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I. FIELD MEASUREMENT: DELAY LINE SCAN VS. HOLOGRAPHY

We use two techniques to extract the field of the scattered light. The first relies on standard digital phase-stepping
holography. For this the delay line is fixed to the desired delay time of the probe pulse. We then globally modulate
the phase with the SLM (phase-stepping) and record the interference pattern between the scattered light and the
plane wave probe pulse on the CCD. From the different images recorded we retrieve the field of the scattered light.
We employ this technique to measure the transmission matrix as well as to retrieve the field for given fixed delays.
This technique is fast and especially useful for repeated measurement to allow for averaging.

The second technique relies on interferometric cross-correlation [1], which retrieves the entire temporal evolution
of the scattered light within the pulse. It can be seen as a continuous version of the phase-stepping holography
described above. Here the SLM displays a fixed pattern and the phase modulation is realised by tuning the delay line.
The delayed probe pulse is scanned over the broad scattered pulse while the CCD continuously records the resulting
intereferogram. Looking at a single pixel, the main frequency of the recorded signal is the carrier frequency of the
laser. Fourier filtering to extract just the amplitude of this oscillation returns the local pulse shape of the scattered
light impinging on this pixel. All temporal data presented in this article is measured in this way. Compared to the
first technique, this method is however quite slow such that in situations where repeated measurements are necessary,
it becomes impractical.

II. DEFINITION OF THE TEMPORAL ORIGIN

For the measured temporal data presented in Fig. 2 as well as Fig. 4(b) of the main text, the time τ = 0 is defined
to correspond to the delay line position δx at which the two arms of the interferometer have the same optical path
length in presence of the scattering medium. To determine this point we use quasi-monochromatic light (pulse width
of ∆λ < 0.1 nm) whose wavelength we tune continuously over a scale of ±3 nm around λ0 = 808 nm. In the case of
a non-zero path length difference |δx| > 0, different wavelengths will pick up different relative phases over δx. When
tuning the wavelength, this leads to an oscillation of the global phase of the field measured with the phase-stepping
holography technique described above. The frequency of this oscillation depends linearly on the path length difference
and goes to zero when the two paths are of equal length. We probe these oscillations by calculating the correlations
between the measured λ-dependent field and the field measured at λ0. Doing this for different delay line positions
δx we obtain the pattern shown in Fig. S1(a). A clear symmetry point is observed when the path length difference,
and with it the oscillation frequency, goes to zero. Fourier transforming the oscillations along λ allows to determine
δx = 0, defining the temporal origin (Fig. S1(b)).

For the simulations presented in Fig. 3 of the main text, the point τ = 0 is defined as the time at which an
input pulse would reach the output surface if the scattering region would be homogeneously filled with an averaged
refractive index medium. The propagation delay can be computed from the mean group velocity of the excited modes,
see Sec. V.

Note that the experimental method for determining δx = 0 is just an operational definition. Also for monochromatic
light a distribution of different path length through the medium exists which leads to the pulse shape affecting the
observed oscillations. However, we found that in practice this definition corresponds well with the temporal origin
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FIG. S1. Measurement of the point of equal path length. (a) Real part of the correlation C between the field speckle pattern
obtained for a random input at wavelength λ with the respective reference pattern at λ0 = 808 nm for different lengths of the
delay line δx. The fading of the pattern wavelength far from λ0 results from the limited spectral decorrelation length of the
medium. (b) Fourier transform C̃ along λ of the data presented in (a). The crossing point of the oscillation peaks is used to
determine δx = 0.

of the simulations. In the end, the location of the temporal origin is arbitrary and does not play a role in the
interpretation of the data.

III. DEFINITIONS OF CHARACTERISTIC QUANTITIES

A. Definition of γ

The amount of control in the experiment is defined by the parameter γ. It is given by

γ ≡ Nout

Nin
≈ NCCD

NSLM
, (S1)

where NSLM is the number of modes controlled on the SLM and NCCD the number of pixels in the region of interest
(ROI) of the camera. When measuring a TM the camera pixels are binned such that one pixel corresponds to one
speckle grain. The typical numbers of targeted modes used in this article are N target

SLM = 322 (N target
SLM = 162 and

N target
SLM = 622 are used as well). However, due to geometric experimental limitations, i.e., the back focal plane of the

illumination microscope objective cutting some SLM modes, the effective number of controlled modes needs to be
estimated. This is done using the information contained in the TM. Taking the square root of the sum over the CCD
dimension of the Hadamard product of the TM with its conjugate gives a vector that contains the information on the
contribution of each SLM mode. Let us denote P the vector containing the information, one has

Pj =

√∑
i

(T · T ∗)i,j =

√∑
i

Ti,j × T ∗i,j , (S2)

with (A · B) being the Hadamard product of two matrices A and B with equal dimensions. The vector P can be
reshaped to visualise the SLM modes as presented in Fig. S2(a). Applying a threshold and summing the number of
modes above this threshold enables to obtain an estimate of the effective value of NSLM (see Fig. S2(b)).

The ROI on the camera is usually chosen large enough that we obtain smooth averaged pulse shapes while still being
small enough that the probe pulse is sufficiently homogeneous over the whole area. In most experiments we work with
γ = 0.2-0.3. The speckle grain size is extracted by taking the half width at half maximum of the cross-correlation of
the field. To be insensitive to the sampling of the speckles this width is extracted by a Gaussian fit. The speckle grain
size can also be extrapolated from the TM measurement [2]. It is given by the inverse of the participation number
normalized by the rank of the TM.
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FIG. S2. Effective number of SLM modes. (a) Image of the SLM modes contribution to the TM obtained by reshaping the
vector P obtained from Eq. (S2). (b) A threshold is applied and the number of effective modes computed by summing the
modes above the threshold (fixed at 12 here). For the data in Fig. 2(a) of the main text, this results in NSLM ≈ 640 modes
effectively launched to measure the TM.

B. Definition of the normalized singular values

To observe the Marchenko-Pastur law in the distribution of singular values of a TM they need to be normalized.
For a matrix of size m× n and singular values si this normalization is usually defined as

s̃MP
i =

si√
1

min(n,m)

∑min(n,m)
j=1 s2

i

, (S3)

regardless of the respective values of m and n. In physics normalizing the singular values of a TM such that they
follow the Marchenko-Pastur law is often interesting [3]. However for a TM m and n have a physical meaning: the
number of controlled modes (NSLM) and the degrees of freedom (NCCD). They no longer are interchangeable. To
compute the mean over the singular values, all singular values equal to 0 should be included as they bring information
on the transmission. Here we hence will use an alternative version of the normalized singular values to be able to link
them to the enhancement. We define

s̃i =
si√

1
NSLM

∑NSLM

j=1 s2
i

. (S4)

It is noteworthy that for NSLM > NCCD (our experimental case), one has s̃i = s̃MP
i /
√
γ.

IV. PEAK WIDTH AND TEMPORAL SHIFT OF THE PULSE MODULATION

In the main text we show that the SVD of the time-gated TM allows us to modulate the transmitted amplitude
at any given point in the pulse (see Fig. 2(c)). However we do not discuss the width of the enhancement peaks. As
visible in Fig. 2(a), the full width at half maximum of the amplitude peak is of 200 fs, broader than the initial pulse.
The 100 fs width of the original pulse is the intensity width, the amplitude width of the original pulse is a factor of√

2 larger. To this apparent broadening adds the homodyne measurement process. As we measure the scattered light
by interfering it with the unperturbed probe pulse the obtained temporal evolution is given by a convolution of the
two. Convolving two Gaussians of width σ leads to a Gaussian of width 2σ which accounts for the rest of the observed
broadening.

Now we want to point out that for early and late times the targeted enhancement (or reduction) does not appear
exactly at the desired time, as shown in Figs. S3(a) and (b). A way to understand this behaviour is to recall how the
TM measurement is performed. The probe pulse interferes with the elongated one at the chosen time τ0. The probe
pulse width is the one of the non-elongated pulse (full width at hall maximum 100 fs) so that the measurement is not
temporally sharp but is multiplied by the Gaussian envelope of the probe. There is then a temporal “freedom” for the
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peak position around the position τ0. This explains the peak shifts to times at which it is easier to increase energy
(i.e., where the field amplitude is higher). This temporal position mismatch is taken into account in the enhancement
value extraction: the enhancement is measured at the peak position instead of τ0.

FIG. S3. Evolution of the peak position over the pulse. (a) Pulse shape of the first SVD states v1 for different values of τ0.
It is possible to control energy delivery at all times within the distribution of delays induced by the scattering, but the peak
positions do not exactly coincide with the chosen values of τ0 (indicated by the vertical dashed lines). At early times (in the
pulse peak rise, blue curve) the increase is shifted to the later times, whereas at later times (pulse tail, orange curve) the peak
is shifted to the earlier times. In both cases this corresponds to a shift in direction of the higher field. For intermediate delays
(τ0 ∼ 1 ps, green curve) no clear shift is visible. (b) Plot of the peak shift, given by τ eff

0 − τ0 where τ eff
0 is the delay at which

the peak is measured, relative to the τ0 value along the pulse.

V. SIMULATION DETAILS

In the numerical simulations, we solve the scalar Helmholtz equation [∆ + n2(~r )k2]ψ(~r ) = 0 in two dimensions on
a regular Cartesian grid via the modular recursive Green’s function method [4, 5]. Here, ∆ = ∂2

x+∂2
y is the Laplacian

in two dimensions and n(~r ) is the spatially-dependent refractive index distribution with ~r = (x, y) being the position
vector. Furthermore, k = 2π/λ is the free space wave vector and ψ(~r ) is the unknown solution.

The scattering system consists of a waveguide with a rectangular, slab-like scattering region (see Fig. S4) of width
W = 1 and length L = W/10 in which circular obstacles of radius R = W/100 and refractive index nscat = 3.5 are
placed. To match the scattering strength of the experimentally used scattering samples, we use a filling fraction of
fscat = 0.4 resulting in an average transmittance of ∼ 0.28 (averaged over 10 disorder realizations) and a transport
mean free path of `t ∼ 0.31L at the central frequency ω0 = 75.55cπ/W . We then solve the monochromatic scattering

FIG. S4. Sketch of the waveguide setup used in the numerical simulations. The scattering region with width W = 1 and
length L = W/10 (whose boundary is marked by dashed black lines) contains circular obstacles (shown in red) with a radius
of R = W/100 and refractive index of nscat = 3.5 that fill 40% of its area. The black arrow marks the input side of the system.
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problem for 301 frequencies in the interval ω ∈ [50.55, 100.55]cπ/W to obtain the frequency-resolved transmission
matrices T (ω) in the waveguide mode basis.

To arrive at the time-resolved transmission matrices T (t), we Fourier-transform the frequency-resolved transmission
matrices and only consider the lowest 50 waveguide modes at the input and output in order to avoid contributions
from modes that are evanescent at certain frequencies. Furthermore, we add a spectral function f(ω) to the Fourier
transformation that defines the pulse shape which we choose to be a Gaussian. More precisely, we use f(ω) =

e−(ω−ω0)2/2σ2
ω with σω =

√
2 × 8/〈τ〉. Here, 〈τ〉 = πA/C is the average time-delay in the scattering medium in two

dimensions with A = LW (1 − fscat) + LWfscatn
2
scat corresponding to the area of the scattering region (the area of

the dielectric scatterers has to be multiplied by their refractive index squared to account for the increased density of
states) and C = 2W being the external boundaries through which the waves can enter and exit the system [6, 7].

In analogy to the experiment, we define the temporal origin τ = 0 as the effective time-delay in a homogeneous
medium with the same effective refractive index as the scattering medium (see Sec. II). The latter is given by τeff =
L/〈vg〉, where 〈vg〉 = (c/neff)〈kx〉/〈k〉 is the mean group velocity with c being the vacuum speed of light and neff =
(1−fscat)+fscatnscat being the homogeneous effective refractive index. Moreover, 〈kx〉 = 〈[〈k〉2−k2

y,n]1/2〉 is the mode-
averaged longitudinal propagation constant at the mean total wave vector 〈k〉 and ky,n = nπ/W are the transverse
wave vectors of the waveguide modes. In Fig. 3 of the main text, we use a target time of τ0 = 1.506〈τ〉, where the
factor 1.506 has been chosen to match the position of the focusing peak with that in the experimental output pulse
(at τ0 = 1.1 ps). All presented results are averaged over 10 disorder realizations with the same parameters.

VI. MINIMAL MODEL TO COMPLEMENT EXPERIMENTAL OBSERVATIONS

A. Simulations

We present the simulation results obtained from a minimal model in which the time-gated TM is regarded as a mere,
numerically generated, random matrix (with complex Gaussian independent and identically distributed elements). For
this random TM we compute the output fields obtained for different input vectors, the singular modes or the global-
focus input, and compare them with experimental observations. In Fig. S5(a), the normalized singular values are
compared to the field enhancement obtained in case of phase and amplitude control or phase-only control. The values
match well for full control. In case of phase-only control, however, control over the output field is weaker both for
increase or decrease, resulting in ηE moving closer to 1. Figure S5(b) shows the evolution of the enhancement for
the first singular vector and the global-focus vector with the degree of control γ. As expected from the first singular
vector being optimal, its enhancement is always higher than the one obtained for the global-focus. For relatively
square TMs (small 1/γ), the effect is clearly visible. The more non-square the TM gets the less difference there is in
the observed enhancement. Indeed, in the extreme case of only one non-zero singular value, its associated vector is
the same as the global-focus one as there exists only a single output mode. As expected, in the case of phase-only
control the observed enhancements decrease.

B. Analytical prediction

Experimentally, as shown in Fig. 4(a) of the main text, and in the simulations presented in Fig. S5 one can observe
that the first singular vector gives better enhancement results than the global-focusing input. Here we want to analyse
this difference analytically. To do so let us consider a TM T of size n × m (matrix dimensions given in subscript

brackets) and its SVD: T(n,m) = U(n,n) × S(m,m) × V †(m,m). The global-focusing vector G(m,1) is defined such that

G(m,1) = T †(m,n)I(n,1) where the coefficients of I are all unity. Now let us decompose G in the basis of the singular

vectors of T ,

G(m,1) = T †(m,n)I(n,1) = V(m,m)S
†
(m,n)U

†
(n,n)I(n,1) =

m∑
i

si

n∑
j

u∗j,iVi, (S5)

where si are the singular values and uj,i the elements of U . The vector actually displayed on the SLM is normalized
such that we have a field at the output EG:

G̃ =
G

||G||2
=

∑
i si

∑
j u
∗
j,iVi√∑

i |si
∑
j u
∗
j,i|2

→ EG =

∑
i s

2
i

∑
j u
∗
j,iUi√∑

i |si
∑
j u
∗
j,i|2

(S6)
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FIG. S5. Minimal model results. (a) Field enhancement values obtained for different singular vectors in case of full control
(blue dots) or phase-only control (blue dotted line). These values are plotted together with the normalized singular values
s̃ (red line). The simulated TM is of size 1024 × 225 as for the measurements presented in Fig. 2(a) of the main text. The
measured speckle grain size (1.7 pixels) is also accounted for in the simulation (see Supplemental Materials in [8])). The data
are averaged over 10 realizations of the disorder. (b) Comparison of the field enhancement values of the first singular vector
v1 (blue) and the global-focusing vector (red) for different degrees of control γ. The full control case is plotted with solid lines
while the phase-only case is plotted with dotted lines. As for the experiment presented in Fig. 4(a) of the main text, we vary
γ by varying the number of considered pixels in the ROI while keeping the number of SLM modes fixed at 256. Also here the
experimental speckle grain size (1 pixel) is accounted for in the simulation. The data are averaged over 10 realizations of the
disorder.

Similarly, when sending in a normalized random input R̃ one gets the field ER:

R̃ =

∑
i βiVi√∑
i |βi|2

→ ER =

∑
i siβiUi√∑
i |βi|2

, (S7)

where βi are the projection coefficients. The total intensity at the output is then

IR = E†RER =

∑
i s

2
i |βi|2∑
i |βi|2

≈ 〈s2〉 (weighted arithmetic mean). (S8)

Note that here the mean is computed over m values. For the global-focusing state, the output intensity is given by
the product of two weighted arithmetic means, giving

IG =

∑
i s

4
i |
∑
j u
∗
j,i|2∑

i s
2
i |
∑
j u
∗
j,i|2

≈ 〈s
4〉
〈s2〉

. (S9)

The latter equality is only approximate, as the si are not statistically independent from |
∑
j u
∗
j,i|. Nevertheless, it

allows for a good approximation of the enhancement which is given by the ratio of the global-focus intensity to the

intensity obtained with a random input: ηG
I = IG

IR
= 〈s4〉
〈s2〉2 . For the SVD the output intensity of the input vector i

is more straightforward to compute and is Ii = s2
i , resulting in an enhancement ηiI =

s2i
〈s2〉 . Now let us compare ηiI

obtained for the ith SVD vector and ηG
I ,

ηR
I = 1 ≤ ηG

I =
〈s4〉
〈s2〉2

≤ η1
I =

s2
1

〈s2〉
= s̃2

1. (S10)

The first inequality comes from Jensen’s theorem and the second from the mean inequality.

In the general, there is no obvious link between the intensity enhancement derived above and the field enhancement,
which does not have a simple analytical derivation. However, in case of Rayleigh statistics of the field one can construct
this link. One can show that for Rayleigh statistics the ratio of `1 norms of two vectors is equal to the ratio of the
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`2 norms of these two vectors. Hence, because the amplitude enhancement corresponds to the vectors `1 norms ratio
and the intensity enhancement to the square `2 norms ratio, one obtains

ηE '
√
ηI = s̃. (S11)

Note that this property does not hold for the amplitude enhancement of the global-focus due to its Rician statistics
(see Sec. VII). Finally, assuming a Marchenko-Pastur distribution, one can expect from Eq. (S10) that the intensity
enhancements of the first singular vector scale as 1/γ. For the amplitude enhancements this results in a scaling with
1/
√
γ which corresponds well with the experimental observations presented in Fig. 4(a).

VII. SPECKLE STATISTICS

Fully developed speckles are governed by Rayleigh statistics: their amplitude is Rayleigh distributed while their
phase distribution is flat. While in the main text we primarily concentrated on the global modulation of the field
amplitude at τ0, here we want to investigate the speckle distribution realized by the different input states. Figure S6
shows that the reference field obtained for a random input as well as the different singular vectors reproduce the
Rayleigh statistics (v1 is shown as an example showing an enhanced average values compared to the reference).
However, the global-focusing pattern created by simultaneously focusing on each output pixel results in a Rician
distribution of field amplitudes and a preferred phase [9]. This distribution corresponds to the sum of random phasors
which have some common component while the Rayleigh distribution corresponds to the sum of fully random phasors.
The reason for the emergence of Rician statistics for the global-focus procedure is that it forces a common phase on
all targeted output pixels.

FIG. S6. Speckle statistics. (a) Distribution of field amplitudes for three cases: field obtained from the first singular vector v1

(blue), field of the global-focusing state (red) and a random reference input (yellow). All three distributions are normalized to
the average field amplitude of the random reference E0. (b) Corresponding phase distributions for the same data.
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