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Motivation and Basics Simulation: Conventional CPA vs. MAD-CPA

Conventional (single-mode) CPA Massively Degenerate (MAD) CPA

: ‘. e : each zero crossing the
absorber (CPA): lasing condition becomes critical absorption — real axis represents 2 ImiAw] [10° rads] I1oo
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Thin and weakly absorbing media can be made strongly absorbing SR S R A S S SRR S N
by putting them into such a resonant CPA structure ' ' }/l ' ' l

A laser can be operated in reverse to realize a coherent perfect
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% of critical absorption

A Conventional (single-mode) CPA

Previous work!1:2l: CPAs are 9
limited to a single, judiciously T2 14 16 18 ,j, effgc)hc)nfeﬁ-zp;i?ﬁtnsts Re[Aw] - rad/s}
shaped wavefront or mode " \ & s .e. >1000 modes

P =y (A) Simple CPA: Only one zero-point per real frequency is crossing
the real axis, representing only one transverse mode each (from: [1])
(B) MAD-CPA: R,y has more than 1000 zeros (i.e. >1000 transverse
modes) per real frequency hitting the real axis simultaneously.

Example (see figure): a CPA
that works for axis-parallel
incident light does not work
for tilted incident light beams
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Setup and Experimental Results!3!
MaSSiVEIV Degenerate CPA (MAD-CPA)[B] Massively degenerate (multi-mode) CPA
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* We overcome this limitation by time-reversing a degenerate laser
cavity (like a 4f-cavity), which self-images any incident light field

onto itself. |
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* A weak, critically coupled absorber in this cavity absorbs any Camera -
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Perfect Weak Yin-yang symbol composed of >1000 modes. Wavelength: A=633nm
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MAD-CPA also Works for Rapidly Varying Fields!3!
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Cavity input . .
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Dynamic aberrations :

* Basic Method: Scalar Fourier Optics using Transmission Matrices
(Fast, but cannot simulate residual reflection on lenses)

* Each optical element and the propagation in-between is
expressed by Transmission Matrices T;

 Simulation of a single roundtrip through cavity: Ts¢ = 11; T;
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e (Cavity’s Reflection Matrix is calculated by the geometric series
formula (in matrix form): Repy = 191 + 2T (1 — 74 Tp) ™1

Reflected power [a.u.]

o

* Refined Method: Scalar Fourier Optics using Scattering Matrices AL
(expensive, but can simulate residual reflection on lenses) —e— Static PRSP —

—a&— Dynamic aber. ——#— Shaking, tcor < Texp

 Each optical element and the propagation in-between is
expressed by Scattering Matrices S;

* Each §; can be converted into a corresponding Transfer Matrix References
M;. The whole cavity can then be expressed as M.,y = | [; M; 1] Y. Chong, L. Ge, H. Cao, A. Stone, Phys. Rev. Lett. 105, 053901 (2010)
» After back-converting M., into S.,v, the cavity’s Reflection Ma- | | [21 W. Wan, Y. Chong, L. Ge et al., Science 331, 8895-892 (2011)
trix is obtained by extracting the according sub-matrix from Scav 31Y. Slobodkin, G. Weinberg, H. HOorner et al., Science 377, 995-998 (2022)




