quantity is shown in Fig. 3 for the three
scattering regimes previously studied (ballistic, diffusive,
and localized). In the ballistic and diffusive regimes, that
are easily accessible in optics, we observe that the average
QCRB is constant regardless of the scattering strength
of the environment, in the same way as the average QFI.
Indeed, hΣavg

θ i is here correctly estimated from linear
propagation of error, i.e., hΣavg

θ i ≃ 1=hI avg
θ i. Since C0 ≃ 0

in these regimes, we obtain

hΣavg
θ i ≃ N

Bθk4A2
: ð5Þ

This expression shows that a simple invariance law also
rules the average precision that can be achieved when
estimating the properties of a subwavelength particle. This
law yields the remarkable insight that the average precision
achievable for a particle in free space neither increases nor
decreases when this particle is placed in a complex, but
nonabsorbing scattering environment.
Nevertheless, this invariance law does not apply to the

localized regime, in which the average QCRB drastically
increases with the scattering strength of the environment
(see Fig. 3). In this regime, linear propagation of error
cannot be used, and hΣavg

θ i ≠ 1=hIavg
θ i. A connection can,

however, still be made using the observation that both
quantities follow a log-normal distribution [23] (see [34],
Sec. V for a detailed derivation), resulting in

hΣavg
θ i ¼ hTr2Fθi

4NhTrFθi3
: ð6Þ

This expression not only involves the variance of the LDOS
but also higher moments of the LDOS and the CDOS,
which can be numerically estimated with a maximum
likelihood method. The theoretical prediction obtained
using this procedure is in excellent agreement with numeri-
cal observations, as shown in Fig. 3.
Lastly, we also investigate the maximal QFI Imax

θ as
achievable by wavefront shaping techniques [24,54,55].

FIG. 3. Average QCRB hΣavg
θ i relative to the position xT for a

subwavelength particle in the ballistic (blue), diffusive (orange),
and localized (green) regime (grey vertical bars indicate odd
mode openings in the waveguide). In the ballistic and diffusive
regimes, that are most easily accessible in optics, numerical
results (blue and orange lines) are in excellent agreement with the
theoretical predictions of Eq. (5), demonstrating that the invari-
ance law of the QFI leads to a similar invariance for the QCRB in
these regimes. By contrast, in the localized regime, the average
QCRB is drastically increased. In this regime, where linear
propagation of error cannot be used, the average QCRB is
correctly predicted using Eq. (6) (red dots).
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We find that also this quantity follows, on average, a simple
relationship, hImax

θ i ¼ pθNhI avg
θ i. Here pθ is a constant

that depends on the parameter of interest with pε ¼ 1
and px ∈ ½0.5; 1� (see [34], Sec. III for a more detailed
discussion).
To summarize, we derive a universal invariance property

for the average QFI and for the average QCRB applicable
to both the ballistic and diffusive regimes. This result
implies that coherent light fields can be used to measure the
position or the dielectric constant of a subwavelength
particle with an average precision that is the same, regard-
less of the scattering strength of the surrounding environ-
ment. In the regime of Anderson localization, however, the
increased scattering strength simultaneously enhances the
average QFI and the average QCRB. Although these results
are derived here for a two-dimensional model system in the
present work, extensions to all physical scenarios featuring
a linear wave equation should be possible (including 3D
vector waves). Moreover, by averaging not over disorder
but over a sufficiently broad frequency range, our results
should be extendable to targets in nonuniform engineered
media and correlated disorders, such as photonic crystals
[56], Lévy glasses [57], hyperuniform media [58], and
inhomogeneously disordered materials [59] for which
correlations in the disorder lead to a modified value of
C0 [45].
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