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Coordinate transformations are a versatile tool to mold the flow of light, enabling a host of astonishing
phenomena such as optical cloaking with metamaterials. Moving away from the usual restriction that links
isotropic materials with conformal transformations, we show how nonconformal distortions of optical
space are intimately connected to the complex refractive index distribution of an isotropic non-Hermitian
medium. Remarkably, this insight can be used to circumvent the material requirement of working with
refractive indices below unity, which limits the applications of transformation optics. We apply our
approach to design a broadband unidirectional dielectric cloak, which relies on nonconformal coordinate
transformations to tailor the non-Hermitian refractive index profile around a cloaked object. Our insights
bridge the fields of two-dimensional transformation optics and non-Hermitian photonics.
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The introduction of coordinate transformations into optics
has enabled a host of interesting applications such as optical
cloaking—the ability of a device to conceal an object by
shielding it from interacting with the incoming light [1,2].
However, the early designs of optical cloaks were hindered
by demanding requirements, which prompted the search for
materials with unconventional properties [3]. Although this
search continues today, some of these requirements, such as
a vanishing refractive index, anisotropy, or a nonvanishing
magnetic susceptibility, have been found to comewith severe
restrictions such as a spectrally narrow optical response
window. In spite of great efforts to circumvent these
obstacles [4–10], some applications like stand-alone cloaks
[1,2,11] still rely on such properties.
On another seemingly unrelated front, that of non-

Hermitian photonics [12–19], engineering the imaginary
part of the index of refraction has led to a plethora of
experimental demonstrations [20–28] with various novel
applications [29–32]. Gain and loss provides an extra degree
of freedom (different from negative or anisotropic electro-
magnetic responses) which offers an alternative route for
controlling the flow of light with a non-Hermitian medium.
In this Letter we demonstrate how transformation optics

and the engineering of non-Hermitian media can be directly
linked. Specifically, in isotropic materials the nonconfor-
mal transformations naturally lead to spatially modulated
gain and loss. When using them for constructing an
invisibility cloak, such materials not only bend the phase
fronts of light around the cloaked object, but the involved
gain and loss distribution also provides sources and sinks

for the probing light field. This can be used for designing a
unidirectional broadband non-Hermitian version of the
Zhukovsky cloak [1,33,34]. Rather than featuring aniso-
tropic [2], epsilon near zero (ENZ) [35,36], or negative
index [37,38] materials, this non-Hermitian cloak just
consists of a dielectric isotropic medium with spatially
modulated gain and loss. With the underlying strategy to
use nonconformal maps to design non-Hermitian index
landscapes, we also open up new directions for the
application of transformation optics in general. We envi-
sion, for example, that based on our results many of the
existing conformal mapping setups in two-dimensional
(2D) media [34] could also be considered for potential
nonconformal extensions. The resulting non-Hermitian
distributions can then be experimentally implemented with
a spatially modulated pump beam [39–41].
Our starting point is the Helmholtz equation that

describes the scattering of a linearly polarized electric
field of a given wavelength λ0 at a 2D isotropic material
landscape. Following the strategy of transformation optics,
we first consider a “virtual space” with coordinates ðx0; y0Þ,
in which the incoming light sees a homogeneous medium
with a constant and real refractive index n0. The corre-
sponding Helmholtz equation is given as follows:

Δ0Eðx0; y0Þ þ n20k
2
0Eðx0; y0Þ ¼ 0; ð1Þ

where Δ0 ¼ ∇02 ¼ ∂2=∂x02 þ ∂2=∂y02, with k0 ¼ 2π=λ0.
We now translate this equation to “physical space” to
obtain a transformed Helmholtz equation that features the

PHYSICAL REVIEW LETTERS 128, 183901 (2022)

0031-9007=22=128(18)=183901(6) 183901-1 © 2022 American Physical Society

https://orcid.org/0000-0002-9126-2908
https://orcid.org/0000-0002-6821-1467
https://orcid.org/0000-0002-4123-1417
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.128.183901&domain=pdf&date_stamp=2022-05-04
https://doi.org/10.1103/PhysRevLett.128.183901
https://doi.org/10.1103/PhysRevLett.128.183901
https://doi.org/10.1103/PhysRevLett.128.183901
https://doi.org/10.1103/PhysRevLett.128.183901


same field distribution E in the physical coordinates ðx; yÞ
and in the inhomogeneous (but isotropic) refractive index
landscape n2ðx; yÞ:

ΔEðx; yÞ þ n2ðx; yÞk20Eðx; yÞ ¼ 0; ð2Þ

where Δ¼∇2¼∂2=∂x2þ∂2=∂y2. If we do not restrict our-
selves to conformal (i.e., angle-preserving) transformations,

the refractive index nðx; yÞ ¼ nRðx; yÞ þ inIðx; yÞ, which is
now a complex-valued function in general, satisfies the
following complicated relation that notably depends not only
on the virtual index n0 and the coordinate transformation
½x0ðx; yÞ; y0ðx; yÞ�, but also on the specific solution Eðx0; y0Þ
in virtual space [see the Supplemental Material (SM) for
details [42] ]:

n2ðx; yÞ ¼ n20
2
½ð∇x0Þ2 þ ð∇y0Þ2� − 1

k20
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∂ lnE
∂x0 þ Δy0
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Whereas the first term on the right-hand side of the above
equation, ðn20=2Þ½ð∇x0Þ2 þ ð∇y0Þ2�, is the conformal part
(see, e.g., Ref. [33]), the remaining terms stem from the
nonconformality of on the coordinate transformation. Since
these new terms bind the transformation of the index to a
certain solution in virtual space, Eðx0; y0Þ, they appear very
impractical at first glance. It turns out, however, that for the
canonical case of a plane-wave input in positive x direction,
corresponding to a virtual solution Eðx0; y0Þ ¼ E0ein0k0x

0
,

the optical potential in real space drastically simplifies to
take the intensity-independent form:

n2ðx; yÞ ¼ n20

�
ð∇x0Þ2 − i

n0k0
Δx0

�
: ð4Þ

Remarkably, this expression for n2ðx; yÞ is equivalent to the
2D constant-intensity (CI) potential that has recently been
studied extensively [43–51] (see the SM [42]). CI waves are
a special solution of the Helmholtz equation for which a
judiciously chosen modulation of gain and loss suppresses
wave scattering entirely. Moreover, as was recently shown
in Refs. [48,50], the media supporting such waves can be
made unidirectionally invisible for a broad range of input
frequencies. With Eq. (4) we have thus discovered that CI
waves in physical space arise naturally through a non-
conformal coordinate transformation of the plane-wave
solution in homogeneous virtual space. This provides a
simple geometrical interpretation of CI waves, and some
of their hitherto unexplained properties, such as their
robustness to frequency detuning, can be seen as a direct
consequence of this interpretation.
In 2D virtual space not only plane waves but also other

continuous wave solutions can be identified, for which
the refractive index of Eq. (3) will be independent of the
virtual beam’s intensity. Such solutions typically have
separable amplitude-dependent and amplitude-independent
parts, another example of which is a Gaussian beam.
On the other hand, electric field solutions with diverging

logarithmic derivatives, such as Bessel [52] and Airy beams
[53], will create regions of infinite nðx; yÞ, and are hence
unsuitable for our transformation protocol.
We now apply the above approach to a well-studied

example in the literature on transformation optics, which is
the Zhukovsky map [54] that has been used extensively in
conformal transformation optics for the design of invis-
ibility cloaks [1,33,34]. We start with the expression for the
conformal Zhukovsky map, wZhðzÞ ¼ zþ 1=z, where we
have used the convenient notation w ¼ x0 þ iy0 for the
virtual coordinates, and z ¼ xþ iy for the physical coor-
dinates [note that ðx0; y0Þ and ðx; yÞ are real valued; see
Refs. [55–57] for examples of complex-valued transforma-
tions]. Illustrations of the conformal Zhukovsky trans-
formation are provided in Figs. 1(a) and 1(b): the light
green line in virtual space, see Fig. 1(a) (branch cut
connecting the points w ¼ �2), is transformed into the
light green unit circle in physical space, see Fig. 1(b).
A plane wave traveling in positive x direction of virtual
space will thus be guided around the cloak boundary,
placed right at this circle in physical space. Importantly for
the present case, the conformal Zhukovsky map features
two points located at z ¼ �1, right at the cloak boundary,
where the refractive index in physical space vanishes
[see light green points in Fig. 1(b) and dark blue parts
in Fig. 2(a)]. The cloak thus requires the use of materials
with a vanishing refractive index, which limits the cloak
functionality to narrow-band radiation.
With the approach presented above, such limitations

can be conveniently circumvented through the use of
nonconformal maps that naturally lead to non-Hermitian
materials with complex refractive profiles. In particular, to
design such a non-Hermitian cloak, we modify the
Zhukovsky map as wðz; z�Þ ¼ zþ ηðz; z�Þ=z.
In contrast to the conformal map wZhðzÞ, the map

wðz; z�Þ depends on both z and its complex conjugate
z�, which violates conformality [compare Figs. 1(b)
and 1(c)]. In the present case, we choose the envelope
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ηðz; z�Þ as a function of jzj to have the shape of a flattop
function with smoothed edges (see caption of Fig. 2). For
large values of jzj ≫ 1 the envelope ηðz; z�Þ vanishes
[wðz; z�Þ → z], while at jzj ≈ 1 it has an edge with finite
first and second derivatives, such that the vanishing of nR at
x ¼ �1 ¼ �2.4λ, shown for the conformal Zhukovsky
map in Fig. 2(a), is avoided, according to Eq. (4). We
have found that for a judicious choice of ηðz; z�Þ excellent
cloaking can be achieved when the cloak’s outer radius

corresponds to the radius of the branch cut in physical
space. For the cloak we show here, this radius is
jzj ¼ 1.20458 ¼ 2.86λ, and is indicated by the dark green
line and circle in Figs. 1(a) and 1(c), respectively.
The resulting material is dielectric with nRðx; yÞ ¼
Re½nðx; yÞ� > 1 in all points of physical space, but
with an inhomogeneous gain-loss distribution, given by
nIðx; yÞ ¼ Im½nðx; yÞ�.
The principle of the cloak’s operation is schematically

depicted in Fig. 1(d). The yellow surface represents the
imaginary part of the dielectric profile, εIðx; yÞ ¼
Im½n2ðx; yÞ�. As the energy flux is created and destroyed
in regions of gain and loss, the representation of light as
rays in 2D space is not appropriate in non-Hermitian media.
To visualize the light propagation, we plot instead the lines
whose increase (decrease) in the direction orthogonal to the
x-y plane marks the creation (destruction) of the Poynting
flux Sðx; yÞ (see the SM [42]). The cloaking for a beam
incoming from the negative x direction [red line in the
upper plot of Fig. 1(d)] can be explained by the interplay
of the real and imaginary parts of the refractive index

FIG. 2. Refractive index distributions for the conformal and
nonconformal Zhukovsky cloaks. (a) Real-valued refractive index
distribution of the conformal Zhukovsky cloak, reaching values of
n ¼ 0 at x ¼ �2.4λ, and requiring the use of ENZ materials. Here,
λ ¼ λ0=n0 and n0 ¼ 3.1. (b) Real (left) and imaginary (right) parts
of the refractive index spatial profile of the nonconformal
Zhukovsky map. The refractive index based on Eq. (4) is
calculated using the transformation wðz; z�Þ with ηðz; z�Þ ¼
1=½1þ eβðjzj−R1Þ� − 1=½1þ eβðjzj−R0Þ� and R0 ¼ 0.25, R1 ¼ 1,
β ¼ 5.75. The values for nRðx; yÞ lie between 1.013 and 3.594,
whereas those of nIðx; yÞ lie between−1.013 and 1.013. The black
filled circle in all panels indicates the cloaked region.

FIG. 1. Transforming space with non-Hermitian media. (a) The
virtual coordinates, with the branch cuts of the conformal (light
green) and nonconformal (dark green) Zhukovsky maps. The area
of each square in the grid is 0.4 × 0.4. After the mappings,
the green lines form circles, see (b) and (c), inside of which is the
cloaked region (gray shaded area). The local orthogonality of the
coordinate lines, a signature of conformal mapping, is present
only in (b) but not in (c) (in both plots only the upper Riemann
sheet is depicted). (d) Visualization of light propagation in the
proposed non-Hermitian cloak profile, with the blue and red lines
being the equivalent of rays in a non-Hermitian landscape (see the
SM [42]). The yellow surface indicates the imaginary part of the
dielectric function, that causes the blue and red lines to rise or
fall in the direction orthogonal to the x-y plane, indicating the
local creation [∇ · Sðx; yÞ > 0] or destruction [∇ · Sðx; yÞ < 0] of
energy flux. The projection of the lines onto the 2D plane
coincides with the inversely transformed coordinates, plotted in
the grid below, with the cloaked region shaded in gray.
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distribution, which form here a parity-time- (PT) symmet-
ric system [see Fig. 2(b)]. The part of the beam that is
sufficiently displaced from the cloak center (blue line) sees
a noncurved space, and propagates in a straight line in the
homogeneous background medium. For beam parts near
the center (red line), similarly to the conformal Zhukovsky
mapping, the real part of the refractive index distribution
works to bend the light around the object. Since, however,
we have nR > 1 in all of physical space, the real part of the
refractive index alone is insufficient to achieve the cloaking
effect: in fact, the finite imaginary part of the refractive
index distribution partially absorbs the incoming electric
field [∇ · Sðx; yÞ < 0] in front of the cloak and amplifies it
[∇ · Sðx; yÞ > 0] behind the cloak.
To demonstrate the cloaking efficiency, we solve Eq. (2)

with nðx; yÞ of Fig. 2(b) numerically by using the open
source finite-element solver NGSolve [58,59]. Inside of the
cloaked region that we terminate with a Neumann boundary
condition in physical space, we place a highly reflective
material with a circular cross section. Choosing the back-
ground value of the refractive index in virtual space as
n0 ¼ 3.1, we find that nRðx; yÞ varies between 1.013 and
3.594, whereas nIðx; yÞ has values between �1.013. In the
SM, we also show the results for an alternative parameter
regime, where the cloak region has a smaller radius but the
nIðx; yÞ varies with an amplitude as low as �0.08 [42].
When the cloak is present [Fig. 3(a)], the beam incoming

from the left is perfectly transmitted to the right side, with
both phase and amplitude in the far field being equal to that
of a plane wave in virtual space with a refractive index n0

(see also Fig. S2 of the SM [42]). Inside the cloaked area,
the field completely vanishes, as expected. When the cloak
is absent [Fig. 3(b)], strong scattering occurs and a shadow
is formed behind the cloak.
Concerning the directional sensitivity of the cloak

operation, we recall that already the conformal
Zhukovsky cloak is sensitive to changes of the incidence
angle with respect to the normal axis (see the SM [42]). The
cloak in Fig. 2(b) retains a similar sensitivity to such
deviations, with an appreciable reduction of efficiency
already at input beam tilts of around �2° to the normal,
making the cloaking effectively unidirectional.
To put these results in the context of previous theoretical

work, let us mention here Ref. [61], where a cloak based on
anisotropic non-Hermitian electric and magnetic materials
was designed by transforming a PT-symmetric potential in
the virtual coordinates to the physical space—an idea later
transferred also to acoustics [62]. In a similar vein, folding and
stretching of non-Hermitian virtual space has recently been
used to construct 2D gain-loss distributions that are robustly
balanced [63]. In Ref. [64], a cloaking strategy based on
subwavelength layers of balanced gain and loss was devised,
using conducting non-Hermitian metamaterials with locally
infinite reflection coefficients. This strategy, although similar
in spirit to active cloaking, does not require the knowledge of
the input wave properties for successful cloak operation, in
contrast to the earlier work of Refs. [65,66].We note here that
none of the earlier non-Hermitian cloaking work, that we
are aware of, involves transformation optics with isotropic
dielectric media, as we do in this Letter. The first remarkable
successes in the direction of non-Hermitian transformation
optics were made in one-dimensional (1D) systems, using
complex spatial coordinates [55–57].
A notable disadvantage afflicting ENZ [1], anisotropic

[11], and layered non-Hermitian cloaks [64] alike is the
requirement of extreme real refractive index values (or
admittance values [64]), which limits the cloak’s operation
to frequencies near metamaterial resonances. As our cloak
features inhomogeneous dielectric media with nR > 1 and
finite values of nI , which are known to have reasonably
fast and frequency-broadband responses (see, e.g.,
Refs. [67,68]), we now investigate the behavior of our cloak
under pulsed illumination.
Strictly speaking, the cloak’s refractive index distribution

in Eq. (4) should produce its desired effect only at the
design wave number k ¼ n0k0. Perfect cloaking from
pulsed radiation would thus require the tailoring of not
only the spatial but also the frequency dependence of the
refractive index distribution. We choose here to approxi-
mate the spectral index distribution to be entirely frequency
independent in the k range of the input pulse, while using
the spatial distribution shown in Fig. 2(b). The results,
shown in Fig. 4(a), demonstrate excellent cloaking perfor-
mance for pulses with a spectral width of σk ¼ 0.055k,
thereby confirming the robustness of the design in Eq. (4)
to frequency detuning.

FIG. 3. Non-Hermitian cloaking for an incoming plane wave at
the central design spatial frequency k ¼ n0k0. (a) Electric field
solution for the case when cloaking is present. The refractive index
distribution is that of Fig. 2(b), with the dashed white box denoting
the area plotted there. The black ring represents the annulus of the
cloak, where the Neumann boundary condition of vanishing
normal electric field derivative was used. Inside the annulus
there is a highly reflective material, taken here as aluminum
(nAl ¼ 1.52þ 9.26i at 1 μm [60]), with a circular cross section.
(b) The electric field solution for the same incoming field but with
only the highly reflectivematerial present. The cloak’s outer radius
is 2.86λ, while its inner radius is 2.62λ. The fields are normalized to
the incoming wave amplitude. The black arrow marks the propa-
gation direction of the incoming beam.
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To summarize, we have introduced a new way to achieve
optical cloaking in dielectric systems without using ENZ or
anisotropic materials, and demonstrated that nonconformal
maps naturally lead to complex isotropic indices of refrac-
tion. Based on a nonconformal Zhukovsky transformation, a
non-Hermitian invisibility cloak is introduced, which also
works for incoming pulses. We note that our transformation
optics design is fully analytical, but still optimization
strategies could also be applied in order to optimize the
corresponding refractive index profiles, with relatively low
computational effort as compared to previous work in non-
Hermitian optimization problems [39–41]. Although the
discussed synergy between non-Hermitian photonics and
2D isotropic transformation optics is expected to lead to
many more interesting insights, we emphasize here that it
should be possible to extend our theoretical methodology to
three spatial dimensions, where the vectorial properties of
light-matter interaction play a significant role.
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